1,316 research outputs found

    Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations

    Get PDF
    Idiopathic Parkinson's Disease (iPD) is a common motor neurodegenerative disorder. It affects more frequently the elderly population, causing a significant emotional burden both for the patient and caregivers, due to the disease-related onset of motor and cognitive disabilities. iPD's clinical hallmark is the onset of cardinal motor symptoms such as bradykinesia, rest tremor, rigidity, and postural instability. However, these symptoms appear when the neurodegenerative process is already in an advanced stage. Furthermore, the greatest challenge is to distinguish iPD from other similar neurodegenerative disorders, "atypical parkinsonisms", such as Multisystem Atrophy, Progressive Supranuclear Palsy and Cortical Basal Degeneration, since they share many phenotypic manifestations, especially in the early stages. The diagnosis of these neurodegenerative motor disorders is essentially clinical. Consequently, the diagnostic accuracy mainly depends on the professional knowledge and experience of the physician. Recent advances in artificial intelligence have made it possible to analyze the large amount of clinical and instrumental information in the medical field. The application machine learning algorithms to the analysis of neuroimaging data appear to be a promising tool for identifying microstructural alterations related to the pathological process in order to explain the onset of symptoms and the spread of the neurodegenerative process. In this context, the search for quantitative biomarkers capable of identifying parkinsonian patients in the prodromal phases of the disease, of correctly distinguishing them from atypical parkinsonisms and of predicting clinical evolution and response to therapy represent the main goal of most current clinical research studies. Our aim was to review the recent literature and describe the current knowledge about the contribution given by machine learning applications to research and clinical management of parkinsonian syndromes

    Bridging the rodent to human translational gap: Marmosets as model systems for the study of Alzheimer\u27s disease.

    Get PDF
    INTRODUCTION: Our limited understanding of the mechanisms that trigger the emergence of Alzheimer\u27s disease (AD) has contributed to the lack of interventions that stop, prevent, or fully treat this disease. We believe that the development of a non-human primate model of AD will be an essential step toward overcoming limitations of other model systems and is crucial for investigating primate-specific mechanisms underlying the cellular and molecular root causes of the pathogenesis and progression of AD. METHODS: A new consortium has been established with funding support from the National Institute on Aging aimed at the generation, characterization, and validation of Marmosets As Research Models of AD (MARMO-AD). This consortium will study gene-edited marmoset models carrying genetic risk for AD and wild-type genetically diverse aging marmosets from birth throughout their lifespan, using non-invasive longitudinal assessments. These include characterizing the genetic, molecular, functional, behavioral, cognitive, and pathological features of aging and AD. RESULTS: The consortium successfully generated viable founders carrying DISCUSSION: By establishing marmoset models of AD, we will be able to investigate primate-specific cellular and molecular root causes that underlie the pathogenesis and progression of AD, overcome limitations of other model organisms, and support future translational studies to accelerate the pace of bringing therapies to patients

    Prediction of mental effort derived from an automated vocal biomarker using machine learning in a large-scale remote sample

    Get PDF
    IntroductionBiomarkers of mental effort may help to identify subtle cognitive impairments in the absence of task performance deficits. Here, we aim to detect mental effort on a verbal task, using automated voice analysis and machine learning.MethodsAudio data from the digit span backwards task were recorded and scored with automated speech recognition using the online platform NeuroVocalixTM, yielding usable data from 2,764 healthy adults (1,022 male, 1,742 female; mean age 31.4 years). Acoustic features were aggregated across each trial and normalized within each subject. Cognitive load was dichotomized for each trial by categorizing trials at >0.6 of each participants' maximum span as “high load.” Data were divided into training (60%), test (20%), and validate (20%) datasets, each containing different participants. Training and test data were used in model building and hyper-parameter tuning. Five classification models (Logistic Regression, Naive Bayes, Support Vector Machine, Random Forest, and Gradient Boosting) were trained to predict cognitive load (“high” vs. “low”) based on acoustic features. Analyses were limited to correct responses. The model was evaluated using the validation dataset, across all span lengths and within the subset of trials with a four-digit span. Classifier discriminant power was examined with Receiver Operating Curve (ROC) analysis.ResultsParticipants reached a mean span of 6.34 out of 8 items (SD = 1.38). The Gradient Boosting classifier provided the best performing model on test data (AUC = 0.98) and showed excellent discriminant power for cognitive load on the validation dataset, across all span lengths (AUC = 0.99), and for four-digit only utterances (AUC = 0.95).DiscussionA sensitive biomarker of mental effort can be derived from vocal acoustic features in remotely administered verbal cognitive tests. The use-case of this biomarker for improving sensitivity of cognitive tests to subtle pathology now needs to be examined

