
Weighted Random Sampling
–

Alias Tables on the GPU

Master’s Thesis
submitted by

Hans-Peter Lehmann
to the KIT Department of Informatics

Reviewer: Prof. Dr. Peter Sanders
Second Reviewer: Prof. Dr. Carsten Dachsbacher
Advisors: Lorenz Hübschle-Schneider

Emanuel Schrade

July 1, 2020 – December 29, 2020

KIT – The Research University in the Helmholtz Association www.kit.edu

I hereby declare that the work presented in this thesis is entirely my own and that I
did not use any source or auxiliary means other than these referenced. This thesis
was carried out in accordance with the Rules for Safeguarding Good Scientific
Practice at Karlsruhe Institute of Technology (KIT).

Karlsruhe, December 29, 2020

iv

Abstract

An alias table is a data structure that allows for efficiently drawing weighted ran-
dom samples in time in O(1). The PSA algorithm by Hübschle-Schneider and
Sanders is able to construct alias tables in parallel on the CPU. In this thesis,
we develop a construction algorithm for GPUs that is based on the idea of PSA.
Our algorithm specifically fits the architectural properties of GPUs. It achieves
a speedup of 34 on a GPU in comparison to the 4-threaded PSA method on a
consumer grade CPU. Our implementation of the PSA+ method achieves an addi-
tional speedup of up to 1.4 to our PSA implementation. Being faster than the CPU
method even when including memory transfers to the GPU and back, our method
can be used to offload the construction efficiently. For sampling, we achieve an
up to 56 times higher throughput on a consumer GPU than Hübschle-Schneider
and Sanders on the CPU.

v

vi ABSTRACT

Acknowledgments

I thank Prof. Dr. Peter Sanders and Prof. Dr. Carsten Dachsbacher for review-
ing the thesis. For offering the interesting topic and for suggesting algorithmic
ideas to try out, I thank Prof. Dr. Peter Sanders. I also thank my advisors Lorenz
Hübschle-Schneider and Emanuel Schrade for their suggestions, detailed reviews
and useful feedback. Additionally, I thank Lorenz Hübschle-Schneider for mak-
ing his CPU code open-source, which provided useful insights. I thank Emanuel
Schrade for giving me access to a Nvidia RTX 2080 in the computer graphics
pool for performance testing. For running performance and power measurements
on powerful servers, I thank Lorenz Hübschle-Schneider.

I thank Linus Schilpp for borrowing me his Nvidia RTX 2070 Super while
the pool PCs were unavailable. I thank Miriam Scheer and Liam Wachter for
suggesting to experiment with different optimization parameters, some of which
led to surprisingly good results. Additionally, I thank Liam Wachter and Niko
Wilhelm for proofreading and giving feedback.

vii

viii ACKNOWLEDGMENTS

Contents

Abstract v

Acknowledgments vii

Contents 1

1 Introduction 3
1.1 Random Numbers . 4
1.2 Sampling . 8
1.3 GPUs . 9
1.4 Prefix Sums . 14
1.5 Concepts . 16

2 Related Work 17
2.1 Scan Method . 17
2.2 Cutpoint Method . 17
2.3 Lookup Table . 18
2.4 Alias Table . 18
2.5 Brown’s Method . 21
2.6 Sarno’s Method . 21
2.7 Binder’s Method . 22
2.8 Space-Efficient Rejection Sampling 22
2.9 Applications . 22

3 Algorithm Design 27
3.1 Split Method . 27
3.2 Pack Method . 30
3.3 PSA+ . 33
3.4 Sampling . 34

1

2 CONTENTS

4 Implementation 37
4.1 Class Structure . 37
4.2 Preliminaries . 40
4.3 Partitioning of Light and Heavy Items 41
4.4 Split Method . 41
4.5 Pack Method . 42
4.6 PSA+ . 44
4.7 Sampling . 45
4.8 Performance Optimization . 47
4.9 Verification . 51

