508 research outputs found

    Assessment of Response Time for New Multi Level Feedback Queue Scheduler

    Full text link
    Response time is one of the characteristics of scheduler, happens to be a prominent attribute of any CPU scheduling algorithm. The proposed New Multi Level Feedback Queue [NMLFQ] Scheduler is compared with dynamic, real time, Dependent Activity Scheduling Algorithm (DASA) and Lockes Best Effort Scheduling Algorithm (LBESA). We abbreviated beneficial result of NMLFQ scheduler in comparison with dynamic best effort schedulers with respect to response time.Comment: 7 pages, 5 figure

    Throughput Prediction of Asynchronous SGD in TensorFlow

    Full text link
    Modern machine learning frameworks can train neural networks using multiple nodes in parallel, each computing parameter updates with stochastic gradient descent (SGD) and sharing them asynchronously through a central parameter server. Due to communication overhead and bottlenecks, the total throughput of SGD updates in a cluster scales sublinearly, saturating as the number of nodes increases. In this paper, we present a solution to predicting training throughput from profiling traces collected from a single-node configuration. Our approach is able to model the interaction of multiple nodes and the scheduling of concurrent transmissions between the parameter server and each node. By accounting for the dependencies between received parts and pending computations, we predict overlaps between computation and communication and generate synthetic execution traces for configurations with multiple nodes. We validate our approach on TensorFlow training jobs for popular image classification neural networks, on AWS and on our in-house cluster, using nodes equipped with GPUs or only with CPUs. We also investigate the effects of data transmission policies used in TensorFlow and the accuracy of our approach when combined with optimizations of the transmission schedule

    Weighted Random Sampling - Alias Tables on the GPU

    Get PDF

    Teaching operating systems as how computers work

    Full text link
    corecore