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Abstract: Monitoring cognitive workload has the potential to improve both the performance and
fidelity of human decision making. However, previous efforts towards discriminating further
than binary levels (e.g., low/high or neutral/high) in cognitive workload classification have not
been successful. This lack of sensitivity in cognitive workload measurements might be due to
individual differences as well as inadequate methodology used to analyse the measured signal. In
this paper, a method that combines the speech signal with cardiovascular measurements for screen
and heartbeat classification is introduced. For validation, speech and cardiovascular signals from
97 university participants and 20 airline pilot participants were collected while cognitive stimuli of
varying difficulty level were induced with the Stroop colour/word test. For the trinary classification
scheme (low, medium, high cognitive workload) the prominent result using classifiers trained on
each participant achieved 15.17 ± 0.79% and 17.38 ± 1.85% average misclassification rates indicating
good discrimination at three levels of cognitive workload. Combining cardiovascular and speech
measures synchronized to each heartbeat and consolidated with short-term dynamic measures might
therefore provide enhanced sensitivity in cognitive workload monitoring. The results show that
the influence of individual differences is a limiting factor for a generic classification and highlights
the need for research to focus on methods that incorporate individual differences to achieve even
better results. This method can potentially be used to measure and monitor workload in real time in
operational environments.

Keywords: cognitive workload; cardiovascular signals; speech processing; emotion recognition

1. Introduction

The cognitive workload of personnel in a workforce, especially those involved in
safety critical industries, e.g., airline pilots and air-traffic controllers, is crucial to ensuring
both the well being and productivity of the personnel and the broader safety of the public.
Consideration of workload and its management is therefore a crucial aspect of any safety
management system in a safety critical organisation. Assessing and monitoring cognitive
workload is, therefore, of great importance. While there are numerous methods by which to
measure workload, e.g., subjective methods, psychophysiological approaches to cognitive
workload monitoring, that use signals such as cardiovascular measures and electroen-
cephalography (EEG), have recently shown promise in identifying cognitive workload in
laboratory settings [1–6]. Increased mental demand is highly correlated with increased
cardiovascular reactivity [7,8]. Various classifier methods have also been used to recognize
different cognitive workload states (reliably high and low workload) based on combined
psychophysiological signal sources [9–11]. Despite this, going beyond a binary high/low
workload classification has proved to be difficult. The problem might at least partly be
methodological. Many current approaches to monitoring cognitive workload fail to con-
sider the individual variation in responses to workload and this shortcoming has been
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highlighted in the literature [12], though attempts have been made by the authors to address
this issue specifically for cardiovascular measures in [13,14]. Furthermore, prior work has
not taken into consideration combining the cardiovascular signal with another promising
signal source, the individual’s speech even though studies suggest that the speech signal
may be a good indication of the individual’s mental state (e.g., see [15,16]).

This paper shows how cognitive workload can be assessed and monitored using car-
diovascular measures and voice. Heart rate and blood pressure signals are combined with
voice signal formant features to classify cognitive workload into three levels of difficulty.
The feature level fusion combination is carried out using each heartbeat to synchronize
the two data sources. This allows the subsequent machine learning mechanism to monitor
cognitive workload on a beat-by-beat basis. This method is evaluated using two cohorts of
97 volunteers and 20 airline pilots, respectively, each of which conducted out over 45 min
of cognitive tasks while being recorded and monitored.

The rest of the paper is organised as follows. The premise of the paper is laid out in
Section 1 where speech and cardiovascular measures are described with respect to cognitive
workload along with relevant work in the area. The main challenges of assessing cognitive
workload using these measures is described and our approach is introduced. In Section 2
the experimental methodology is described and Section 3 explains the data processing.
The results of the experiments are laid out in Section 4. The results are summarised and
discussed in Section 5, connected to prior work in the area and their main strength and
weaknesses highlighted. Overall conclusions are drawn in Section 6.

1.1. Cardiovascular Measures and Speech

Cardiovascular measures are relatively unobtrusive and well suited for the aviation
environment where speech communications is used to solve tasks. Furthermore, with tech-
nological enhancements such as wearable devices, these measures are now becoming even
less intrusive than before. Short term fluctuations in task demand affects the cardiovascular
system [7,8] and these responses can be objectively identified by monitoring the cardiac
muscle or the vascular system by observing, for example, the heart rate (HR) and the blood
pressure and stroke volume [17,18].

An alternative way of monitoring cognitive workload is through the speech signal.
Whilst not applicable in all environments, it may be ideal in situations where speech can
be captured and communications can be monitored in real-time without interruptions.
Yin et al. [15] performed a trinary classification task using Mel-frequency cepstrum co-
efficients and prosodic features with a speaker adapted Gaussian mixture model. This
feature extraction method was extended [19] to include targeted extraction of vocal tract
features through spectral centroid frequency and amplitude features. In both instances, a
relatively small data set was used for validation where each participant performed reading
and Stroop tasks. These feature extraction and classification schemes indicated a strong
relationship between cognitive workload and the speech signal within the experimental
framework of the studies.