    Current advances in digital cognitive assessment for preclinical Alzheimer's disease

    Get PDF
    There is a pressing need to capture and track subtle cognitive change at the preclinical stage of Alzheimer's disease (AD) rapidly, cost-effectively, and with high sensitivity. Concurrently, the landscape of digital cognitive assessment is rapidly evolving as technology advances, older adult tech-adoption increases, and external events (i.e., COVID-19) necessitate remote digital assessment. Here, we provide a snapshot review of the current state of digital cognitive assessment for preclinical AD including different device platforms/assessment approaches, levels of validation, and implementation challenges. We focus on articles, grants, and recent conference proceedings specifically querying the relationship between digital cognitive assessments and established biomarkers for preclinical AD (e.g., amyloid beta and tau) in clinically normal (CN) individuals. Several digital assessments were identified across platforms (e.g., digital pens, smartphones). Digital assessments varied by intended setting (e.g., remote vs. in-clinic), level of supervision (e.g., self vs. supervised), and device origin (personal vs. study-provided). At least 11 publications characterize digital cognitive assessment against AD biomarkers among CN. First available data demonstrate promising validity of this approach against both conventional assessment methods (moderate to large effect sizes) and relevant biomarkers (predominantly weak to moderate effect sizes). We discuss levels of validation and issues relating to usability, data quality, data protection, and attrition. While still in its infancy, digital cognitive assessment, especially when administered remotely, will undoubtedly play a major future role in screening for and tracking preclinical AD

    Current advances in digital cognitive assessment for preclinical Alzheimer\u27s disease

    Get PDF
    There is a pressing need to capture and track subtle cognitive change at the preclinical stage of Alzheimer\u27s disease (AD) rapidly, cost-effectively, and with high sensitivity. Concurrently, the landscape of digital cognitive assessment is rapidly evolving as technology advances, older adult tech-adoption increases, and external events (i.e., COVID-19) necessitate remote digital assessment. Here, we provide a snapshot review of the current state of digital cognitive assessment for preclinical AD including different device platforms/assessment approaches, levels of validation, and implementation challenges. We focus on articles, grants, and recent conference proceedings specifically querying the relationship between digital cognitive assessments and established biomarkers for preclinical AD (e.g., amyloid beta and tau) in clinically normal (CN) individuals. Several digital assessments were identified across platforms (e.g., digital pens, smartphones). Digital assessments varied by intended setting (e.g., remote vs. in-clinic), level of supervision (e.g., self vs. supervised), and device origin (personal vs. study-provided). At least 11 publications characterize digital cognitive assessment against AD biomarkers among CN. First available data demonstrate promising validity of this approach against both conventional assessment methods (moderate to large effect sizes) and relevant biomarkers (predominantly weak to moderate effect sizes). We discuss levels of validation and issues relating to usability, data quality, data protection, and attrition. While still in its infancy, digital cognitive assessment, especially when administered remotely, will undoubtedly play a major future role in screening for and tracking preclinical AD

    Alzheimer’s Dementia Recognition Through Spontaneous Speech

    Get PDF

    Alzheimer's early detection in post-acute COVID-19 syndrome: a systematic review and expert consensus on preclinical assessments.

