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 Modern power systems are continually being expanded, are required to carry 

more power and are being increasingly interconnected. All of these increase 

the risk of wide area blackout.In 2003 the North America Blackout 

demonstrated that a HVDC link provides a „firewall‟ against the system 

collapse propagating through a network. The HVDC link between Quebec 

and New York ensured that the system collapse did not progress beyond the 

HVDC interconnection interface. The objectives of this paper are to 

investigate contributions that integrate HVDC interconnections into AC 

networks. The simulation studies were performed using MATLAB. 
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1. INTRODUCTION 

The HVDC transmission technologies are playing more important roles in world‟s power 

transmission systems. The use of HVDC technologies can contribute to satisfying these demands. HVDC 

technologies provide immediate benefits to power grid including bulk power delivery, long distance 

transmission and asynchronous interconnections. 

The 2003 Northeast America blackout suggested that HVDC interconnection provide a „firewall‟ 

against system collapse spreading through the networks. This was seen during the Northeast blackout in the 

USA on 14th August 2003 [1, 2] where around 50 million people were affected by the loss of 61,800MW of 

load. The commercial losses have been estimated at between $4 billion to $10 billion [4]. The HVDC link 

between Ontario and New York ensured that the system collapse did not progress beyond the interconnection 

interface when outage propagated through Qntario and New York [3].  

This paper investigates the impact of HVDC constraining system collapse transmitting through the 

power networks and the influence that HVDC links bring to distance relays. The paper also examined what 

could happen if the interconnection had been HVAC. In order to investigate certain impact, the 2003 

Northeast U.S.A. and Canada blackout will be simulated using MATLAB. A similar power system but 

interconnected by HVAC line will be modeled for comparison. 

 

1.1.  2003 North America Blackout  

On 14th August 2003, Northeast U.S.A suffered from the worst outage event in history [4-16]. The 

blackout led to about 61,800-MW power lost and affected about 50 million people in Ontario and the eight 

states in U.S. Northeast. During the event, over 400 transmission lines and 531 generating units at 261 power 

plants tripped. The outage was inferred by failure of two 345-kV transmission line due to tree contact [4]. 

The events started slowly, but spread quickly and finally caused widespread voltage collapse in both Canada 
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and Northeast United States. The U.S.-Canada Power System Outage Task Force final report [9] gave four 

causes for the blackout: inadequate system understanding, inadequate situational awareness, inadequate tree 

trimming and inadequate RL diagnostic support. Figure 1 shows the affected area during blackout [10]. 

 

 

 
 

Figure 1.  Affected area during blackout [10] 

 
 

The evidence indicates that distance relays tripping caused the loss of many key lines and 

accelerated the spread of the cascade. These distance relays responded to overloads rather than faults on the 

protected facilities [17-22]. Between 16:05-16:10 many 345-kV lines tripped on Zone 3 relays [9, 17-22]. 

Sammis-Star 345-kV line tripped on relay operation at 16:06:03. Galilon-Ohio Central-Muskingum 345-kV 

line tripped on Zone 3 relay and reclosed at 16:08:58. The line tripped finally at Galilon on a ground fault. 

East Lima-Fostoria Central 345-kV line tripped on Zone 3 relay at 16:09:06. Tripped lines led to some 

generation units become overloaded and tripped as well between 16:09 and 16:10. New York-New England 

transmission lines disconnected at 16:10:46. 

According to ref [9], there were three principal reasons that caused the cascade spread beyond Ohio 

and caused such a widespread blackout. First, the loss of the Sammis-Star 345-kV line in Ohio led to other 

transmission lines tripped. Second, many of the key lines were tripped out by the operation of Zone 3 

impedance relays. Relays responded to overloads situations rather than true line faults. These relays‟ 

operations accelerated the spread of the cascaded. Third, the relay protection settings may not be entirely 

appropriate. Relays did not operate as expected during the cascade. Figure 2 shows the apparent impedance 

inside Zone 3 of the distance protection on the 345 kV transmission line between Sammis and Star [17-22]. 

However, as a key part of east interconnection, Quebec was not affected by the outage. It is reported 

that Quebec is connected only by DC ties [8]. During the event, DC links acted as buffers that not allowed 

disturbance propagate through. Lots of papers have pointed out that HVDC links acted as a stability booster 

and „firewall‟ against disturbance during 2003 USA-Canada blackout [5, 11, 14, 23-35].  