Cognitive workload experiments using speech have been carried out for real-life tasks
in military flight simulation [20]. This approach has the advantage of being closer to real
operational situations indicating that the technology is suitable for aviation applications.
Mean change in fundamental frequency and speech intensity was used to detect cognitive
workload of the participants, but more detailed speech analysis was not performed. Speech
analysis has also been used for related tasks of affective speech classification. For example,
the Interspeech 2014 Cognitive load challenge (Computational Paralinguistics ChallengE,
ComParE) [21] was based on the same principle. A data set of 26 participants provided
speech recordings and EEG signals during a reading task and a low-, medium-, and high
cognitive load level Stroop tasks. The winning entry used an i-vector classification scheme
based on a combined feature set of fused speech streams, prosody and phone-rate [22].

Combining different physiological signals may provide a more prominent, detailed
cognitive workload monitoring tool [23]. Most commonly, studies focus on cardiovascular
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signals combined with electrical brain activity signals either as a pair [24,25] or grouped
with signals such as galvanic skin response [26] or oculomotor measures [9,27]. No at-
tempts, to our knowledge, have been reported investigating the supplemental possibility
of cardiovascular and speech signals for cognitive workload monitoring.

1.2. Related Work on Cognitive Workload Classification

Various pattern recognition methods have been applied to the task of classifying
cognitive workload using psychophysiological measures. It has been pointed out that
artificial neural networks are opaque and hard to interpret in terms of how individual
variables interact to predict workload [11]. Classification methods have been used such
as discriminant analysis and support vector machines [28], as well as logistic regression
and classification trees [11]. There is no indication that other classification methods can
provide better results for cognitive workload monitoring [11,28]. Recently, however, trinary
cognitive workload level classification with cardiovascular signals has been demonstrated
with promising results [29].

Few studies have used artificial neural networks to classify cognitive workload states
in the field of air-traffic control using combined physiological signals [11,30–33]. In par-
ticular, multiple psychophysiological measures were combined to provide high accuracy
in classifying at least a limited number of cognitive load states [31,33]. High binary clas-
sification accuracy was achieved for high and low workload states in air-traffic control
using neural networks based on EEG and electrocardiography (ECG) signals [33]. However,
when the training scenario included four and seven different cognitive load states based
both the on complexity and the number of aircraft, the classifier confused adjacent states
and was unable to distinguishing between low and medium or medium and high states.
A neural network model based on multiple EEG channels, HR, and eye-blink measures
produced reliable discrimination between low and high workload and was also able to
distinguish between two out of three load-tasks [32] and neural networks also performed
well in distinguishing high and low workload particularly at small time intervals [11]. It
was pointed out however, that whilst promising, EEG is both complex to use and not easily
portable [34]. This work presented a neural network trained on various cardiovascular
measures along with performance-based measures and did not manage to reliably classify
different cognitive workload states. Other examples of multi-modal fusion for cognitive
workload assessments can be found in [35,36].

1.3. Challenges in Assessing Cognitive Workload

The main challenge of assessing cognitive workload is the latent nature of the variable
in question. A close proxy of cognitive workload is the task difficulty which is typically used
when assessing cognitive workload. Albeit close, the relationship between task difficulty
and cognitive workload is complex depending on issues spanning from the nature of the
task to the condition of the individual being assessed. Tasks can rely on one or more senses
(e.g., sight and hearing) and require one or more motor skills (e.g., touch and voice) and
be simple or complex in space and/or time. The condition of the individual brings other
variables such as ability and fatigue into the equation.

It has also been known for quite some time now that individuals show different
psychophysiological responses to cognitive workload. Measured voice parameters, for
example, were found to be different between individuals with respect to workload as far
back as 1968 [37]. The matter of individual differences has been noted periodically with
Ruiz et al. [38], for example, claiming that more than a single voice parameter needed to be
measured as an indication of workload and Grassmann et al. [12] found that integrating
individual differences may reduce unexpected variance in workload assessment. Moreover,
research has shown that individual working memory capacity may play a critical role in
determining how individuals react to changes in cognitive workload [14].

Cognitive workload is also perceived to be a continuous variable although its effect on
the individual might be categorical (i.e., fight-or-flight vs. rest-and-digest). Researchers
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have, however, struggled with this assessment and many have reduced the problem of
cognitive workload monitoring to a binary classification of high or low workload [31,33].
How cognitive workload assessment is developed beyond this dichotomy remains an open
research question.

Measuring and combining many different psychophysiological measures also presents
a set of challenges that researchers have grappled with [39]. Cognitive workload presents
differently through the systems being measured (e.g., heart-rate, speech or the brain’s elec-
trical activity) so making more than one of these data sources available for the assessment
should make the monitoring more robust and accurate. The most straightforward method
of combining feature sets from different sources would be simply to concatenate them.
There are, however, a few issues that need to be addressed before a concatenated feature
set can be successfully used as a pattern recognition classification input. The sampling
rates of the two or more signals might not be the same hence some sort of resampling and
alignment needs to take place. Alignment in time has to be ensured during data recordings
as well as their correspondence after individual feature extraction is concluded.

