15,240 research outputs found

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving

    Computational medical imaging for total knee arthroplasty using visualitzation toolkit

    Get PDF
    This project is presented as a Master Thesis in the field of Civil Engineering, Biomedical specialization. As the project of an Erasmus exchange student, this thesis has been under supervision both the Universite Livre de Bruxelles and the Universitat Politecnica de Catalunya. The purpose of this thesis to put in practice all the knowledges acquired during this Master in Industrial Engineering in UPC and to be a support for medical staff in total knee arthoplasty procedures. Prof. Emmanuel Thienpont has been working for years as orthopaedic surgeon at the Hospital Sant Luc, Brussels. His years of work and research have been mainly focused on Total Knee Arthroplasty or TKA. During one of the most important steps of this procedure, the orthopaedic surgeon has to cut the head of the femur following two perpendicular cutting planes. Nevertheless, the orientation of these planes are directly dependant of the femur constitution. This Master Thesis has been conceived in order to offer the surgeon a tool to determine the proper direction planes in a previous step before the surgical procedure. This project pretends to give the surgeon an openfree computational platform to access to patient geometrical and physiological information before involving the subject in any invasive procedure

    Aerodynamic properties of turbulent combustion fields

    Get PDF
    Flow fields involving turbulent flames in premixed gases under a variety of conditions are modeled by the use of a numerical technique based on the random vortex method to solve the Navier-Stokes equations and a flame propagation algorithm to trace the motion of the front and implement the Huygens principle, both due to Chorin. A successive over-relaxation hybrid method is applied to solve the Euler equation for flows in an arbitrarily shaped domain. The method of images, conformal transformation, and the integral-equation technique are also used to treat flows in special cases, according to their particular requirements. Salient features of turbulent flame propagation in premixed gases are interpreted by relating them to the aerodynamic properties of the flow field. Included among them is the well-known cellular structure of flames stabilized by bluff bodies, as well as the formation of the characteristic tulip shape of flames propagating in ducts. In its rudimentary form, the mechanism of propagation of a turbulent flame is shown to consist of: (1) rotary motion of eddies at the flame front, (2) self-advancement of the front at an appropriate normal burning speed, and (3) dynamic effects of expansion due to exothermicity of the combustion reaction. An idealized model is used to illustrate these fundamental mechanisms and to investigate basic aerodynamic features of flames in premixed gases. The case of a confined flame stabilized behind a rearward-facing step is given particular care and attention. Solutions are shown to be in satisfactory agreement with experimental results, especially with respect to global properties such as the average velocity profiles and reattachment length

    Subtle pH differences trigger single residue motions for moderating conformations of calmodulin

    Get PDF
    This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca2+ signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of the conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations. PRS is based on linear response theory, comprising sequential application of directed forces on selected residues followed by recording the resulting protein coordinates. We analyze directional preferences of the perturbations and resulting conformational changes. Manipulation of a single residue reproduces the structural change more effectively than that of single/pairs/triplets of collective modes of motion. Our findings also give information on how the flexible linker acts as a transducer of binding information to distant parts of the protein. Furthermore, by perturbing residue E31 located in one of the EF hand motifs in a specific direction, it is possible to induce conformational change relevant to five target structures. Independently, using four different pKa calculation strategies, we find this particular residue to be the charged residue (out of a total of 52), whose ionization state is most sensitive to subtle pH variations in the physiological range. It is plausible that at relatively low pH, CaM structure is less flexible. By gaining charged states at specific sites at a pH value around 7, such as E31 found in the present study, local conformational changes in the protein will lead to shifts in the energy landscape, paving the way to other conformational states. These findings are in accordance with Fluorescence Resonance Energy Transfer (FRET) measured shifts in conformational distributions towards more compact forms with decreased pH. They also corroborate mutational studies and proteolysis results which point to the significant role of E31 in CaM dynamics

    A Multiscale Diffuse-Interface Model for Two-Phase Flow in Porous Media

    Full text link
    In this paper we consider a multiscale phase-field model for capillarity-driven flows in porous media. The presented model constitutes a reduction of the conventional Navier-Stokes-Cahn-Hilliard phase-field model, valid in situations where interest is restricted to dynamical and equilibrium behavior in an aggregated sense, rather than a precise description of microscale flow phenomena. The model is based on averaging of the equation of motion, thereby yielding a significant reduction in the complexity of the underlying Navier-Stokes-Cahn-Hilliard equations, while retaining its macroscopic dynamical and equilibrium properties. Numerical results are presented for the representative 2-dimensional capillary-rise problem pertaining to two closely spaced vertical plates with both identical and disparate wetting properties. Comparison with analytical solutions for these test cases corroborates the accuracy of the presented multiscale model. In addition, we present results for a capillary-rise problem with a non-trivial geometry corresponding to a porous medium