 

 

 
 

Figure 2. Zone 3 distance relay operation on the 345-kV Sammis-Star transmission line [17-22] 
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2. HVDC INTERCONNECTIONS TO PREVENT VOLTAGE OUTAGE 

HVDC interconnection can help to prevent cascading outage pass through and enhance power 

systems. Carlsson [23, 35] reported that HVDC has good controllability of transmitted power. When using 

HVDC, the power direction can be changed rapidly in a second. With the ability to change the operating 

point instantaneously so that HVDC can feed/reduce active power into the disturbed system to control the 

frequency much faster than a normally controlled generator [37]. Carlsson [25, 36] said classical HVDC 

transmission can vary the power level from minimum load, which normally between 5% and 10%, to max 

load 100%. He suggested that the DC interconnection could be made to automatically adapt its power flow 

during outage. The power flow can be limited to protect the network. He also claimed that HVDC can help to 

reduce voltage oscillations by connecting capacitors or by modulating the station‟s reactive power 

consumption by firing angle control. HVDC transmission link has good performance under connected AC 

system faults. Such specific actions, like normal power control, emergency power control and voltage 

control, can help during contingencies. The most important feature of HVDC is that it can never become 

overloaded [36, 38]. Pan et al [24] claimed that by fast power run-up or run-back control functions, HVDC 

can help maintain power grid stability. With the ability to control both active power and reactive power, 

HVDC can provide an effective means of damping oscillations and improve voltage stability. According to 

[39], when one of the systems has oscillation mode between two generator groups, HVDC has the best active 

power damping effect if the converter station is electrically close to one of the oscillating generator group. 

The best location for reactive power damping is the electrical middle point between the oscillating generator 

groups [39]. HVDC system is provided with power modulation features for stabilization of AC system [37]. 

With this function, HVDC link can reduce power swing and stabilize the entire system in minimal time. 

After the 2003 northeast blackout the North American Electric Reliability Council in its technical 

report suggested that use HVDC transmission system to improve power networks‟ reliability and enhance 

power systems [15]. Lots of papers [11-33] also suggested the same as well as ABB and Siemens. Loehr [37] 

has been advocating the breaking up of the two gigantic interconnections or grids that straddle North 

America into a number of smaller ones since 1999. In his suggestion, these mini-grids can be interconnected 

by HVDC instead of current AC ties. As Loehr explained, “With ac ties, what happens in one place on the 

grid affects everywhere else. A major disturbance in Ontario is felt as far away as Oklahoma, Florida and 

Maine. This doesn‟t happen with DC links – it insulates one small grid from the others, but still permits 

power exchange.”  

Nowadays, lots of researchers are investigating the HVDC functions as firewall against oscillations 

since it was proved in 2003 northeast American blackout. Hafner and Manchen in [14] used the Caprivi Link 

Interconnector HVDC Light project to study the strong voltage and frequency stabilization function of 

HVDC function to avoid blackout. By several actual commissioning tests, they showed that HVDC link had 

good performance under islanded AC networks and normal AC faults. They suggested that HVDC system is 

able to enhance the stability of extremely weak AC system and to prevent the blackout. [40] examined 

enhance power system stability through controlling HVDC power flow. In paper [38], Ozerdem and Habboob 

used MATLAB simulated Turkey to TRNC HVDC submarine interconnection. By comparing VSC-based 

HVDC and CSC-based HVDC performance under the same applied AC fault, they found that VSC-based 

HVDC had a better performance than CSC-based HVDC. In 1993 Lee et al [41] suggested to use potential 

DC system support to enhance AC system in western U.S. Corsi et al [42] discussed the Sardinia-Corsica-

Italy HVDC link (SACOI) and the Italy-Greece HVDC link (GRITA) by simulation tests and commissioning 

results. They demonstrated that using HVDC power modulation can achieve high control flexibility and 

regulation performance, which are contributing to face unexpected contingencies. Arro and Silavwe [43] 

discussed what influence a line-to-ground fault occurring on HVDC line will bring to involving AC lines. In 

order to study the phenomenon, a simulation studies were carried on by PSCAD/EMTDC. A bipolar HVDC 

connection between the Swedish and Finnish power systems was simulated. Based on simulation work in 

[43], there was no unwanted tripping in AC lines due to a line-to-ground fault occurred on HVDC lines. 