    Get PDF
    The risk of developing Alzheimer's disease (AD) in older adults increasingly is being discussed in the literature on Post-Acute COVID-19 Syndrome (PACS). Remote digital Assessments for Preclinical AD (RAPAs) are becoming more important in screening for early AD, and should always be available for PACS patients, especially for patients at risk of AD. This systematic review examines the potential for using RAPA to identify impairments in PACS patients, scrutinizes the supporting evidence, and describes the recommendations of experts regarding their use. We conducted a thorough search using the PubMed and Embase databases. Systematic reviews (with or without meta-analysis), narrative reviews, and observational studies that assessed patients with PACS on specific RAPAs were included. The RAPAs that were identified looked for impairments in olfactory, eye-tracking, graphical, speech and language, central auditory, or spatial navigation abilities. The recommendations' final grades were determined by evaluating the strength of the evidence and by having a consensus discussion about the results of the Delphi rounds among an international Delphi consensus panel called IMPACT, sponsored by the French National Research Agency. The consensus panel included 11 international experts from France, Switzerland, and Canada. Based on the available evidence, olfaction is the most long-lasting impairment found in PACS patients. However, while olfaction is the most prevalent impairment, expert consensus statements recommend that AD olfactory screening should not be used on patients with a history of PACS at this point in time. Experts recommend that olfactory screenings can only be recommended once those under study have reported full recovery. This is particularly important for the deployment of the olfactory identification subdimension. The expert assessment that more long-term studies are needed after a period of full recovery, suggests that this consensus statement requires an update in a few years. Based on available evidence, olfaction could be long-lasting in PACS patients. However, according to expert consensus statements, AD olfactory screening is not recommended for patients with a history of PACS until complete recovery has been confirmed in the literature, particularly for the identification sub-dimension. This consensus statement may require an update in a few years

    Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience.

    No full text
    The recently proposed Research Domain Criteria (RDoC) system defines psychopathologies as phenomena of multilevel neurobiological existence and assigns them to 5 behavioural domains characterizing a brain in action. We performed an analysis on this contemporary concept of psychopathologies in respect to a brain phylogeny and biological substrates of psychiatric diseases. We found that the RDoC system uses biological determinism to explain the pathogenesis of distinct psychiatric symptoms and emphasises exploration of endophenotypes but not of complex diseases. Therefore, as a possible framework for experimental studies it allows one to evade a major challenge of translational studies of strict disease-to-model correspondence. The system conforms with the concept of a normality and pathology continuum, therefore, supports basic studies. The units of analysis of the RDoC system appear as a novel matrix for model validation. The general regulation and arousal, positive valence, negative valence, and social interactions behavioural domains of the RDoC system show basic construct, network, and phenomenological homologies between human and experimental animals. The nature and complexity of the cognitive behavioural domain of the RDoC system deserve further clarification. These homologies in the 4 domains justifies the validity, reliably and translatability of animal models appearing as endophenotypes of the negative and positive affect, social interaction and general regulation and arousal systems' dysfunction

    Assessing cognitive workload using cardiovascular measures and voice

    Get PDF
    Monitoring cognitive workload has the potential to improve both the performance and fidelity of human decision making. However, previous efforts towards discriminating further than binary levels (e.g., low/high or neutral/high) in cognitive workload classification have not been successful. This lack of sensitivity in cognitive workload measurements might be due to individual differences as well as inadequate methodology used to analyse the measured signal. In this paper, a method that combines the speech signal with cardiovascular measurements for screen and heartbeat classification is introduced. For validation, speech and cardiovascular signals from 97 university participants and 20 airline pilot participants were collected while cognitive stimuli of varying difficulty level were induced with the Stroop colour/word test. For the trinary classification scheme (low, medium, high cognitive workload) the prominent result using classifiers trained on each participant achieved 15.17 ± 0.79% and 17.38 ± 1.85% average misclassification rates indicating good discrimination at three levels of cognitive workload. Combining cardiovascular and speech measures synchronized to each heartbeat and consolidated with short-term dynamic measures might therefore provide enhanced sensitivity in cognitive workload monitoring. The results show that the influence of individual differences is a limiting factor for a generic classification and highlights the need for research to focus on methods that incorporate individual differences to achieve even better results. This method can potentially be used to measure and monitor workload in real time in operational environments
    corecore