1.4. Our Approach

Most of these highlighted challenges are addressed in our approach. We use task
difficulty as a proxy to cognitive workload but we make an effort in keeping the tasks
sufficiently simple so that their difficulty can be interpreted as cognitive workload. Fur-
thermore, we train a cognitive workload classifier for each participant separately to meet
the challenge of individual differences in responses to cognitive workload. The classifiers
are based on three classes: low, medium and high workload in an attempt to move be-
yond binary classification. We also present a novel feature level fusion approach between
non-intrusive cardiovascular measures and voice, thereby improving the accuracy of the
cognitive workload monitoring.

2. Cognitive Workload Experiments

The cognitive workload experiments are set up so that the relationship between task
difficulty and workload is close and with three difficulty levels to reflect the non-binary
approach taken. The amount of data obtained from each individual should be sufficient
in order to model each participant’s response to cognitive workload separately. The data
collected are cardiovascular data and voice recordings, analysed separately and combined
in a trinary classification of cognitive workload.

2.1. Experiment Design and Configuration of Tasks

Figure 1 depicts a chart of the progress of tasks, instructions, self-assessment ques-
tionnaires and resting periods implemented in the experiment. The flow chart depicts all
elements included in the experiment such as the OSPAN test (see [40]) and reading task,
but the focus in this particular paper is on the Stroop tasks.

Cognitive workload levels was introduced through the well-established cognitive
stimuli word/color task published by Stroop in 1935 [41]. Throughout the Stroop task a
set of either incongruent (e.g., red in blue color) or congruent (e.g., red in red color) color
names appears in front of the participant. In this specific setup the Icelandic color names
Blue, Green, Brown, Red and Pink were used with the last color name of each set always
being Black, with 36 (35 + 1) words appearing in a 6 × 6 matrix on each screen. This
design was included to indicate to the researcher, controlling the flow of the screens, that
the participant had finished the current screen j. The participant’s assignment was to say
the colors of the words aloud but not to read the words (of the colors). Three cognitive
workload levels were induced with the settings of congruence, incongruence and time
limits as follows:

• Level 1—Seven congruent sets of screens with all 36 color names appearing on the
computer screen at the same time.
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• Level 2—Six sets of screens with alternating incongruence levels of 0.3 and 0.7 with all
36 color names appearing on the computer screen at the same time.

• Level 3—Eight sets of screens with one word appearing at a time at randomly timed
intervals of 0.75 s and 0.65 s. Here, the same incongruence set-up was applied as in
Level 2 and the same number (36) of color names as in Level 1 and 2.

The number of screens in each cognitive workload level were chosen in advance to
ensure approximately the same duration of levels. The cognitive workload levels were
introduced in six different orders to the participants using the Latin square technique.

The participants were introduced to the task by having them read detailed instructions,
appearing on the computer screen, aloud. As depicted in Figure 1, each of the three Stroop
sessions contained the cognitive workload task, self-assessment questionnaire and resting
period, repeated three times for each level with the total number of Jp = 21 screens, for
each participant p and the screen index j = {1, 2, . . . , Jp}.

Figure 1. Chart of the flow of tasks and resting periods for the whole duration of one experiment.
Progress Instructions PI depicts instructions given to the participants in between tasks to be read
out loud.

The different resting periods and their strategic positions are shown in Figure 1. These
periods were designed to ensure that the participant had sufficient time to recover between
tasks and reduce its influence on succeeding tasks.

Participants in the experiment performed on the operation span task (OSPAN). The OSPAN
task is a working memory task that measures the working memory span by having participants
solve simple equations and remembering a word at the same time [42]. In this task, participants
read out loud an equation (e.g., is (8× 3) + 2 = 25) and answer whether the equation is correct
or incorrect. The equation is followed by a word (e.g., car) that also is read out loud. There are
12 sets of 3 × 2 words/eq, 3 × 3 words/eq, 3 × 4 words/eq and 3 × 5 words/eq in total. The
participants’ task is to remember the presented words in the correct order for each set. The total
number of words to be remembered is 42; hence, the participants could get a maximum score of
42 and a minimum score of 0. One point was given for a correct word in the correct order and
higher scores indicate higher working memory capacity. The results for the OSPAN task were
not used in the current paper.

2.2. Two Cohorts

The method was developed on two sets of participants: volunteers who visited the
laboratory of Reykjavik University (university cohort) and pilots from a commercial airline,
Icelandair, that had just completed a simulation exercise at TRU Flight Training Iceland
(pilot cohort). The university cohort had a total number of P1 = 97 participants with
average age of 25.2 ± 5.78 and a gender ratio of 27.83% male to 72.17% females. The pilot
cohort had a total number of P2 = 20 participants with average age of 41.35 ± 9.36 and a
gender ratio of 90% male to 10% females.

