
TYPE Original Research

PUBLISHED 03 August 2023

DOI 10.3389/frai.2023.1171652

OPEN ACCESS

EDITED BY

Pedro Gomez-Vilda,

Neuromorphic Speech Processing

Laboratory, Spain

REVIEWED BY

Julián David Arias-Londoño,

University of Antioquia, Colombia

Vangelis P. Oikonomou,

Centre for Research and Technology Hellas

(CERTH), Greece

*CORRESPONDENCE

Francesca Cormack

francesca.cormack@camcog.com

RECEIVED 22 February 2023

ACCEPTED 17 July 2023

PUBLISHED 03 August 2023

CITATION

Taptiklis N, Su M, Barnett JH, Skirrow C, Kroll J

and Cormack F (2023) Prediction of mental

e�ort derived from an automated vocal

biomarker using machine learning in a

large-scale remote sample.

Front. Artif. Intell. 6:1171652.

doi: 10.3389/frai.2023.1171652

COPYRIGHT

© 2023 Taptiklis, Su, Barnett, Skirrow, Kroll and

Cormack. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Prediction of mental e�ort
derived from an automated vocal
biomarker using machine learning
in a large-scale remote sample

Nick Taptiklis1, Merina Su1, Jennifer H. Barnett1,2,

Caroline Skirrow1,3, Jasmin Kroll1 and Francesca Cormack1,2*

1Cambridge Cognition, Tunbridge Court, Cambridge, United Kingdom, 2Department of Psychiatry,

Herschel Smith Building for Brain & Mind Sciences, University of Cambridge, Cambridge,

United Kingdom, 3Department of Psychological Science, University of Bristol, Bristol, United Kingdom

Introduction: Biomarkers of mental e�ort may help to identify subtle cognitive

impairments in the absence of task performance deficits. Here, we aim to

detect mental e�ort on a verbal task, using automated voice analysis and

machine learning.

Methods: Audio data from the digit span backwards task were recorded

and scored with automated speech recognition using the online platform

NeuroVocalixTM, yielding usable data from 2,764 healthy adults (1,022 male, 1,742

female; mean age 31.4 years). Acoustic features were aggregated across each

trial and normalized within each subject. Cognitive load was dichotomized for

each trial by categorizing trials at >0.6 of each participants’ maximum span as

“high load.” Data were divided into training (60%), test (20%), and validate (20%)

datasets, each containing di�erent participants. Training and test data were used

in model building and hyper-parameter tuning. Five classification models (Logistic

Regression, Naive Bayes, Support Vector Machine, Random Forest, and Gradient

Boosting) were trained to predict cognitive load (“high” vs. “low”) based on acoustic

features. Analyses were limited to correct responses. The model was evaluated

using the validation dataset, across all span lengths and within the subset of trials

with a four-digit span. Classifier discriminant power was examined with Receiver

Operating Curve (ROC) analysis.

Results: Participants reached a mean span of 6.34 out of 8 items (SD = 1.38).

The Gradient Boosting classifier provided the best performing model on test data

(AUC = 0.98) and showed excellent discriminant power for cognitive load on the

validation dataset, across all span lengths (AUC = 0.99), and for four-digit only

utterances (AUC = 0.95).

Discussion: A sensitive biomarker of mental e�ort can be derived from vocal

acoustic features in remotely administered verbal cognitive tests. The use-case

of this biomarker for improving sensitivity of cognitive tests to subtle pathology

now needs to be examined.

KEYWORDS

computerized cognitive assessment, voice markers, automated speech recognition,

remote testing, voice-based assessment, cognitive load, mental e�ort
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Introduction

Computerized test batteries have improved reliability of
cognitive testing by eliminating sources of human error through
standardized and automated administration and scoring (Zinn
et al., 2021). Recent developments in accuracy of automatic speech
recognition (ASR) software mean that voice-based computerized
assessments are now practicable and scalable (Taptiklis et al.,
2017). Speech is the response modality for a broad range of
widely used traditional neuropsychological tests tapping into a
range of cognition functions. Using speech as a vocal biomarker
is particularly appealing because it can be easily obtained using
smartphones, thus increasing accessibility whilst requiringminimal
resources and costs compared to in-clinic assessments (Quatieri
et al., 2015).