5 Evaluation 53
5.1 Experimental Setup . 53
5.2 Construction . 54
5.3 Sampling . 60
5.4 Power Usage . 63

6 Conclusion 65

7 Appendix 67
7.1 List of Figures . 67
7.2 List of Tables . 68
7.3 List of Algorithms . 68

Bibliography 69

Chapter 1

Introduction

Motivation Randomly drawing items from a set is used in many applications
such as simulations or graph generation. With weighted random sampling, each
item has a specific probability. The task is to draw items from the input set while
honoring their respective probabilities. A data structure that allows for efficiently
sampling from a weighted random distribution in O(1) is the alias table. To sam-
ple from an alias table, it is sufficient to generate a uniform random number and
to perform one memory access operation. Every discrete random distribution can
be represented as an alias table. The first algorithm for parallel alias table con-
struction, PSA,1 is presented by Hübschle-Schneider and Sanders [27]. GPUs
are becoming more important for high performance computing because of their
fast memory and high degree of parallelism. Therefore, there is need for an ef-
ficient method to construct data structures for drawing weighted random samples
on GPUs.

Contribution In contrast to CPUs, GPUs follow a single instruction multiple
data (SIMD) scheme. The main contribution of this thesis is to develop algo-
rithms that, based on PSA, can construct and sample from alias tables on GPUs
efficiently. In contrast to the original implementation, we modify the memory ac-
cess patterns so that the operations can be coalesced and therefore are efficient on
GPUs. Splitting is executed using a newly developed scheme that we call partial
p-ary search. Packing still uses linear memory access operations in each thread
but the proposed algorithm first copies the input data to the faster shared mem-
ory in a coalesced way. For running the PSA+ extension we specifically choose a
point in time that allows for reducing memory access operations.

1Parallel splitting-based alias table construction.

3

4 CHAPTER 1. INTRODUCTION

Structure In the remainder of this chapter we first introduce random numbers
and sampling. After that, we continue with details about the GPU architecture
that are important for understanding this thesis. In Chapter 2 we introduce other
weighted random sampling algorithms and applications of them. In Chapter 3 we
introduce our newly designed construction and sampling algorithms. We describe
the implementation of those algorithms in Chapter 4. Finally, in Chapter 5, we
compare our methods among each other and with the work of Hübschle-Schneider
and Sanders [27].

1.1 Random Numbers
Random numbers are a foundation for many scientific fields, such as simulations,
cryptography or computer graphics. In order to sample from alias tables, we need
sources of random numbers with specific distributions.

1.1.1 Distributions
In the following section we introduce different random distributions that are used
in this thesis. Figure 1.1 provides a visualization of the distributions.

Uniform Distribution The most well known random number distribution is the
uniform distribution. When sampling items from this distribution, each one is
drawn with the same probability. The distribution function is a constant func-
tion. Even though the distribution is very basic, sampling from alias tables relies
heavily on a source of uniform random numbers.

Uniform Random Weights A distribution that cannot be sampled directly is
generated by drawing a uniform random number for determining the weight of
each item. We heavily use this distribution for evaluating our algorithms.

Normal Distribution The normal distribution (sometimes also called Gaussian
distribution) can be observed when a continuous value randomly differs from an
expected value. Its density function is described by a typical bell curve.

Binomial Distribution When observing N random experiments with a binary
outcome like heads or tails and a winning probability p, the binomial distribution
B(N, p, k) describes the probability for drawing heads k times. For high values
of N , the binomial distribution can be approximated with the normal distribu-
tion [37].

1.1. RANDOM NUMBERS 5

0.0

0.1

0.2

0 5 10
Item

P
ro

ba
bi

lit
y

(a) Uniform

0.1

0.2

0 5 10
Item

(b) Random

0.0

0.2

0.4

0 5 10
Item

(c) Normal

0.0

0.1

0.2

0 5 10
Item

(d) Binomial

0.1

0.2

0.3

0 5 10
Item

P
ro

ba
bi

lit
y

(e) Power law

Figure 1.1: Visualization of different random distributions.

Power Law The power law distribution uses weightswi = i−α. Many processes
follow a shuffled power law distribution where these weights are assigned in a
random order. Realistic values of α are usually smaller than 2. An example is the
word frequency in texts (Zipf’s law) [35].