3. Data Processing
3.1. Cardiovascular Measures

The equipment used to record cardiovascular signals was the Finometer Pro from
Finapres, capturing a complete hemodynamic profile of the participants cardiovascular
responses [43,44]. There has been extensive validation of Finometer measurements, includ-
ing studies involving young participants (e.g., [45,46]). With the Finapres the signals are
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obtained using a finger cuff and an upper arm cuff for calibration of the reconstructed blood
pressure. Although cardiovascular signals are sampled continuously by the Finometer,
calculations for a number of relevant measures are performed for each heartbeat n, making
the output measures consistently uneven in time. The following ten measures for each
n were obtained from the output of the Finometer Pro system: (1) heart rate, (2) systolic
pressure, (3) diastolic pressure, (4) mean pressure, (5) pulse interval, (6) stroke volume,
(7) left ventricular pressure energy, (8) cardiac output, (9) total peripheral resistance, and
(10) maximum steepness and are designated as cn,i where i ∈ {1, 2, . . . , 10} is the index for
the measure and n is the integer time index of the heartbeat. The ten dimensional feature
vector for the n-th heartbeat is therefore

cn = [cn,1, cn,2, . . . , cn,10]
T (1)

and an Nj× 10 data matrix Cj = [c1, c2, . . . , cNj ]
T where Nj is the total number of heartbeats

in the segment. The screen index j is sometimes dropped whenever it is clear that we are
talking about a data matrix for a specific screen, so Cj = C.

3.2. Speech Signal Processing

All speech was recorded during the experiment by using both a head-mounted and a
table-top microphone. The recordings were stored in linear pulse code modulation files
with 48 kHz sampling frequency and 16 bits per sample. Each file corresponds to the
present screen of the experiment and the recordings during the J = 21 Stroop screens were
processed further for classification.

There are numerous means of extracting useful features from speech recordings. The
aim in this work is to characterize the voice without especially targeting linguistic or
prosodic content of the speech. One way of doing that is to rely on traditional acoustic
features such as those based on the short time frequency transform of the signal. In this
paper, however, we track the first three formant with respect to time. The formants are
directly related to the articulation of the vocal tract and can therefore be interpreted directly.
Formant tracks have also been used successfully as features before, for example when
modelling emotion and depression [47]. This method was adopted in our previous work
for cognitive workload monitoring in [16].

The formant features were extracted using the Kalman-based auto-regressive moving
average smoothing (KARMA) algorithm [48] as in [47]. The main advantage of using
KARMA is that the algorithm produces smoother formant tracks than other methods and it
provides a sensible interpolation during non-voiced periods. The algorithm was configured
to extract three formants, three anti-formants and bandwidths every 10 ms. Only the three
formant frequencies f1,l , f2,l , f3,l were used to produce a feature vector

fl = [ f1,l , f2,l , f3,l ]
T (2)

for the l-th frame in the speech segment (screen) and an Lj × 3 data matrix
F = Fj = [f1, f2, ..., fLj ]

T where Lj is the total number of frames in the segment.

3.3. Feature Extraction, Synchronization and Fusion

The cardiovascular features cn and the formant features fl are processed further to en-
rich the representation with a dynamical context and to fuse these two information sources
together for a joint classification. Figure 2 depicts the feature extraction, synchronization
process, feature set combinations and classification schemes introduced. A richer dynamical
context is achieved by calculating the so-called delta and acceleration features and the
feature level fusion is attained by calculating formant statistics around each heartbeat. This
is outlined below.
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Figure 2. Overview of the feature extraction, feature synchronization and classification process.

3.3.1. Delta and Acceleration Features

Delta and acceleration features were calculated on the static cardiovascular vector cn
and the formant feature vector fl to include information about the rate of change. For an
arbitrary feature vector vr whose feature index is denoted with i and time index with r the
coefficients of the delta vector δr are calculated from the measure vr,i along the time index i
by using

δr,i =
∑M

m=1 m(vr+m,i − vr−m,i)

2 ∑M
m=1 m2

, (3)

where M denotes the number of adjacent features before and after r used to derive the
delta features. This is set to M = 2 for this paper (resulting in a window size of 5). The
delta vector is therefore obtained by δr = [δr,1, δr,2, . . . ]T and the acceleration feature vector
ar is calculated using the same formula but using δr,i instead of vr,i. The delta and accel-

eration vectors are then appended to the feature vector to produce v(δ,a)
r = [vT

r , δT
r , aT

r ]
T .

Hence, a delta and acceleration extended cardiovascular feature vector would be denoted
c(δ,a)

n = [cT
n , δT

n , aT
n ]

T and its corresponding data matrix C(δ,a); for the formant feature vector
the extension is f(δ,a)

l = [fT
l , δT

l , aT
l ]

T and its corresponding data matrix F(δ,a).