Paulinder [44] claimed that an HVDC link has an obvious contribution to power system‟s stability during 

disturbance through modeling CIGRE Nordic 32 system. Du in [45] investigated the VSC-based HVDC 

control system‟s operations under steady-state and different fault conditions. The HVDC link was used 

different control strategies. Faults were injected at inverter side and converter side separately. It was 

conclude that for unbalanced faults the voltage dips in the dc-supplied ac system are less severe than in the 

pure ac system. 

HVDC and Flexible AC Transmission Systems (FACTS) were strongly advised in [30-35, 46-48]. 

As described in [31, 32] „FACTS, based on power electronics, have been developed to improve the 

performance of weak AC Systems and for long distance AC transmission. FACTS controllers can, however, 

also contribute to solve technical problems in the interconnected power systems. FACTS are applicable in 

parallel connection, in series connection, or in combination of both to control load flow and to improve 
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dynamic conditions. By these means, FACTS contributes to Blackout prevention too.‟ Therefore, developing 

large hybrid transmission systems, consisting of HVDC and FACTS, is necessary. Figure3 gives a brief view 

of such hybrid AC/DC system. Such hybrid transmission system offers significant advantages in system 

reliability [32-35]. Performance of AC lines can be improved by FACTS both in transmission capability and 

reliability. Long-distance bulk power can be transmitted by HVDC. With DC interconnections, high system 

security could be achieved. 

 

 

 
 

Figure 3. Hybrid AC/DC system [29-32] 

 

 

3. DISTANCE RELAY 

When fault occurs on a transmission line, the distance relay will protect the line, trip the circuit 

breaker and disconnect the line from the network [49]. By comparing the measuring impedance with the 

setting impedance to determine if the fault is inside or outside. If the measured impedance is less than the 

setting impedance, relay assumes a fault exists inside the protection zone and releases a trip logical signal 

[50]. Relay is located at the point R. The primary fault current, IF, is transferred to equivalent secondary fault 

current, iF, via current transformer to the relay. The fault voltage VF is equivalent to the fault current IF 

product with fault impedance ZF. The secondary fault voltage is achieved by voltage transformer VT [51, 

52]. Relay compares the measured impedance, ZM, which is the division of secondary V and I to detect the 

fault.  
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A typical distance relay has three protected zones: zone 1, zone 2 and zone 3. Zone 1 is always set 

up to 80% of the protected line impedance. Zone 2 should be at least 120% of the protected line impedance 

or the protected feeder plus 50% of the shortest following line impedance. Zone 3 is set up to the protected 

feeder plus the longest following feeder plus 25% of the shortest subsequent feeder or 120% of the protected 

feeder plus the longest following feeder. Some relays may have up to five protecting zones, some set to 

measure in the reverse direction [50]. Figure 4 shows a typical 3-zones distance protection 

 

 

 
 

Figure 4. 3-zones of distance protection 
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By comparing the measured impedance with the setting impedance the relay determines if the fault 

is inside or outside the protected zone [49]. Different fault types have different calculations of the fault 

impedance. References [49, 53] give the all fault-type calculation formulas. 

 

A-N:
lzIkIU aA 10)3*( 

               (3) 

B-N: 
lzIkIU bB 10)3*( 

               (4) 

C-N: 
lzIkIU cC 10)3*( 

               (5) 

A-B: 
lzIIUU baBA 1)( 

              (6) 

B-C: 
lzIIUU cbCB 1)( 

              (7) 

C-A: 
lzIIUU acAC 1)( 

              (8) 

 

where:  

 

AU , BU , CU are a, b, c phase voltage; 

aI
, bI , cI are a, b, c phase current; 

0I
is the zero-sequence current; 

1z
is the positive sequence impedance of the                                  

        protected line; 

   l is the length of protected line; 

k is the zero-sequence comparison factor, which could be described as: 

 

1

10

3 Z

ZZ
k






                        (9) 

 

where: 0z
is the zero-sequence impedance of the protectedline.   