1.1.2 Random Number Generators
Because computers are deterministic machines, generating random numbers is
harder than it might seem. There is an extensive amount of literature about random
number generators and measuring their quality, such as TestU01 [32]. Describing
these quality measures is out of scope for this thesis. Pseudorandom number
generators (PRNGs) are the most common class of random number generators.
PRNGs are deterministic algorithms that generate seemingly unrelated and hard to
predict numbers [64]. In order to understand the basic ideas, as well as advantages
and disadvantages in the context of GPUs, we introduce some commonly used
algorithms in the following paragraphs.

Multiple Recursive Generator A Multiple Recursive Generator (MRG) [58]
generates pseudorandom numbers Un by multiplying and adding the state vector
xi and parameters ai in a modulo m group. MRG32k3a is an implementation for
GPUs that is available in the curand library [4]. A basic idea for the definition
of a MRG is given in Equation 1.1.

xn = (a1 · xn−1 + a2 · xn−2 + . . . + ak · xn−k) mod m

Un =
xn
m

(1.1)

Mersenne Twister Given a state vector, a Mersenne Twister [39] generates the
next random number by multiplying parts of its state vector with a tempering ma-
trix. The result of the multiplication is then added bitwise to another part of the

6 CHAPTER 1. INTRODUCTION

Algorithm 1.1: Xorshift
static unsigned long y = 2463534242;
unsigned long xorshift() {

y^=(y<<13);
y^=(y>>17);
return (y^=(y<<5));

}

old state vector. Compared with other PRNGs, the state of a Mersenne Twister is
rather large, which is a problem on GPUs. Mersenne Twister for Graphic Proces-
sors (MTGP) [51] is a variant implemented in the curand library [4]. It allows
for sharing the state between multiple threads of a group and uses cooperative
operations to multiply with the tempering matrix in parallel.

Xorshift Marsaglia presents xorshift [36], a simple and extremely fast PRNG
that passes most randomness tests. It is based on a combination of XOR opera-
tions (^) and bit shifts (<<, >>). Marsaglia lists 8 variations of the algorithm that
only differ in the shift direction and order of variables. They also list all 81 triples
of magic numbers that lead to a good 32 bit PRNG and all 275 triples that lead
to a good 64 bit PRNG. One of the triples is (13, 17, 5). The resulting C code
with that triple is illustrated in Algorithm 1.1. The state y is initialized with an
arbitrary seed.

Xorwow Xorwow is a variation of xorshift that is introduced by Marsaglia in
the same paper as xorshift [36]. It uses 5 arbitrary integers for its state. An addi-
tional arbitrary odd number d is added to the final random number and increased
by an arbitrary odd constant after every generated number. An example for a
combination of magic values is given in Algorithm 1.2. The xorwow algorithm is
the default PRNG of the curand [4] library. It uses a small state and allows for
generating independent sub-streams efficiently.

One-PRNG-per-kernel-call-per-thread Scheme A disadvantage of the previ-
ously introduced generators is that they need to store state. If multiple threads
need to store their state across different kernel calls, this can lead to bottlenecks
on the GPU because the data needs to be written to the slow global memory. The
one-PRNG-per-kernel-call-per-thread scheme (pK-pT) [48] allows for using inde-
pendent PRNGs without storing state. Using a cryptographic hash function (such
as MD5), random numbers with good properties can be generated. The hash func-

1.1. RANDOM NUMBERS 7

Algorithm 1.2: Xorwow
static unsigned long x=123456789,y=362436069

z=521288629,w=88675123,v=5783321,d=6615241;
unsigned long xorwow() {

unsigned long t;
t=(x^(x>>2));
x=y; y=z; z=w; w=v;
v=(v^(v<<4))^(t^(t<<1));
return (d+=362437)+v;

}

(a) Mersenne Twister PRNG (b) Halton sequence

Figure 1.2: Visualization of pseudorandom and quasi-random numbers.

tions are computationally heavy on GPUs and therefore not suited for drawing
large amounts of numbers. pK-pT uses a single hash evaluation to generate the
initial state for a PRNG that can then be used without memory access. As an
input for the hash function, the authors suggest to use a globally chosen random
seed, a time step that is increased for every kernel call and a unique index for each
thread. As computational performance of GPUs is growing faster than memory
bandwidth, the scheme is becoming more and more relevant.