3.3.2. Synchronizing Formant Features and Heartbeats

Each audio recording is of a single screen j containing Nj heartbeats and Lj formant
frames. The heartbeats occur at τn seconds into the recordings and each pulse interval
is therefore ∆n = τn − τn−1. The start of each formant frame occurs at tl and the fixed
formant frame increment is tl − tl−1 = 10 ms. A typical pulse interval is ∆n = 700 ms
(c.a. 86 beats-per-minute) which gives a ratio of 70:1 formant frames to heartbeat. Figure 3
depicts the synchronization process graphically with heartbeats (stem) and the vertical
dotted lines mark the number of formant frames attached to it.

The formant feature data matrix F is divided into Nj sub-matrices Fn which corre-
spond to each heartbeat. The matrix Fn = [f1, f2, . . . , fMn ]

T has the row vector fm where
m ∈ {l|tl > τn − 1

2 ∆n, tl < τn +
1
2 ∆n+1}. The three columns in Fn correspond to three for-

mant tracks in the neighbourhood of the n-th heartbeat. Ten features are calculated for each
of the three formant tracks so for the first formant track, the first three are the coefficients
of a fitted second order polynomial, denoted as φ1,n, φ2,n, and φ3,n and then the minimum
φ4,n and maximum φ5,n values, mean φ6,n, median φ7,n, standard deviation φ8,n, skewness
φ9,n and kurtosis φ10,n. The same features are calculated for the second φ11−20,n and third
formant tracks φ21−30,n. The corresponding feature vector is

φn = [φ1,n, φ2,n, . . . , φ30,n]
T (4)
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and the Nj × 30 dimensional data matrix for the segment is Φ = [φ1, φ2, ..., φNj
]T .
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Figure 3. Example of the synchronization process with an approximately 10 heartbeat portion of
a screen. The plot shows on a disproportional y-axis the three formant tracks. The heartbeats are
indicated by the stem lines and the vertical dotted lines represent the interval on either side of the
heartbeat marking the formant frames assigned to each heartbeat.

Similarly, the delta and acceleration expanded formant data matrix F(δ,a) is divided up
into sub-matrices F(δ,a)

n in the same way to produce three formant tracks, three delta formant
tracks and three acceleration formant tracks in the neighbourhood of the n-th heartbeat.
The same features are calculated for each of the nine tracks to produce a ninety-dimensional
feature vector

γn = [γ1,n, γ2,n, . . . , γ90,n]
T (5)

and an Nj × 90 dimensional data matrix for the segment Γ = [γ1, γ2, ..., γNj
]T . Notice that

the delta and acceleration operators are applied before the heartbeat synchronized features
are calculated and could be reapplied again to produce the data matrices Φ(δ,a) and Γ(δ,a)

but this was not conducted in this work.

3.3.3. Data Fusion

The four basic feature vectors are the cardiovascular vectors without (cn) or with
(c(δ,a)

n ) delta and acceleration features; and synchronised formant features without (φn)
or with (γn) delta and acceleration features can now be concatenated as they have been
synchronised in time (the n refers to the same time instant or heart-beat). We concatenate
these features in four different ways to create the following feature vectors for feature level

fusion [49]: xn =
[
φT

n , cT
n
]T , xn =

[
φT

n , c(δ,a)T
n

]T
, xn =

[
γT

n , cT
n
]T or xn =

[
γT

n , c(δ,a)T
n

]T
. The

symbol xn is used as a generic feature vector at heartbeat n in the following discussion. In
feature-level fusion the subsequent classifier models the concatenated vectors jointly and
delivers a classification result based on both vectors simultaneously.

3.4. Sequence vs. Beat Classification

The classifiers designed and implemented in this paper are based on the feature sets
containing φn and cn and their time dynamic counterparts φ

(δ,a)
n and γn. All of which are

evaluated in two types of classifiable entities, either (1) from a single heartbeat feature
vector xn or (2) a sequence of heartbeats from a single screen represented with the data
matrix X = [x1, x2, . . . , xN ]

T .
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The classifiers’ soft (likelihood) scores were retrieved and are denoted either as yk(xn)
for the single heartbeat classifier or yk(X) for the sequence classifier. The index k ∈ {1, 2, 3}
denotes Stroop level one, two or three, respectively. The vector,

y(xn) = [y1(xn), y2(xn), y3(xn)]
T (6)

contains the soft scores for the heartbeat at time index n and the heartbeat classification
simply chooses the class with the maximum value in that vector for each n.

For the sequence classification, the beat-based soft scores are collected in an N × K
output matrix

Y = [yT(x1), yT(x2), . . . , yT(xN)]
T (7)

and summed over each class column to obtain yk(X) sequence-based soft score vector
(with k ∈ {1, 2, 3}),

y(X) = [y1(X), y2(X), y3(X)]T (8)

whose maximum is chosen as the classified level.