A full scheme distance relay was modeled as shown in Figure 5. 

 

 

 
 

 

Figure 5. Full scheme distance relay 

 

Figure 6. Simple transmission system 

 

 
Zone 2 and Zone 3 timer was set to 200ms and 500ms respectively. The comparing circuits were 

achieved by block-average comparator¹. The modelled distance relay was tested in a simple transmission 

system as shown in Figure6. A 500kV, 5000MW AC network transmitted power to a 500kV, 4000MW load 

through 3 40-km transmission lines. The relay located to protect first 40-km line.  Zone 1 was set to 80% of 

the protected line. Zone 2 was set to 120% of the protected line. Zone 3 was set to protect whole line. 
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Relay settings were shown in Table 1. 

 

 

Table 1. Relay Settings 
VT Ratio 500kv/110 

CT Ratio 2000/1 
Zone 1 Reach 32 km 

Zone 2 Reach 48 km 

Zone 3 Reach 120 km 

 
 
Line parameters were given in Table 2. 

 

 

Table 2. Line parameters 
Line Length 500kv/110 

Line Impedance 0.079+j0.33Ω/km 
Line Angle 76.5º 

 
 
A a-to-ground fault was injected into system at 20km, 25km, 30km, 38km, 40km, 45km, 49km, 

50km, 70km, 100km, 110km, 120km and 122km respectively. Fault duration was 0.3s-0.9s. Relay response 

was shown in Figure 7. 

 

 

 
 

Figure 7. Trip time responses   

 

 

4. HVDC INTERCONNECTION 

In order to investigate distance relay operations during 2003 North America blackout, the Hydro-

Quebec HVDC link was simulated using MATLAB based on a HVDC demo in MATLAB [54]. The HVDC 

transmission system was introduced by ABB in [55, 56] as well as in [57-59]. The transmission system 

connects hydro power station in James Bay area and load centres in Montreal and Boston. Main data was 

shown in Table.3 [55]. 

 

 

Table 3. Main data of Hydro-Quebec HVDC link [45] 
Commissioning year 1990-1992 

Power rating 2000 MW 
No. of poles 2 

AC voltage 315kV (Radisson), 230kV (Nicolet), 345kV (Sandy Pond) 

DC voltage ±450kV 

Length of overhead DC line 1480km 

Main reason for choosing HVDC Long distance, asynchronous networks 
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The steady-state of the HVDC voltage at rectifier side and the HVDC voltage under a-to-ground 

fault at inverter side was shown in Figure 8. 

 

 

 
a 

 

 
b 

 
Figure 8. HVDC voltage a) Steady-state HVDC voltage at rectifier side 

b) HVDC voltage under a-to-ground fault at inverter side  

 

 

5. SIMULATION OF 2003 NORTHEAST AMERICA BLACKOUT 

The modelled power system in Figure 9 represents 2003 Northeast America blackout networks. 

 

 

 
 

Figure 9. Modeled Power System 

 

 

AC system 1 was 345kV 5600MVA equivalent power network, which represented East power 

networks. The system was performed by a 13.8kV, 5600MW synchronous generator and a 345kV, 4000MW 

load. AC system 2 was 345kV 10GVA equivalent power network which represented New England power 

network during the event. Ac system 3 was Quebec Hydro power stations, which is a 735kV, 7902MVA 

equivalent power network. The 6000MW load represents Western New York System. AC system 1 connects 

to load through two 100-km lines. Between AC 1 and load there were two generation units G1 and G2 

connecting to transmission lines. G1 and G2 were performed by simplified synchronous machines with 

nominal power rated 3000MW. T1 and T2 were 13.8kv/345kv transformers.  Relay 1 was set to protect 

100km line 1. Relay 2 was set to protect 100km line 2. Relay 3 was set to protect 20km line. Relay 4 was set 

to protect 100km line 3. Relay 5 was set to protect 100km line 4. Details were shown in Tables 4 and 5 

below. 
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Table 4. Line parameters [61, 62] 
Line Line Impedance Line Angle 

 
100km1 0.01915+j0.092 78 º 

100km2 0.01915+j0.092 78 º 
100km3 0.0766+j0.3679 78 º 

100km4 0.0208+j0.3387 86 º 

20km 0.0766+j0.3679 78 º 

 

 
Table 5. Relay Settings 

Relay Zone1 Zone2 Zone3 

 
R1 80km 120km 300km 

R2 80km 120km 300km 
R3 16km 24km 120km 

R4 80km 120km 300km 

R5 80km 120km 430km 

 

 

For comparison, a similar power network was modelled as well. The comparison network was set 

the same with modelled 2003 blackout system but interconnected by 230km HVAC transmission line. The 

network was shown in Figure 10. T3 was a 735kv/345kv, 1800MW transformer.  

