2,847 research outputs found

    The Impact of HVDC Links on Transmission System Collapse

    Get PDF
    Modern power systems are continually being expanded, are required to carry more power and are being increasingly interconnected. All of these increase the risk of wide area blackout.In 2003 the North America Blackout demonstrated that a HVDC link provides a ‘firewall’ against the system collapse propagating through a network. The HVDC link between Quebec and New York ensured that the system collapse did not progress beyond the HVDC interconnection interface. The objectives of this paper are to investigate contributions that integrate HVDC interconnections into AC networks. The simulation studies were performed using MATLAB

    Topology assessment for 3 + 3 terminal offshore DC grid considering DC fault management

    Get PDF
    Peer reviewedPostprin

    Voltage Stabilization in Microgrids via Quadratic Droop Control

    Full text link
    We consider the problem of voltage stability and reactive power balancing in islanded small-scale electrical networks outfitted with DC/AC inverters ("microgrids"). A droop-like voltage feedback controller is proposed which is quadratic in the local voltage magnitude, allowing for the application of circuit-theoretic analysis techniques to the closed-loop system. The operating points of the closed-loop microgrid are in exact correspondence with the solutions of a reduced power flow equation, and we provide explicit solutions and small-signal stability analyses under several static and dynamic load models. Controller optimality is characterized as follows: we show a one-to-one correspondence between the high-voltage equilibrium of the microgrid under quadratic droop control, and the solution of an optimization problem which minimizes a trade-off between reactive power dissipation and voltage deviations. Power sharing performance of the controller is characterized as a function of the controller gains, network topology, and parameters. Perhaps surprisingly, proportional sharing of the total load between inverters is achieved in the low-gain limit, independent of the circuit topology or reactances. All results hold for arbitrary grid topologies, with arbitrary numbers of inverters and loads. Numerical results confirm the robustness of the controller to unmodeled dynamics.Comment: 14 pages, 8 figure

    Space station common module network topology and hardware development

    Get PDF
    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power

    Study of power conditioning system of superconducting magnetic energy storage system

    Get PDF
    A Superconducting Magnetic Energy Storage System (SMES) can be utilized for the compensation of nonlinear and pulsating loads. In this paper a power conditioning system (PCS) is designed to achieve SMES to work as a shunt active power filter and power conditioner at the same time. Two Hysteresis band controllers have been implemented to obtain (i) a sinusoidal input source current in phase with fundamental component of line to neutral source voltage irrespective of the load conditions (ii) Charging and discharging of SMES under constant voltage control mode. DC link voltage is kept constant by DC/DC Bidirectional Converter and source current is controlled by Voltage Source Converter (VSC). The magnitude of reference source current is obtained by controlling the energy of SMES by using Fuzzy Logic Controller (FLC). As it is a nonlinear controller it gives better performance than previously used PI controller in parameter variations and load disturbances. Analysis of the circuit operation under Fuzzy controller is presented in detail. Simulation has been done in MATLAB/Simulink and results are presented demonstrating the feasibility of the proposed power conditioning system

    Advanced Modeling, Design, and Control of ac-dc Microgrids

    Get PDF
    An interconnected dc grid that comprises resistive and constant-power loads (CPLs) that is fed by Photovoltaic (PV) units is studied first. All the sources and CPLs are connected to the grid via dc-dc buck converters. Nonlinear behavior of PV units in addition to the effect of the negative-resistance CPLs can destabilize the dc grid. A decentralized nonlinear model and control are proposed where an adaptive output-feedback controller is employed to stabilize the dc grid with assured stability through Lyapunov stability method while each converter employs only local measurements. Adaptive Neural Networks (NNs) are utilized to overcome the unknown dynamics of the dc-dc converters at Distributed Energy Resources (DERs) and CPLs and those of the interconnected network imposed on the converters. Additionally, the use of the output feedback control makes possible the utilization of other measured signals, in case of loss of main signal, at the converter location and creates measurement redundancy that improves reliability of the dc network. The switching between measurement signals of different types are performed through using the NNs without the need to further tuning. Then, in a small-scale ac grid, PV-based Distributed Generation (DG) units, including dc/dc converters and inverters, are controlled such that mimic a synchronous generator behavior. While other control schemes such as Synchronverters are used to control the inverter frequency and power at a fixed dc link voltage, the proposed approach considers both the dc-link voltage and the inverter ac voltage and frequency regulation. The dc-link capacitor stores kinetic energy similar to the rotor of a synchronous generator, providing inertia and contributes to the system stability. Additionally, a reduced Unified Power Flow Controller (UPFC) structure is proposed to enhance transient stability of small-scale micro grids. The reduced UPFC model exploits dc link of the DG unit to generate appropriate series voltage and inject it to the power line to enhance transient stability. It employs optimal control to ensure that the stability of the system is realized through minimum cost for the system. A neural network is used to approximate the cost function based on the weighted residual method
    corecore