3.5. Classifier Architectures

Two very different supervised learning classifier architectures were used to evaluate
this method, both implemented using the statistics toolbox in Matlab: support vector
machine (SVM), ySVM(xn) and random forests (RF), yRF(xn). This was conducted to see to
what extent the results depend on the choice of classifier architecture.

A support vector machine is fundamentally a binary classifier and therefore to solve
the trinary classification problem, three two-class one-vs.-rest binary SVM classifiers were
implemented, one for each Stroop level. The soft score output yk(xn) is the signed distance
from the decision boundary for each of the three classifiers where k ∈ {1, 2, 3}. The class is
then determined by the one-vs.-rest classifier which obtains the maximum signed distance
from the decision boundary. If all scores are negative, then the class closest to the decision
boundary with the least negative score is chosen. The training was conducted using the
default linear kernel function and the predictors were standardized before training.

The random forest classifier was trained for each heartbeat using one hundred decision
trees. The minimum number of observations in a leaf was set to one. The soft score yk(xn)
for the random forest classifier is the proportion of trees in the ensemble predicting class k
and is interpreted as the probability of this observation xn originating from this class.

3.6. Classifier Training and Evaluation

A participant dependent classification was implemented in this work where a leave-
one-out training strategy was used to evaluate the performance of the feature sets. For the
21 screens for each participant, one screen was left out while the other 20 screens were used
for training. Repeating this process 21 times ensured classification results for all screens
based on a model trained with the bulk of the available data.

When using an entire screen as a test token this would lead to a single result that could
be compared to the actual class of the screen producing a single classification result.

Using an entire screen as a test token would lead to a single result that can be compared
to the actual class of the screen producing a single classification result. When using each
heartbeat as a test token the number of results amounted to the number of heartbeats in
the screen that was left out (for example for a test screen of 30 s duration with an average
heartbeat of 70 beats-per-minute (bpm) we have a total of 35 heartbeats). The leave-one-out
procedure (repeated 21 times) was collected in confusion matrices and the results from
the leading method is presented in an aggregated form (see tables in Section 4.3). The test
set misclassification rate (MCR) as reported as a percentage in the result section is the
average MCR over the entire P1 = 97 and P2 = 20 participant data sets, respectively, (see
tables in Sections 4.1 and 4.2). The standard error reported alongside the MCR reflects
the confidence in the average MCR estimate and should not be confused with the larger
standard deviation of MCR over the population of participants.
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4. Results

The first two subsections demonstrate how we use the voice and cardiovascular measures
to classify cognitive workload into low, medium and high levels based on single heartbeat
and a sequence of heartbeats, respectively. We then analyse the results in more detail for the
best of classifier/feature set set-up demonstrating how the class specific misclassification rates
and mistrust rates are distributed from low to high cognitive workload level. Here, we also
demonstrate how the pilot cohort is similar to the university cohort.

4.1. Single Heartbeat Classification

The results based on a single heartbeat is shown in Table 1 for the university cohort.
The two columns show the misclassification rates for each classifier and each line provides
the results for the features used for the classification. The results above the horizontal line
are for the two information sources (voice and cardiovascular measures) with or without
dynamic features. Below the horizontal line are the results for the combined feature set.
For example the xn = γn is the feature set derived from the formant tracks and their
dynamic features achieves 57.88± 0.18% misclassification rate for the SVM classifier and
52.58± 0.18% for the random forest classifier. These particular results are not very good
since chance is 66.66% for the trinary low, medium, high cognitive workload classification.
The best results obtained for a single information source (highlighted in bold above the
line) is achieved by using the SVM classifier and the cardiovascular features with dynamic
features xn = c(δ,a)

n . The best results overall (also highlighted) is obtained by the SVM
classifier using a combined feature sets of voice and cardiovascular features and dynamic
features, i.e., xn is created by concatenating γn and c(δ,a)

n .

Table 1. Single heartbeat misclassification rate [%] for the university cohort. The best results are
presented in bold.

Features SVM RF

xn ySVM(xn) yRF(xn)

φn 61.75 ± 0.18 53.50 ± 0.18
γn 57.88 ± 0.18 52.58 ± 0.18
cn 36.62 ± 0.18 37.57 ± 0.18

c(δ,a)
n 36.17 ± 0.17 37.48 ± 0.18

φn & cn 32.57 ± 0.17 34.63 ± 0.17
φn & c(δ,a)

n 32.43 ± 0.17 34.43 ± 0.17
γn & cn 32.16 ± 0.17 35.76 ± 0.17

γn & c(δ,a)
n 32.14 ± 0.17 34.57 ± 0.17

From these results one can see that the SVM classifier performs better except for when
voice is used on its own when the RF classifier is better. In addition, when using voice alone,
adding dynamic features provides significant advantage but only a small advantage is ob-
tained when the cardiovascular features are used either alone or fused with the voice features.
Out of context, the best results of 32.14± 0.17% does not sound good for a trinary classification
but when taking into account that the decisions are only based on measurements around a
single heart beat, this has to be considered very good. This optimum classifier method using
SVM and the γn and c(δ,a)

n features was applied to the pilot cohort (of P2 = 20 participants).
The misclassification rate for this experiment is 34.49± 0.40%.