Speech planning and execution is a complex and uniquely
human behavior including cognitive and motor components,
involving input from language, speech, and motor areas of the
brain, and careful orchestration of vocal and respiratory motor
functions. This yields a rich canvas of vocal features, which include
paralinguistic features (e.g., pauses, breathing, stuttering), prosodic
features (e.g., pitch, rhythm, intensity, and rate of speech), and
voice quality features (e.g., irregularities in pitch or intensity,
croakiness, breathiness). Vocal features change under increased
task demand, for example when participants are doing two tasks at
the same time, they show more variable or shorter silence periods,
and increased pitch and volume (Segbroeck et al., 2014; Lopes
et al., 2018). Speech data has emerged as a non-invasive measure of
cognitive load and may prove a valuable extension to tests in which
vocal responses are already required (Mijić et al., 2017).

Cognitive load refers to the mental demand a particular task
imposes on the human cognitive system for a specific person (Paas
and Van Merriënboer, 1994). This can be separated into mental
load (properties of the task difficulty or demand and environment),
mental effort (capacity or resources allocated to the task), and
task performance (resulting from the interaction between mental
load and mental effort; Paas and Van Merriënboer, 1994). Two
people can obtain the same test results with different levels of
mental effort (Paas et al., 2003); one person may need to work
laboriously, whereas for another minimal effort may be required.
Moreover, having prior knowledge or skills related to the task may
result in a decrease on cognitive demand (Borghini et al., 2017).
Thus, performance metrics may only provide a crude estimate of
cognitive function since they are likely to decline only when task
demands exceed capacity. An accurate measure of mental effort
can furnish important additional information that is not reflected
in simple performance metrics (Paas et al., 2003).

A measure of mental effort may be particularly helpful
for increasing sensitivity to neurodegenerative disorders, where
patients may perform in the normal range on cognitive tests in the
presence of brain degeneration or pathology in the earlier stages of
disease progression (Gregory et al., 2017). As pathology progresses
and available cognitive resources decrease, greater mental effort
is required to maintain a given level of performance. Increases
in mental effort may eventually become insufficient to maintain

performance, leading to a decrease in task performance (Ranchet
et al., 2017). Augmentation of mental effort is therefore likely
to precede and predict measurable incident cognitive decline on
neuropsychological testing (Aurtenetxe et al., 2013; Ahmadlou
et al., 2014). Metrics of mental effort may therefore help to
increase the sensitivity of cognitive testing to more subtle decline
or impairment.