Quasi-random Numbers Quasi-random numbers are more evenly distributed
than actual random numbers. Actual random numbers build clusters, which can
cause Monte Carlo methods to converge slowly. Even though quasi-random num-
bers can be predicted easily, they are important for a large number of scientific
fields such as computer graphics [64]. A popular example for a quasi-random
number generator is the Halton sequence. A visual comparison between exemplar
quasi-random and pseudorandom numbers is given in Figure 1.2.

1.1.3 Stream Partitioning
Partitioning can be used to share a single random number generator between mul-
tiple threads. With parameterization, each thread uses a different seed or different
constants in the algorithm itself. Cycle splitting is the method of taking one single

8 CHAPTER 1. INTRODUCTION

stream of random numbers and distributing the numbers to multiple threads. This
is what is used in curand’s Mersenne Twister implementation. There are differ-
ent methods to implement cycle splitting. Distributing a fixed block of numbers
to each thread is called blocking. With the leapfrog method each thread receives
numbers in a round-robin fashion [58].

1.2 Sampling

Sampling is the operation of selecting an item from a set at random. Picking balls
out of bins is taught in schools and is a widely known example of sampling. There
are two different variants specifying how to continue after an item is sampled.

With Replacement When sampling with replacement, the sampled items are
put back into the set after each turn. Therefore, samples can be drawn multiple
times and each sample is independent of other samples. Samples can be drawn
from a constant data structure in parallel and without coordination.

Without Replacement When sampling without replacement, the sampled items
are taken out of the set and cannot be sampled again. This means that the prob-
ability distribution changes after each sample. When drawing multiple samples,
each item is returned at most once. Because samples are not independent of each
other, some degree of coordination between threads is needed.

1.2.1 Uniform Sampling

Assume having a set of items {0, ..., N − 1}. Uniform sampling is the problem
of selecting one of those items at random, with equal probability. The basic prob-
lem with replacement is easy to solve because most PRNGs already generate uni-
formly distributed numbers from the representable range of their data type. The
problem becomes interesting when considering sampling without replacement. It
is not possible to simply use a PRNG k times because that can lead to duplicates.
Various algorithms for uniform sampling are known. Knuth [20] introduces an
algorithm that selects or discards items based on the ratio of the number of items
left to pick and the unprocessed items that are left. Teuhola and Nevalainen [59]
use a hash table to store the already selected samples. Vitter [61] introduces an
algorithm that scans over the input items, skipping a random number of items in
each iteration.

1.3. GPUS 9

Algorithm R The parallel algorithm by Sanders et al. [52] is based on a divide
and conquer approach. The algorithm uses a recursive sample function that repeat-
edly splits the range of input items in half. It then uses a hypergeometric deviate to
determine how many items need to be sampled in each child node of the recursion
tree. The algorithm can be parallelized by having each thread only follow one
recursion call. To be unbiased, the hypergeometric deviate needs to be the same
for all threads that look at the same node of the recursion tree but independent for
the children of each node. This can be achieved without any communication by
using a PRNG. We apply a similar idea to alias tables in Section 3.4.2.

1.2.2 Weighted Sampling

Assume having a set of items {0, ..., N − 1} with weights wi ∈ R. We denote
the total weight with W =

∑
0≤k<N wk. Weighted sampling is the problem of

selecting one of the items i at random, proportionally to its weight. That means
that the probability for selecting item i equals P(i) = wi/W . Algorithms for
weighted random sampling are introduced in Chapter 2.