4.2. Heartbeat Sequence Classification

The results based on a sequence of heart beats corresponding to a single Stroop screen
is shown in Table 2 for the university cohort. The table is set up in the same way as Table 1
with the classifier results in the two columns each line corresponding to a choice features
and the horizontal line divides the results up into single feature set vs combined ones.
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Now for single information stream, the best result of 22.97± 0.93% is achieved by the RF
classifier using cardiovascular features without dynamic features C. The best results of
15.17± 0.79% for combination of features is achieved using the SVM classifier when fusing
the Γ and the C(δ,a) feature sets. This optimum classifier method was also applied to the
pilot cohort where the misclassification rate was 17.38± 1.85%.

Table 2. Heartbeat sequence misclassification rate [%] for the university cohort. The best results are
presented in bold.

Features SVM RF

X ySV M (X) yRF (X)

Φ 55.23 ± 1.10 42.07 ± 1.09
Γ 46.98 ± 1.11 41.38 ± 1.09
C 26.61 ± 0.98 22.97 ± 0.93

C(δ,a) 25.97 ± 0.97 23.32 ± 0.94

Φ & C 17.77 ± 0.85 18.41 ± 0.86
Φ & C(δ,a) 16.99 ± 0.83 19.29 ± 0.87

Γ & C 15.66 ± 0.81 19.14 ± 0.87
Γ & C(δ,a) 15.17 ± 0.79 19.29 ± 0.87

The difference between the SVM and RF classifiers is not as clear for the heartbeat
sequence classification. The RF classifier performs better when the single information
source is used whereas the SVM classifier performs better for the fused data sets. The
addition of dynamic features does improve performance but the MCR reduction is rarely
above 1%.

4.3. Trinary Classification for University and Pilot Cohorts

Tables 3 and 4 show the confusion tables for the heart beat sequence classifiers using
the SVM classifier and the combined formant tracks Γ and cardiovascular features C(δ,a) for
the University and pilot cohorts, respectively. The tables display the classification counts of
each experiments as well as the misclassification rate (MCR, last column) and mistrust rate
(MTR, bottom line) for each class. These numbers reveal a slight increase in both MCR and
MTR for the medium L2 level of cognitive workload indicating that a higher likelihood of
misclassification for that class.

The comparison between the two confusion matrices shows no statistical difference
between the two cohorts as summed up in the two test set misclassification rates of
15.17± 0.79% and 17.38± 1.85%. These are obtained as the ratio of off-diagonal results to
the total number of experiments resulting in a slightly different outcome from the average
misclassification rate due to a slight difference in the number of each experiment for each
class. These numbers demonstrate that the experimental setup is just as applicable in the
practical settings of pilot simulator environment as it is in the university lab.

Table 3. Confusion table for the sequence classification for the university cohort. Correctly classified
screens are counted on the diagonal (in bold).

Classified as

Actual L1 L2 L3 MCR [%]

Stroop L1 569 65 45 16.20
Stroop L2 51 454 77 21.99
Stroop L3 23 48 705 9.15

MTR [%] 11.51 19.93 14.75 15.17
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Table 4. Confusion table for the sequence classification for the pilot cohort. Correctly classified
screens are counted on the diagonal (in bold).

Classified as

Actual L1 L2 L3 MCR [%]

Stroop L1 113 12 15 19.29
Stroop L2 6 96 18 20.00
Stroop L3 5 17 138 13.75

MTR [%] 8.87 23.20 19.30 17.38

5. Summary and Discussion

Assessing and monitoring the cognitive workload of pilots and air-traffic controllers
is critical to managing aviation safety. Such monitoring, as previously mentioned, can be
undertaken through self-assessment, task performance or measurements of physiological
variables. This paper focuses on combining cardiovascular measures of pressure and heart
rate with voice features so that three levels of cognitive workload can be assessed and
monitored. The features used to characterise the cardiovascular system are the well defined
blood pressure measures obtained from a Finometer from Finapress [43,44]. The novel
voice features presented in this work are derived from the formant track features developed
in previous work [16,47] and characterise the vocal tract shape and change in shape. The
reason why the formant track features were chosen in contrast to of voice source features
(e.g. those characterising pitch, change in pitch and other microprosodic features [50–52])
was that they show superior performance in cognitive workload monitoring [16] as well as
displaying promise for other paralinguistic speech processing as well [47]. While promising
results using more traditional speech features such as mel-frequency cepstrum coefficients
have also been obtained in the literature [15] but developing these features for the data-
fusion scheme proposed in this paper remains outside the scope of this study and should
be considered in future work.

The classifiers used in this study are all trained on the individual participants. Conse-
quently, a new user would have to provide training data to enroll in the system. Despite the
promising results published by Yin et al. [15] with participant independent methods, indi-
vidual differences have been a major confound in prior work and, hence, Yin et al.’s [15,19]
results must be treated with caution.