Indices of cognitive load have more recently been captured
with physiological measurements, including heart rate, skin
conductance, pupil dilation, eye blinks, and movement and
EEG (Lopes et al., 2018). Physiological measures consistently
show increased cognitive load in healthy older adults compared
with younger adults when performing the same task, and
similarly increased cognitive load for patients with Mild Cognitive
Impairment (suggested as an intermediate state between normal
aging and dementia (Petersen and Morris, 2005) compared to
healthy aging (Ranchet et al., 2017). Using such measures may
provide a specific indication of mental effort with sensitivity
and precision in hypothesis testing and validity (van Gog et al.,
2010; Ayres et al., 2021). EEG studies have been commonly
used to predict mental effort based on network connectivity and
spectral features (Friedman et al., 2019). Imaging and physiological
methods have clear advantages compared to less sensitive subjective
methods (Sweller et al., 2011). However, since these measures
require specialized equipment, scalability is limited. Self-report
scales, which enquire about perceived mental effort and task
difficulty, are more readily scalable, however these correlate poorly
with one another and with task performance metrics (DeLeeuw
and Mayer, 2008). Another promising avenue for measuring
mental effort is the use of vocal features captured during task
performance. Instantaneous data can be recorded in a non-
intrusive setting using simple devices such as smartphones. Data
from small samples under experimental settings manipulating
cognitive load, have shown the ability to distinguish mental
effort based on various voice parameters, and analyzed using
machine learning classifiers (Yin et al., 2008; Segbroeck et al.,
2014; Magnúsdóttir et al., 2017; Mijić et al., 2017). Nonetheless,
further work is needed to validate vocal features as a measure
of cognitive load and this necessitates larger datasets to improve
detection accuracy. Detection accuracy is particularly important
for application in clinical populations and in early detection of
cognitive impairment where precision is often required on an
individual level. Moreover, exploring the feasibility of conducting
an experimental voice study in a remote setting is warranted
as this enables the cost-effective inclusion of a larger sample
with less participant burden using common technology such as
personal computers and smartphones. As such, the current study
describes the development of a fully automated and device-agnostic
verbal cognitive assessment system capable of remote web-based
assessment, with which we aim to classify mental effort during
a task of increasing difficulty using automated voice analysis
and machine learning. We report data from a large sample of
participants tested in their own homes, with which we aim to
develop, test and then validate a novel voice biomarker of mental
effort and cognitive load.
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Methods

Participants

Participants were recruited via the crowdsourcing platform
Prolific (Palan and Schitter, 2018) between November 2018 and
January 2019. Participantsmet the following eligibility criteria: aged
between 17 and 90 years, English speaker, no history of language
problems and never diagnosed with mild cognitive impairment or
dementia. All subjects were reimbursed £2.10 for their time. All
subjects provided consent for data collection and were informed
of their rights to cease participation or withdraw at any time.

Procedure

Prospective participants were directed to the study homepage,
which provided an explanation of the study and gave the
opportunity to consent or decline participation. Data was collected
on participants’ own devices. They were instructed to turn on the
sound and enable audio recording. Participants were instructed
to perform the tasks on their own, in a quiet room and to the
best of their ability; and not to complete these tests if unusually
stressed, tired or unwell, or under the influence of alcohol or
other substances. Instructions and questions were presented, and
responses were required in the English language.

Participants provided basic demographic information,
including age, sex, native language, country of residence, country
of origin, and educational level [categorized as follows: completed
formal education at (1) Middle/Junior High, (2) High School,
(3) Higher Education (4) Postgraduate Education]. They also
responded to self-report questionnaires of mood and pain.

A verbal cognitive test battery was administered, modeled
on traditional neuropsychological assessments and adapted for
automated administration. Tests were administered via the
assessment platform NeuroVocalixTM in the described order: digit
span forwards, digit span backwards, verbal paired associates
and serial subtraction, taking just under 20min on average. Task
instructions were delivered through verbal prompts from the
speakers, accompanied by matching visual prompts displayed on
the screen. During tasks, verbal stimuli were delivered auditorily
only via device speakers. Raw audio data were recorded from
participants’ own devices as 16-bit mono Pulse Core Modulation
(PCM) at a sample rate of 16KHz. Information on devices,
browsers and operating systems used during testing were collected
automatically via the User-Agent header of HTTP requests sent by
the web-browsers on participants’ devices.

Cognitive assessment

The current study focuses on digit span backwards, a test
in which the number of items to be held in the active memory
buffer is incrementally increased, thereby increasing cognitive
load. A sequence of numbers is presented (e.g., “2-7-3-9”),
which participants are asked to repeat in reverse (“9-3-7-2”).
The task begins with the presentation of only two digits. When

a participant successfully completes a trial of a given length,
they then move onto the next trial which presents a sequence
with one additional digit, up to a maximum sequence length
of 8. The task terminates early when participants fail on three
consecutive attempts of the same sequence length. The sequence
of numbers for each digit span trial was fully randomized to
avoid providing the opportunity for machine learning algorithms
to learn to differentiate digit sequences and not cognitive load. The
importance of this randomization is discussed in detail in Mijić
et al. (2017).