1.3 GPUs

Dedicated graphics processing units (GPUs) are getting more and more power-
ful, fueled by games, machine learning and crypto-currencies. Central processing
units (CPUs) are task parallel, meaning that they are optimized to execute multiple
independent tasks at the same time. In contrast, GPUs are data parallel, meaning
that the same instruction is executed on different data in parallel. GPUs are accel-
erators, so while they can speed up calculations, they cannot work on their own.
Therefore, the GPU is often called the device, while the system that it is connected
to is called the host.

1.3.1 Architecture

A GPU is highly symmetrical, consisting of multiple streaming multiprocess-
ors (SMs). Each SM has a number of processing blocks as well as some fast
memory that is shared between the threads of each block. The Nvidia GeForce
RTX 2080, which we use for most of the measurements in this thesis, has 46 SMs
and 96 kB of shared memory [1]. Each processing block is responsible for execut-
ing multiple threads simultaneously. To do that, processing blocks have multiple
arithmetic units for each data type which can be used at the same time. Because
the processing blocks are responsible for actually executing the threads, they also

10 CHAPTER 1. INTRODUCTION

L2 cache

GPU

SM

SM...SM

SM

SM

SM...D
e
vi

ce

m
e
m

o
ry

SM

L
1
 c

a
ch

e
,

S
h

a
re

d
 m

e
m

o
ry

Registers Scheduler

FP 32 FP 64 ...

Registers Scheduler

FP 32 FP 64 ...

...RAM

Host system

CPU

Figure 1.3: Simplified architecture of a GPU. Based on [1].

hold the registers, an instruction cache and a scheduler. Figure 1.3 provides a
simplified illustration of the structure [1].

The smallest level of parallelism, 32 threads, is called a warp. All threads
in a warp share their instruction pointer. If the threads diverge (for example, on
an if statement), the inactive threads are masked out and therefore do not touch
their data. This means that all threads in a warp take the same time to complete,
regardless of the data and individual code paths [1]. The next level of parallelism
is called a block. Blocks consist of multiple threads and are guaranteed to be ex-
ecuted on the same SM. They can therefore share data using the memory region
located on the SMs. Functions that are executed on the GPU are called kernels.
When running a kernel, developers can choose the number of blocks and the num-
ber of threads per block.

A common problem is that memory access is slow compared to the clock
speed. When accessing memory in both branches of an if/else block and only
some threads of a warp enter each block, all threads have to wait for at least two
full memory cycles. By storing the memory address and accessing it outside the
branches, the code can be executed up to two times faster.

1.3.2 CUDA
CUDA2 is a platform developed by Nvidia that allows for developing parallel
algorithms on the GPU. It extends the C/C++ compiler, which enables writing
both kernels and CPU host code in the same source file. Kernels are basic C++
functions with some restrictions. Most importantly, they cannot directly access
the host memory and must not be recursive. Kernels are usually launched from
the CPU and then run asynchronously. Each kernel is executed on a grid of blocks.

2CUDA was formerly called Compute Unified Device Architecture [44].

1.3. GPUS 11

Threads Memory access Coalesced

Figure 1.4: Illustration of coalesced memory access. The GPU tries to minimize
the total number of 32-byte transactions.

The blocks themselves consist of a grid of threads. Threads from the same block
can synchronize and share memory, while threads from different blocks cannot
cooperate directly. The blocks are scheduled to streaming multiprocessors by the
hardware [50].

1.3.3 Memory

The GPU has a large global memory (also called device memory). Allocations of
memory regions are usually performed from the host system. In addition to global
memory, each block can allocate shared memory that can be accessed much faster.
The memory region is called shared because all threads of a block can access it.
It cannot be accessed across groups and is not persistent across kernel launches.
Shared memory is located in the same hardware area as the L1 cache, directly on
the SM. Each thread has its own registers that store variables [3].

Coalescing

Whenever the threads of a warp access global memory, CUDA uses coalesced
memory accesses. This means that it collects all memory locations that are re-
quested and then minimizes the number of 32-byte transactions that are needed
to fulfill the requests [3]. Coalesced accesses are able to speed up memory op-
erations significantly. If each thread of a warp reads unrelated memory locations
though, large parts of the 32-byte transactions’ data is not used. Figure 1.4 shows
an illustration of coalesced memory access.

