242 research outputs found

    Adaptive voltage regulation of an inverter-based power distribution network with a class of droop controllers

    Get PDF
    The voltage received by each customer connected to a power distribution line with local controllers (inverters) is regulated to be within a desired margin through a class of slope-restricted controllers, known conventionally as \emph{droop} controllers. We adapt the design of the droop controllers according to the known bounds of the net power consumption of each customer in each observation time window. A sufficient condition for voltage regulation is provided for each time window, which guides the design of the droop controllers, depending on the properties of the distribution line (line impedances) and the upper bound of all the customers' power consumption during each time window. The resulting adaptive scheme is verified on a benchmark model of a European low-voltage network by the CIGRE task force.Comment: This work has been accepted to IFAC World Congress 2020 for publication under a Creative Commons Licence CC-BY-NC-N

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Grid-Connected Renewable Energy Sources

    Get PDF
    The use of renewable energy sources (RESs) is a need of global society. This editorial, and its associated Special Issue “Grid-Connected Renewable Energy Sources”, offers a compilation of some of the recent advances in the analysis of current power systems that are composed after the high penetration of distributed generation (DG) with different RESs. The focus is on both new control configurations and on novel methodologies for the optimal placement and sizing of DG. The eleven accepted papers certainly provide a good contribution to control deployments and methodologies for the allocation and sizing of DG

    The Role of Inverter-based Generation in Future Energy Systems: An Oriented Decentralized Strategy for Reactive Power Sharing in Islanded AC Microgrids and a Techno-Economic Approach to Inertia Requirements Assessment of the Italian Transmission Network

    Get PDF
    One of the most impacting changes in the electricity energy scenario of the latest decades is the extensive increase of Distributed Energy Resources (DER) including Electrical Storage Systems (EES), fuel cells and Renewable Energy Sources (RES), such as Photovoltaic (PV) and Wind Turbines (WT). The integration of a rapidly increasing share of inverter-based generation poses relevant challenges in terms of frequency and voltage control both in Islanded Microgrids (MG) and traditional transmission networks. For the sake of complementarity, the thesis focuses on reactive power and voltage regulation in MG and frequency instability problems in a future Italian transmission network. In MG with converter-based energy production, one of the main problems is the proper reactive power sharing among DER and related voltage regulation. In this concern the most used approach is based on the conventional droop control; however, it presents some relevant drawbacks. In SECTION A an Advanced Droop Control strategy (ADC) and an Advanced Boost Control strategy (ABC) are proposed, to approach primary voltage control and reactive power sharing among Grid-Supporting inverters in islanded MG. The strategies are presented defining their control laws and the control schemes together with the relevant stability analysis. Then, an analytical procedure is developed for each control methods to set proper control parameters. Next, a comparison between the new strategies and droop conventional control is performed with simulations on a common benchmark MG, in order to show that new strategies, according to their specific control logics, are able to guarantee improved performance in terms of the combined regulation of voltage and reactive power. Considering the traditional electric system, one of the main consequences of the increasing penetration of RES is, besides of the decrease of the system short-circuit power, the reduction of the electric system inertia: this could lead to frequency instability problems in case of severe perturbations, especially for what concerns the Rate of Change of Frequency (RoCoF)and the frequency nadir. In SECTION B, the thesis provides a technical-economic methodology for the estimation of the amount of additional inertia that will be needed in the Italian Transmission Network in a prospective 2030 scenario, in order to limit the RoCoF within sustainable values. Moreover, the algorithm optimally commits synthetic inertia contribution from RES and Battery Energy Storage Systems (BESS) and installation of Synchronous Compensators (SC) among the Italian market areas. The method is designed to be sufficiently simple to process a relevant number of working scenarios in order to exploit the relevant quantity of information owned by the TSO. Results have shown to be highly accurate as outline by comparison with detailed time domain simulations

    Wind Farm

    Get PDF
    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production in some countries. However, fundamental differences exist between conventional thermal, hydro, and nuclear generation and wind power, such as different generation systems and the difficulty in controlling the primary movement of a wind turbine, due to the wind and its random fluctuations. These differences are reflected in the specific interaction of wind turbines with the power system. This book addresses a wide variety of issues regarding the integration of wind farms in power systems. The book contains 14 chapters divided into three parts. The first part outlines aspects related to the impact of the wind power generation on the electric system. In the second part, alternatives to mitigate problems of the wind farm integration are presented. Finally, the third part covers issues of modeling and simulation of wind power system

    Decentralized optimization approach for power distribution network and microgrid controls