Responses were scored online during task administration.
This was evaluated via an Automatic Speech Recognition (ASR)
proxy system developed in-house, which accessed multiple systems
simultaneously (including IBM Watson, Amazon Lex, and Google
Cloud speech-to-text systems) and fine-tuned these technologies
to improved accuracy, reliability, and speed of response detection.
This enabled automated scoring and implementation of task
continuation/discontinuation rules during administration. Voice
data was recorded and stored for analysis and quality control. For
each trial, the recording window remained open until any of these
conditions were reached: (1) a correct response was detected by any
ASR; (2) at least two ASRs agreed on an incorrect response of the
expected span (equivalent to the number of digits presented); (3)
contiguous silence of length 2∗span+2 s had been reached; or (4)
an absolute window duration of 2.5∗span+2 s had been reached.

Statistical analysis

Participants’ voice responses were recorded and analyzed on
a trial-by-trial basis. The NeuroVocalix platform records each
trial as a separate audio file. Audio features from each trial were
extracted using the openSMILE Version 2.1.0 feature extraction
toolkit (Eyben et al., 2013). This toolkit extracts a wide array of
vocal features suitable for signal processing and machine learning
analyses (Mijić et al., 2017). The toolkit was configured to use
10ms moving window, a time period where vocal features can be
considered stationary (Rao, 2011), and the “emo_large” feature set
was selected. This feature set contains features which are derived
from spectral and prosodic characteristics, mel-frequency cepstral
coefficients and harmonic which are then aggregated across each
audio sample by applying a series of summary statistics (e.g., means,
variance, distances). The combination of these features improves
the robustness of the system (China Bhanja et al., 2019). A single
acoustic feature vector of all 6,552 features in this feature set was
derived for each trial audio recording.

Analysis was completed using Anaconda Python version
3.7. The acoustic feature vectors were normalized within each
participant, with resulting variables expressing within-subject trial-
by-trial deviations from the within-subject average across trials.
This means that within-subject differences in voice in relation
to differences in task difficulty could be examined. Participants
were excluded if they were unable to reach a span of three.
Maximum backwards digit span therefore ranged from 3 to 8 items,
and only correct responses were included in onward analyses. A
personalized measure of cognitive load was calculated for each trial
by dividing the trial digit span by the maximum span attempted
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and dichotomized with “high load” defined as trials that were >0.6
of each participant’s maximum span attempted, and “low load” as
trials below this threshold.

Data were divided into training (60% of sample), test (20%),
and validate (20%) datasets, with different participants in each
set. Training and validation data were used in model building
and evaluating model accuracy, respectively. Data modeling was
completed with five different machine learning classifiers using
scikit-learn 0.23.1 (Pedregosa et al., 2012). Due to the large sample
size in this study, it was possible to explore multiple alternative
classifiers. Models were trained to predict the binary cognitive load
categorization based on acoustic features alone. Themodels utilized
in the current study were:

• Logistic regression (LR): is a linear model for classification,
with the probabilities describing outcomes modeled using a
sigmoid or logistic function. The logistic regression model was
implemented with a “sag” optimization algorithm suitable for
large datasets and maximum number of iterations for solvers
to converge of up to 1,000.

• Naïve Bayes (NB): is a supervised learning method based on
Bayes’ theorem, which assumes feature independence, that is
that the presence of a feature in a class is unrelated to other
features. The likelihood of features is assumed to be Gaussian,
this classifier can deal with modeling outliers very well but a
limitation of this approach is that it performs well for small
vocabulary (Tóth et al., 2005; Bhangale and Mohanaprasad,
2021) which is sufficient for the current study.