12 CHAPTER 1. INTRODUCTION

0 32 64
Aligned:

X X X X
Unaligned:

X X X X

Figure 1.5: Aligned and unaligned memory access. Cells marked with X are
actually actively accessed and cells highlighted in gray need to be fetched from
memory.

Alignment To ensure that memory accesses can be coalesced, threads should
align their memory accesses to 32 bytes. If it is not aligned, the number of re-
quired memory transactions may be higher which leads to a noticeable perfor-
mance penalty [3]. Figure 1.5 illustrates memory regions of 8 bytes each and
compares an aligned and an unaligned access pattern.

Interleaved Addressing A common memory access pattern is to loop over in-
put data of size k · |Threads| once. On CPUs, this would be achieved by splitting
the memory region into one section for each thread. Each thread t then linearly it-
erates over its section, accessing memory location xk·t+i in iteration i. This means
that the concurrent memory reads of the loop are always k memory locations
apart. On GPUs, this access pattern cannot be coalesced and is therefore slow.
With interleaved addressing, the indices for the memory accesses are re-arranged,
so that each thread instead accesses item xi·|Threads|+t. While the pattern is less
intuitive when writing the kernel, its performance is significantly better because
neighboring threads access neighboring memory locations and therefore enable
coalescing. Figure 1.6 shows an illustration of the two access patterns.

Bank Conflicts

The GPU’s memory physically consists of multiple memory modules called banks.
All memory locations are distributed over the memory banks in a round-robin
fashion. Each memory bank can only perform one memory transaction at a time.
Multiple banks can read their memory in parallel. If k threads access the same
memory bank in different rows, a k-way bank conflict occurs. The memory ac-
cesses then need to be serialized, resulting in reduced throughput [43]. A simple
rule-of-thumb is that threads that are next to each other in CUDA’s thread grid
should try to also access memory locations that are next to each other. This bal-
ances the memory operations between banks. A technique to achieve that is to use
interleaved addressing, which is introduced above.

1.3. GPUS 13

Memory access

Threads

(a) Sequential

Memory access

Threads

(b) Interleaved

Figure 1.6: Memory access patterns. Interleaved addressing can be coalesced by
the GPU.

1.3.4 Profiling Tools

In this thesis, we mainly use two profiling tools that are introduced below. The
tools provide important information that makes many of our measurements pos-
sible in the first place. The performance measurements for charts are executed
using GPU timers, which have less impact on the performance than a full profiler.

Nvidia Visual Profiler

The Nvidia Visual Profiler is focused on overall performance optimization of a
whole program. It generates a timeline of the program execution for analyzing
which kernels are executed at which point in time. It also shows if the kernels are
executed directly after each other, in parallel streams, or if they are delayed by
synchronization with the CPU.

Nvidia NSight Compute

The Nvidia NSight Compute tool is focused only on one kernel at a time. It bench-
marks the kernel and collects detailed information, such as compute utilization of
the arithmetic units (e.g. integer, floating point), memory read/write volume and
utilization, or disassembly with source counters. The memory’s Speed Of Light
(SOL) value describes how the actual achieved bandwidth compares to the theo-
retical maximum.

14 CHAPTER 1. INTRODUCTION

11 1 1 1 1 1 1

21 2 2 2 2 2 2

41 2 3 4 4 4 4

81 2 3 4 5 6 7

Figure 1.7: Basic parallel prefix sum algorithm. Arrows illustrate memory read
and write operations.

1.4 Prefix Sums
Prefix sums are a basic building block for parallel algorithms. An inclusive prefix
sum of a given array a is defined as prefixincl(a)k :=

∑k
i=0 ai, an exclusive prefix

sum prefixexcl(a)k :=
∑k−1

i=0 ai. In the following section, we introduce two parallel
construction algorithms. To switch from an inclusive prefix sum to an exclusive
one, the whole array can be shifted one item to the right, setting the first item to 0.