 
 

 
 

Figure 10. Comparison system 

 
 
During 2003 Blackout, due to domino effect the first outage seen in Ohio finally affected New York 

system. At 1.2s, A-B-N fault was implied. Results were shown in Table.6. 

 
 

Table 6. Simulation Results 
What happened during event HVDC HVAC 

 
At 15:32:03 Hanna-Juniper 345-kV line 

tripped because of tree contact. The 

tripped line cause following lines 
overloaded. 

At 1.2 Phase-to-phase-to-ground fault was 

implied into system. The 100km line 1 was 

tripped at 1.23s. 
Relay 1 Zone1 A-N tripped at 1.23s. 

At 1.2 Phase-to-phase-to-ground fault was 

implied into system. The 100km line 1 was 

tripped at 1.24s. 
Relay 1 Zone1 A-N tripped at 1.24s. 

16:09:06 East Lima-Fostoria Central 345-

kV line tripped on Zone 3 relay. 

At 2.27s 100km line 2 was tripped. 

Relay 2 Zone 3 A-B-N tripped at 2.27s. 

At 1.71s 100km line 2 was tripped. 

Relay 2 Zone 3 A-N tripped at 1.71s. 

During 16:09 to 16:10 several power 
plants tripped off the system. 

At 2.27s 100km line 2 was tripped. 
Relay 2 Zone 3 A-B-N tripped at 2.27s. 

At 2.3 G2 was tripped. 
Relay 3 Zone 3 A-B-N tripped at 2.3s. 

New York-New England transmission 

lines disconnected at 16:10:46 due to 
apparent impedance. 

At 3.35s 100km line 3 was tripped. 

Relay 4 Zone 3 A-N tripped at 3.35s. 

At 2.24s 100km line 3 was tripped. 

Relay 4 Zone 3 A-N tripped at 2.24s. 

HVDC tie with Quebec remained 

connected to the western New York 

system. 

The HVDC still connected to Load when 

other AC transmission lines tripped. 

Relay 5 did not trip. 

The HVAC line was tripped at 2.91s. 

Relay 5 Zone 3 A-B-N tripped at 2.91s. 
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As can be seen from results, after fault occurred, at 1.23s R1 tripped 100km line 1 which caused 

following 100km line 2 overloaded. R2 tripped line 2 at 2.27s due to Zone 3 protection. R3 tripped G2 at 

2.81s after line 1 and 2 were tripped due to overloaded current. 100km line 3 was tripped by R4 due to 

apparent impedance. However, the HVDC transmission system remained transmitting power to load. R5 did 

not trip. Load was survived during blackout.  

As a comparison, similar results were got from HVAC system. 100km line 1 was tripped at 1.24s 

after fault occurred. Then the following 100km line 2 tripped at 1.71s due to R2 zone 3 protection. G2 and 

100km line 3 were tripped at 2.3s and 2.24s respectively. Unfortunately the HVAC line was tripped at 2.91s 

due to R5 zone 3 protection. The load lost power completely during blackout. 

 

 

6. CONCLUSION 

In order to investigate the impact of HVDC links constraining voltage collapse propagating through 

the networks, the 2003 Northeast U.S.A and Canada blackout was simulated using MATLAB. The modelled 

system was compared to a similar system where they were connected using a HVAC line. The two systems 

were operated under the same situation including fault type and fault position. The performance of a distance 

protection on the near end line was examined using MATLAB. The results demonstrate how a HVDC 

interconnection can constrain system collapse propagating through a transmission system. Results also 

suggest that using HVDC interconnection is better than HVAC interconnection since HVDC can help to 

enhance power system stability during system collapse. 
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