• Support vector machine (SVM) with linear kernel is an
algorithm which finds linear combinations that best separate
outcomes It has been widely applied to classifying voice
data with high accuracy rates (Aida-zade et al., 2016) and
capacity to deal with higher dimensionality (Sonkamble and
Doye, 2008). The algorithmwas specified with a regularization
parameter of C = 15.0, a primal optimization problem, a loss
function specified as the square of the hinge loss, and an “l1”
penalty leading to sparse coefficient vectors. Tolerance for
stopping criteria was specified as 0.01. For all other parameters
the default settings were selected.

• Random forest (RF) classifier: This is an ensemble machine
learning algorithm, representing a combination of decision
trees. This method was chosen as it is relatively robust to non-
linear data, noise, and can support high-dimensional data with
redundant features (Boateng et al., 2020). This meta estimator
fits several decision tree classifiers on the dataset and uses
averaging to improve the predictive accuracy and control over-
fitting. Bootstrap samples of the dataset were used to build
each tree with the quality of the split measured through gini
importance criteria. A minimum sample required to split an
internal node was specified at 10, and split points at any depth
were only considered if they left aminimum training sample of
eight in both left and right branches. The maximum number
of features for each split was set at 0.1. One hundred trees were
built in the forest.

• Gradient boosting (GB): is an estimator which utilizes integer-
based data structures (histograms) instead of relying on sorted
continuous values when building the trees. GB has been found

to be superior to other proposed machine learning models but
involves more computation and training time (Dash et al.,
2022). The size of the trees was controlled by specifying
minimum 10 samples per leaf, a minimum of 6 samples per
split, a maximum tree depth of 4. This was completed with
a combination of gradient boosting with bootstrap averaging
(bagging). At each iteration the base classifier was trained
on a fraction of 0.75 subsample of the available training
data, which is drawn without replacement with the size of
features in the subset specified as a maximum of 0.65. The
number and contribution of weak learners was controlled by
the parameters n_estimators specified at 200 and learning_rate
specified at 0.1.

Different models can confer different sensitivities (Mijić et al.,
2017). The goal of the analyses of test data was to identify the
model that best generalizes to new data (e.g., generalize from
the training and validation dataset to predict an independent test
dataset; Yarkoni and Westfall, 2017). Performance of the different
machine learning classifiers were examined in test data, and
model classifier discriminant power was estimated using Receiver
Operating Characteristic (ROC) curve analysis. The Area Under
the ROC Curve (AUC) is a combined measure sensitivity and
specificity, which provides a summary measure of accuracy, which
supports the interpretation of the goodness of a classification
algorithm evaluated, whilst not being influenced by the selection of
specific decision thresholds or cut-offs (Hajian-Tilaki, 2013). Since
the AUC provides the average value of sensitivity for all the possible
values of specificity (Hajian-Tilaki, 2013), it allows for the direct
comparison of classifier discriminant power of different algorithms.

The validation dataset was held out for final model evaluation
using the most predictive algorithm. As cognitive load increases
with span length, so do the duration of utterances for each trial. It
was necessary to exclude the possibility that classification accuracy
was not merely dependent on utterance length. In the validation
test sample we therefore explored accuracy of our most predictive
model within all data and again after limiting responses to a span
length of four, median span score, where trials were approximately
equally likely to be categorized as high and low load.

Minimum sample size for the validation test dataset was
calculated on the basis of test performance at a digit length of four,
using methods previously described (Buderer, 1996). A 5% level of
significance (two-sided), and a width of the 95% confidence interval
at 10% were specified, and prevalence of high cognitive load in this
data was specified at 50%. Percentage accuracy of cognitive load
classification from a range of vocal characteristics has been found to
be around 70% (Yin et al., 2008). With estimates of 70% sensitivity
and 70% specificity, a sample of 370 participants were required for
the validation dataset.