    A method for three-dimensional particle sizing in two-phase flows

    Get PDF
    A method is devised for true three-dimensional (3D) particle sizing in two-phase systems. Based on a ray-optics approximation of the Mie scattering theory for spherical particles, and under given assumptions, the principle is applicable to intensity data from scatterers within arbitrary interrogation volumes. It requires knowledge of the particle 3D location and intensity, and of the spatial distribution of the incident light intensity throughout the measurement volume. The new methodology is particularly suited for Lagrangian measurements: we demonstrate its use with the defocusing digital particle image velocimetry technique, a 3D measurement technique that provides the location, intensity and velocity of particles in large volume domains. We provide a method to characterize the volumetric distribution of the incident illumination and we assess experimentally the size measurement uncertainty

    Thermodynamic Conditions in Quenching Chamber of Low Voltage Circuit Breaker

    Get PDF
    Práce se zabývá studiem procesů probíhajících při zhášení silnoproudého oblouku ve zhášecí komoře jističe. Je zaměřena na výpočet dynamiky tekutin a teplotního pole v okolí elektrického oblouku. V práci je dále popsán vliv vzdálenosti plechů v komoře a vliv tvarů plechů z hlediska aerodynamických podmínek uvnitř komory. Dalším cílem dosaženým touto prací je poskytnutí informací o vlivu polohy elektrického oblouku na termodynamické vlastnosti uvnitř komory. Toto je důležité, zejména pokud je oblouk do komory vtahován jinými silami, např. elektromagnetickými a během tohoto vtahovacího procesu mění svůj tvar i polohu. Za účelem co nejjednoduššího, ale zároveň co nejefektivnějšího řešení úkolu, byl vyvinut software určen speciálně pro výpočet dynamiky tekutin numerickou metodou konečných objemů (FVM). Tato metoda je, v porovnání s rozšířenější metodou konečných prvků (FEM), vhodnější pro výpočet dynamiky tekutin (CFD) zejména proto, že režie na výpočet jedné iterace jsou menší v porovnání s ostatními numerickými metodami. Další výhodou tohoto softwarového řešení je jeho modularita a rozšiřitelnost. Cely koncept softwaru je postaven na tzv. zásuvných modulech. Díky tomuto řešení můžeme využít výpočtové jádro pro další numerické analýzy, např. strukturální, elektromagnetickou apod. Jediná potřeba pro úspěšné používání těchto analýz je napsáni solveru pro konečné prvky (FEM). Jelikož je software koncipován jako multi–thread aplikace, využívá výkon současných vícejádrových procesorů naplno. Tato vlastnost se ještě více projeví, pokud se výpočet přesune z CPU na GPU. Jelikož současné grafické karty vyšších tříd mají několik desítek až stovek výpočetních jader a pracují s mnohem rychlejšími pamětmi, než CPU, je výpočetní výkon několikanásobně vyšší.Work deals with the study of processes that attend the electric arc extinction inside the quenching chamber of a circuit breaker. It is focused on several areas. The first one is concerned to fluid dynamics calculations (CFD) and the second one is aimed at thermal field calculations. In this work effects of metal plates distance together with metal plates shapes are described from aerodynamical point of view. Another objective solved by this work is to give information about influence of an electric arc position in a quenching chamber, which changed its shape due to forces acting on it during extinction process. For purpose of this work a new software solution for CFD was developed. Whole software concept is based on plug-ins. Due to this solution, the software§s calculation core can be used for other numerical analyses, like structural, electromagnetic, etc. The only requirement is to write a plug-in for these analyses. Because the software is designed as multi-threaded application, it can use the fully performance of current multi-core processors. Above mentioned property can be especially shown off, when a calculation is moved from CPU to GPU (Graphics Processing Units). Current high-end graphic cards have tens to hundreds cores and work with faster memories than CPU. Due to this fact, the simulation performance can raised manifold.
    corecore