We therefore propose a participant dependent classification scheme as the way forward.
This should be supplemented with pattern recognition learning algorithms enabling the
model to be further adapted to the individual. While state-of-the-art methods have achieved
some progress in discriminating high and low cognitive workload, this paper moves beyond
the binary paradigm by setting up a three cognitive workload level classification problem.
For example, the results showed that misclassification errors were more common in adjacent
classes. Many models presented in the literature [53] assume, however, that cognitive
workload should be measured as a continuous variable. This presents methodological
difficulties since cognitive workload is naturally a latent variable that needs to be estimated
indirectly. While this paper does not solve these difficulties, these challenges are neatly
demonstrated with our three class setup

The limited vocabulary of the Stroop task, where the participants uttered the same five
words throughout, might seem too limiting for real world operational scenarios. However,
the features extracted are not based on linguistics but rather on the amplitude peaks in certain
frequency spectra. This can therefore be the basis for a model intended for aviation personnel,
limited to the vocabulary used internationally in air traffic communication terminology.

The use of two complementary psychophysiological measures are ideal. The unob-
trusive speech signal gives a good measure of workload when participants are engaged
in verbal communication. However, in periods with little or no speech communication,
cardiovascular measurements better indicate the workload.
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Although an average MCR of 15.17± 0.79% may seem to be a barrier, the results
in Table 2 indicate that most of the incorrect classifications lie in adjacent cognitive work-
load levels, e.g., high misclassified as medium. Such misclassification may indicate
the boundary between adjacent levels is too rigid at a generic level and further high-
light the need for granularity at the individual level. Despite these promising results,
numerous challenges remain. Real time adaptation needs to be implemented and solutions
for recordings of the psychophysiological signals in an unobtrusive manner devised.

Two examples of the practical implications of the methodology and results of this
research relate to their application at both the strategic and tactical level, for both air traffic
controllers and pilots. For the former, the importance of air traffic controller workload as
the critical determinant in en-route airspace capacity has been well documented over the
years, including a recent document outlining proposals for the future airspace architecture
in Europe by SESAR Joint Undertaking [54]. The research methodology outlined in this
paper can be used to schedule the workforce given historic workload data from individuals.
By this method, the air traffic controller workforce can be scheduled in a robust manner
given their workload capabilities. At a tactical level when assessing capacity, the research
can be used for workload balance when required by a control sector team, in contrast to the
current ad hoc, inefficient methods.

Since the 1980s, Crew Resource Management (CRM) has been developed within com-
mercial aviation [55], with a view to reducing pilot errors and thereby aviation accident
rates. CRM has its core nontechnical skills (NTS) that embrace both the interpersonal
(leadership, teamwork, communication) and cognitive (decision-making, situation aware-
ness, task management) elements necessary for safe and efficient performance [56]. CRM
training has been implemented by many airlines globally and is a required part of pilot
training in the US and UK [57]. For example, to be granted or maintain a valid Air Operator
Certificate (AOC) in the UK, an operator must demonstrate that they can satisfy regulations
mandated by the European Aviation Safety 494 Agency (EASA) and the CAA. Essential
to the NTS of CRM is workload management, which is the organisation of the required
flight activities to achieve goals and maintain quality and safety. This involves managing
competing pressures and demands including scheduling and passenger requirements [58].
While CRM training enables pilots to manage their workload, actually understanding
that workload and its causes poses challenges in this management. Hence, the methods
developed in this paper can assist in this by better understanding the workload profiles of
pilots and investigating the situations leading to high workload and the boundary between
medium and high workload. This affords a great opportunity for the methods outlined
in this paper to complement CRM to improve the management of pilot workload and
therefore improve aviation safety.

6. Conclusions

The management of the workload of personnel in an organisation is essential for both
their well being and efficiency and for the broader societal safety. The accurate measure-
ment and monitoring of the cognitive workload is therefore a pre-requisite. To achieve
any such management, however, the traditional methods of measurement based upon
either self-assessed subjective ratings or on performance measures of tasks have their well-
documented limitations. The use of psychophysiological measurement is another technique
that has failed to gain widespread acceptance in the past due to reliability and logistical
issues. However, recent advances in technology and computational abilities provide an
opportunity to examine this technique anew. Whilst individual sources of psychophysio-
logical measurement can fail to provide the reliability required for operational purposes,
combining feature sets extracted from two sources may provide the requisite reliability.

In this paper, we have demonstrated the potential of using a combination the speech
signal and cardiovascular measures, to measure and monitor cognitive workload. Based
upon a much larger sample than in any previous study and using carefully designed
experiments with increasing task complexity, we have shown that this combination can
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reliably measure and discriminate three levels of cognitive workload at the level of an
individual. This then provides safety critical organizations with the flexibility to manage
the workload of their personnel and thereby enhance safety.
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