Results

Participants

Testing and audio data were acquired from 3,074 participants
(mean age: 34.2, range 17–86; 1,161 male, 1,914 female). ASR
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did not identify any correct responses for 307 participants and
two additional participants did not reach a backward span of
at least three items. Manual quality checks on these data from
participants indicated that these had excessive background noise
(talking or television in the background) or other poor audio
quality. These data were excluded, leaving an analysis set of 2,764
participants. Included participants differed modestly from those
that were excluded in terms of age, with excluded participants being
slightly older (mean age 35.8 vs. 34.1, t = −2.33, p = 0.02), and
with men proportionally more likely to be excluded (12% men vs.
8% women, χ2

= 7.25, p= 0.007), but with no differences between
included and excluded participants in relation to education (χ2

=

4.64, p= 0.20).
Participants included in the onward analysis were aged between

17 and 36, with a mean of 34.1 years of age (SD = 12.3). The
majority of participants (76.4%, n = 2,111) were resident in
countries with English as a main language, primarily the UK and
USA and spoke English was their first language (75.5%, n= 2,088).
One hundred and twenty-one individuals reporting a language
other than English as their first language, and data on first language
were unavailable for 555 participants. Demographic information is
provided in Table 1.

Devices and operating systems

Participants were successfully tested on a range of platforms;
nearly half (46%) completed the testing on a Microsoft Windows
platform, followed by mobile phone (iPhone and Android; 36%),
then by Apple Mac (13%).

Digit span performance

As expected, performance declined as number of items to be
recalled increased (Figure 1A). Overall participants reached a mean
digit span backwards of 6.34 out of a total of eight items (SD =

1.38). Calculating “high load” at >0.6 of participants’ maximum
span attempted, a roughly even split between high (n = 231)
and low load (n = 276) trials included in analyses was seen at a
digit span of 4 (Figure 1B). The maximal digit span attempted was
not correlated with age (Spearman’s Rho: 0.02, p = 0.26), with a
broadly equivalent degree of trial complexity attempted across the
age-range of the sample.

Machine learning

Sample allocation
Participants allocated into train, test, and validate samples were

similar with regards to distribution of sexes, education, and mean
age. A similar proportion of low and high load voice responses were
assigned as train, test, and validate datasets. Table 2 provides details
on voice responses and participant characteristics for these datasets.

TABLE 1 Participant socio-demographic details.

Number of
participants

Percentage
(%)

Sex Male 1,022 37.0

Female 1,742 63.0

Education
level

Middle/Junior High 35 1.3

High School 557 20.2

Higher Education 1,537 55.6

Postgraduate 635 23.0

First language English 2,088 75.54

Other 121 4.38

Missing 555 20.08

Occupational
status

Full-time employed 1,029 37.23

Part-time employed 503 18.20

Student, not in
employment

270 9.77

Unemployed and job
seeking

104 3.76

Not in paid work
(homemaker, retired
or disabled)

216 7.815

Other 56 2.03

Missing 586 21.20

Model test data
Results of the different classification models on test data are

shown in Table 3. The logistic regression model did not converge
and is therefore not reported. Receiver Operating Curves are
presented in Figure 2. The best performing models were Random
Forest and Gradient Boosting, with a modestly higher accuracy
for Gradient Boosting. These are both ensemble models which
are robust to high-dimensional datasets with correlated and
redundant features.

Model validation
Results of the Gradient Boosting Classifier on the held-out data

showed that accuracy remained high, with an AUC of 0.99 for
the full validation dataset, and an AUC of 0.95 for the validation
data when limited to spans at a length of four digits. Results
of the classification models on validation datasets are shown
in Table 3. This shows that the most predictive features in this
classifier comprised Mel-Frequency Cepstrum Coefficients and
spectral features.