    Get PDF
    The smart grid vision has led to the development of advanced control and management frameworks using distributed generation (DG) and storage resources, commonly referred to together as distributed energy resources (DERs). Albeit environment-friendly, these DERs in distribution networks including microgrids (MGs) could greatly challenge the operational goal of maintaining adequate power system reliability standards because of their high intermittency, uncertainty, and lack of physical inertia. Meanwhile, these networks are inherently unbalanced and lack high-quality communications to a centralized entity as compared to the bulk transmission grid. Both aspects contribute to the challenge of designing voltage and frequency control frameworks therein. To tackle these problems, we propose decentralized control strategies, which account for cyber-physical network interactions automatically and dynamically while being either cognizant of various communication scenarios or resilient to malicious cyber intrusions. By treating the transmission grid as an infinity bus, voltage stability is the main concern in distribution networks where more DERs are being installed in the near future. Thanks to advances in power electronics, DERs can also be excellent sources of reactive power (VAR), a quantity that is known to have a significant impact on the network voltage level. Accordingly, we first formulate the local VAR-based voltage control design by minimizing a weighted quadratic voltage mismatch error objective using gradient-projection (GP) updates. The step-size design under both static and dynamic settings is further analyzed for practical implementation purposes. Nonetheless, such local design suffers degraded performance due to lack of information exchanges, especially under limited VAR resources. To address this issue, we develop the distributed voltage control (DVC) design based on the alternating direction method of multipliers (ADMM) algorithm. The DVC design has simple node-to-node communication architecture while seamlessly adapting to dynamically varying system operating conditions and being robust against random communication link failures. To further reduce communication complexity and enhance robustness to imperfect communications, especially under the worst-case scenarios of a total communication outage, we integrate both local and distributed control designs to a hybrid voltage control (HVC) scheme that can achieve the dual objectives in terms of flexible adaptivity to variable rate of communications and global optimality of voltage regulation performance. Such an innovative design aims to unify the separated framework of either local or distributed control design. Numerical tests using realistic feeders and real time-series data have been demonstrated for the voltage control designs. The aforementioned decentralized voltage control designs can improve the power system stability while distribution feeders are interconnecting to the bulk transmission grids. With a high penetration of DERs in the networks, it is possible to build a discrete energy system, namely, a microgrid (MG), that is capable of operating in parallel with, or independently from, the transmission grids. Henceforth, MGs are likely to emerge as a means to advance power and cyber physical resiliency in future grid systems. As MGs may operate independently, these mostly power electronics-interfaced DERs exhibiting low-inertia characteristic have raised significant concern over the frequency stability issues. To tackle this problem, we introduce the concept of virtual inertia of DERs and cast the secondary frequency control design for isolated MGs as a consensus optimization problem. We solve it distributively by adopting the partial primal-dual (PPD) algorithm. Interestingly, parts of our specially designed control algorithm turn out to mimic the dynamics of network power flow and virtual synchronous generator-based inverter. Thus, such dynamics is seamlessly governed by the physical system itself. Given a proper control parameter choice, the convergence of the consensus is guaranteed without assuming the time-scale separation of the hierarchical control design methodologies. By extending this work to a practical industrial MG network that follows the IEC 61850 communication protocol, similar frequency regulation objective is introduced and solved by a decentralized ADMM-based algorithm. The countermeasures for malicious attacks on the communication network for both PPD- and ADMM-based control designs are also investigated. Specifically, we analyze two types of malicious attacks on the communication network, namely, the link and node attacks. Meanwhile, anomaly detection and localization strategies are developed based on the metrics of optimization-related variables. We showcase the microgrid frequency regulation operation to demonstrate the effectiveness of the proposed frequency control designs under a real-time simulation environment

    Microgrids/Nanogrids Implementation, Planning, and Operation

    Get PDF
    Today’s power system is facing the challenges of increasing global demand for electricity, high-reliability requirements, the need for clean energy and environmental protection, and planning restrictions. To move towards a green and smart electric power system, centralized generation facilities are being transformed into smaller and more distributed ones. As a result, the microgrid concept is emerging, where a microgrid can operate as a single controllable system and can be viewed as a group of distributed energy loads and resources, which can include many renewable energy sources and energy storage systems. The energy management of a large number of distributed energy resources is required for the reliable operation of the microgrid. Microgrids and nanogrids can allow for better integration of distributed energy storage capacity and renewable energy sources into the power grid, therefore increasing its efficiency and resilience to natural and technical disruptive events. Microgrid networking with optimal energy management will lead to a sort of smart grid with numerous benefits such as reduced cost and enhanced reliability and resiliency. They include small-scale renewable energy harvesters and fixed energy storage units typically installed in commercial and residential buildings. In this challenging context, the objective of this book is to address and disseminate state-of-the-art research and development results on the implementation, planning, and operation of microgrids/nanogrids, where energy management is one of the core issues

    A Study on the Hierarchical Control Structure of the Islanded Microgrid

    Get PDF
    The microgrid is essential in promoting the power system’s resilience through its ability to host small-scale DG units. Furthermore, the microgrid can isolate itself during main grid faults and supply its demands. However, islanded operation of the microgrid is challenging due to difficulties in frequency and voltage control. In islanded mode, grid-forming units collaborate to control the frequency and voltage. A hierarchical control structure employing the droop control technique provides these control objectives in three consecutive levels: primary, secondary, and tertiary. However, challenges associated with DG units in the vicinity of distribution networks limit the effectiveness of the islanded mode of operation.In MV and LV distribution networks, the X/R ratio is low; hence, the frequency and voltage are related to the active and reactive power by line parameters. Therefore, frequency and voltage must be tuned for changes in active or reactive powers. Furthermore, the line parameters mismatch causes the voltage to be measured differently at each bus due to the different voltage drops in the lines. Hence, a trade-off between voltage regulation and reactive power-sharing is formed, which causes either circulating currents for voltage mismatch or overloading for reactive power mismatch. Finally, the economic dispatch is usually implemented in tertiary control, which takes minutes to hours. Therefore, an estimation algorithm is required for load and renewable energy quantities forecasting. Hence, prediction errors may occur that affect the stability and optimality of the control. This dissertation aims to improve the power system resilience by enhancing the operation of the islanded microgrid by addressing the above-mentioned issues. Firstly, a linear relationship described by line parameters is used in droop control at the primary control level to accurately control the frequency and voltage based on measured active and reactive power. Secondly, an optimization-based consensus secondary control is presented to manage the trade-off between voltage regulation and reactive power-sharing in the inductive grid with high line parameters mismatch. Thirdly, the economic dispatch-based secondary controller is implemented in secondary control to avoid prediction errors by depending on the measured active and reactive powers rather than the load and renewable energy generation estimation. The developed methods effectively resolve the frequency and voltage control issues in MATLAB/SIMULINK simulations
    • …
    corecore