Classification accuracy is shown in Figure 3A, which shows the
relationship betweenmodel probability prediction of cognitive load
and the observed load in the validation data. Figure 3B shows how
these probability predictions relate to span length and cognitive
load. This shows that even shorter utterances (e.g., digit spans of
2 or 3) are accurately identified as high load when these near the
top-end of performance levels for individual participants. Receiver
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FIGURE 1

(A) Proportion of sample successfully completing each span length and maximal span attempted. (B) Frequency of allocation of di�erent span

utterances to high and low load.

TABLE 2 Disposition of participants and voice data across training, test and validate datasets.

Dataset Number of participants (%) Mean
age (SD)

Number of voice responses (%)

Total Sex Education completed at Total Low
load

High
load

Female Male ≤Age
18

>Age
18

Train 1,658 1,064
(64.17)

594 (35.83) 356 (21.47) 1,302
(78.52)

33.99
(12.05)

7,414 3,862
(52.09)

3,552
(47.91)

Test 553 321 (58.05) 232 (41.95) 117 (21.16) 436 (78.84) 33.90
(12.77)

2,532 1,306
(51.58)

1,226
(48.42)

Validate 553 357 (35.56) 196 (35.44) 119 (21.52) 434 (78.48) 34.45
(12.29)

2,555 1,325
(51.86)

1,230
(48.14)

Operating Curves for the validation data are shown for the full data
(Figure 3C) and in data limited to a span length of four (Figure 3D).

Discussion

The current study validated a machine learning classifier which
reliably identifies high and low mental effort from acoustic voice
data obtained during neuropsychological testing, in trials where test
performance is otherwise undifferentiated. These results are in line
with other voice papers measuring cognitive load, demonstrating
the feasibility of using vocalics as a biomarker for mental effort
(Yin et al., 2008; Meier et al., 2016; Mijić et al., 2017). Accuracy
rates of∼68% were reported by Mijić et al. (2017) on an arithmetic
task using several machine learning methodologies such as support
vector machine and neural networks. Similar results were found in
Stroop and reading measures of speech-based cognitive load with
accuracy as high as 77.5% using a Gaussian Mixture Model (GMM)
classifier (Yin et al., 2008). The high accuracy rates achieved in the
current study may be due to the use of an adaptive task, which
enabled us to personalize utterances as high or low load during
training allowing us to increase sensitivity and accuracy. Prior

work trained models using static labels of task difficulty that are
dependent on the task performed rather than an individuals’ ability
to perform the task. Using this biomarker provides information
regarding the interaction between task difficulty and participant
characteristics and can provide more nuance in cognitive data
collected than the blunt pass/fail diagnostics commonly in use.
This highly accurate cognitive load differentiator was derived
from data collected remotely on participants’ own devices and in
their own homes, requiring neither specialist equipment nor study
supervision, showing excellent scalability.

The findings suggest that the characterization of mental effort
in our healthy adult sample was not related to co-occurring vocal
and cognitive changes related to aging, since performance on the
task was not associated with age in our sample. The validation
of our findings within a sub-sample of data with a backwards
span of only four, shows that the algorithm maintains high
accuracy when controlling for utterance length. Looking beyond
basic performance data and obtaining insight into mental effort
may be particularly helpful in research aiming to identify more
subtle impairments or progressive decline. This may be particularly
applicable to research examining cognitive deterioration and
dementia. In Alzheimer’s disease, pathophysiological changes
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TABLE 3 Performance of all machine learning classifiers in predicting cognitive load for test and validate samples, and Gradient Boosting classifier for

the full validation sample, and after limiting to a span length of four.

Data Classification Performance

Sample
allocation

Spans
included

Machine
learning
classifier

Precision Recall f1-score Accuracy AUC

Test All Naïve Bayes 0.57 0.56 0.55 0.56 0.57

All Support vector 0.82 0.82 0.82 0.82 0.86

All Random forest 0.93 0.93 0.93 0.93 0.98

All Gradient boosting 0.94 0.94 0.94 0.94 0.98

Validation All Gradient boosting 0.94 0.94 0.94 0.94 0.99

4-digit only Gradient boosting 0.87 0.86 0.86 0.86 0.95

Correct responses only were included in analyses.

FIGURE 2

Random Forest and Gradient Boosting had the highest accuracy and

area under the curve (AUC) on the test dataset.

begin years, if not decades before diagnosis of clinical dementia
(Sperling et al., 2011). Evidence suggests that abnormal biomarkers,
commonly obtained using neuroimaging techniques or medical
procedures, such as amyloid beta (Aß) positivity, can precede
measurable cognitive impairment or decline using standard
cognitive tests (Elman et al., 2020). As research moves to intervene
in presymptomatic phases of the disease, measures that are sensitive
to early disease-related changes are required (Donohue et al., 2014).

Lack of correspondence between brain pathology and clinical
manifestations of brain damage is commonly attributed to related
constructs of cognitive reserve and scaffolding, thought to attenuate
cognitive decline and mask disease severity (Valenzuela and
Sachdev, 2006; Gregory et al., 2017). These models describe
active compensation in the brain either through recruiting

new and alternate brain networks less susceptible to disruption
or by enlisting compensatory approaches (Stern, 2006; Park
and Reuter-Lorenz, 2009). It is theorized that as disease
burden increases, progressive pathology eventually overwhelms
compensatory functions and performance starts to deteriorate.
This means that overt cognitive deficits are likely to occur after
significant changes to the efficacy with which cognitive task
performance is achieved. Neurophysiological studies support the
notion that compensatory mechanisms are enlisted in fulfilling
cognitive tasks in patients with Alzheimer’s Disease and Mild
Cognitive Impairment (Ranchet et al., 2017).

Furthermore, common challenges in the voice-based literature
include speaker variability, such as pronunciation, sex and speech
rate, external noise, and channel variability where different
smartphones and microphones are used (Forsberg, 2003). Such
confounds are particularly impactful in smaller datasets often used
in the cognitive load literature. As such, one of the strengths of this
study is the large sample size employed which is made possible
by the fully automated scoring system using four ASR engines.
To the best of our knowledge, this is the first study measuring
mental effort using ASR that was completely remote using a novel
web-based application. The ability to capture such a large dataset
allowed us to use different individuals in the training and test
datasets, thus training the classifiers on a wide range of voices
and incorporating sources of channel variability and noise thus
increasing the generalizability of the model. The majority of studies
in this area utilize much smaller samples, and often different cross-
validation schema subsequently not being able to ensure that part
of the test dataset has not also been used for training (Trabelsi
et al., 2022). Lastly, the current study used an adaptive task, the
backwards digit span, which allowed us to personalize cognitive
load to determine optimal individual differentiation between low
and high workload.

Our results suggest that automatically administered and scored
verbal cognitive tests can be used to concurrently generate both
reliable measures of performance and useful vocal biomarkers of
mental effort. Changes in vocal features have been revealed as
potentially sensitive markers for a range of clinical conditions,
including frontotemporal dementia (Nevler et al., 2017) and
Parkinson’s disease (Benba et al., 2016). Overall research has
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FIGURE 3

(A) The relationship between model probability prediction of cognitive load and the observed load in the validation data. The boundary between high

and low cognitive load is 0.6. The decision boundary for the model is 0.5. (B) Scatterplot showing the relationship between load, span length, and

model probability prediction. (C, D) ROC curves for the Gradient Boosting classifier in the full validation data set, and at a span of four digits,

respectively.

indicated that vocal characteristics can provide valuable insights
into mental effort. In line with previous research, the current
study demonstrates that vocal biomarkers can assist in accurately
identifying trials characterized by high cognitive load and
generalize to novel data where task performance is intact, but
mental effort is high. Further work is now required to replicate
our findings within clinical populations, to examine the sensitivity
of vocal digital biomarkers of mental load to the presence and
progression of neurodegenerative pathology.
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