1.4.1 Basic Parallel Prefix Sum

The basic parallel approach is introduced by Horn [24]. The algorithm starts N
threads, one for each item in the array, and stores an offset δ = 1. In each iteration
of the algorithm, if an index is smaller than δ, it remains unchanged. If it is bigger,
the corresponding thread stores the sum of its current item k and the item k − δ.
The offset is doubled in each iteration. Figure 1.7 illustrates the algorithm. As
described, the method calculates an inclusive prefix sum.

Memory volume The method requires log2(N) kernel calls with N threads
each. In order to ensure that read and write operations do not interfere, either
heavy synchronization or double-buffering has to be used. In total, this approach
executes

∑log2(N)
i=1 N = N · log2(N) write operations, as well as

∑log2(N)
i=1 (N +

(N − 2i−1)) = (2N − 1) · log2(N) + 1 read operations.

1.4. PREFIX SUMS 15

11 1 1 1 1 1 1

21 2 1 2 1 2 1

41 2 1 4 1 2 1

81 2 3 4 5 6 7

71 1 1 3 1 5 1

51 2 1 1 1 2 1

11 2 1 4 1 2 1

Figure 1.8: Work-efficient prefix sum algorithm. Arrows illustrate read and write
operations.

1.4.2 Work-Efficient Prefix Sum

Prefix sum algorithms are memory bound. The basic parallel method with its large
number of memory operations is therefore a bottleneck. Blelloch [13] introduces
a work-efficient algorithm for prefix sums.

The method operates in two phases, as illustrated in Figure 1.8. In the up-
sweep phase, the total sum is calculated by using a reduction in a binary tree.
The intermediate results that are calculated during the reduction are stored in the
array. In the down-sweep phase, nodes can calculate the total sum of the subtrees
that are located to the left of them by adding the sum of items to the left of their
parent and the sum of their left sibling. This is propagated back to the leaf nodes
to calculate the full prefix sum. When setting the last item to 0 between the two
steps, the method calculates an exclusive prefix sum. Setting it to the first item
results in an inclusive prefix sum.

Memory volume The algorithm requires 2 · log2(N) kernel calls with logarith-
mically decreasing and then increasing number of threads. In total, the approach
executes (

∑log2(N)−1
i=1 2i) + 1 + (

∑log2(N)
i=1 2i) = 3N − 3 write operations and

(
∑log2(N)

i=2 2i) + 1 + (
∑log2(N)

i=2 2i) + (
∑log2(N)−1

i=1 2i) = 5N − 9 read operations. It
is therefore asymptotically more efficient than the basic method.

16 CHAPTER 1. INTRODUCTION

1.5 Concepts
In the following section we introduce some concepts that are touched upon in this
thesis. The concepts are widely known but because they provide an important
foundation, we reiterate them here.

Speedup Algorithm execution timings are different on each hardware model. To
compare the performance of two algorithms, a widely used metric is the speedup,
which abstracts away the actual machine. If an algorithm A needs time Ta for
a task and an algorithm B needs Tb, the speedup of B is S = Ta/Tb. Speedup
is often used in parallel computing to compare how much faster the parallel al-
gorithm with time Tpar gets when comparing to the fastest sequential algorithm
with time Tseq. In this case, the speedup can be calculated by S = Tseq/Tpar.
The optimal speedup on p processors is p, though some effects like caching can
lead to even more improvement, also called superlinear speedup. The maximum
speedup with unlimited processors is S = ((1 − α) + α/p)−1 → (1 − α)−1 for
p→∞, where α describes the proportion of the program that can be parallelized
(Amdahl’s Law [8]).

Strong Scaling There are two basic ideas how to scale an algorithm to multiple
processors. Strong scaling describes how solving a problem of fixed size gets
faster when adding more processors p.

Weak scaling Weak scaling describes how the time for executing an algorithm
increases when adding more processors with a fixed problem size per processor.
This means that the total problem size increases whenever a new processor is
added [3]. For this thesis we only perform strong scaling experiments.

Chapter 2

Related Work

In the following chapter we review weighted random sampling algorithms from
the literature. We then continue with describing applications of the algorithms.

2.1 Scan Method

The naive algorithm for weighted random sampling calculates the probability
P(i) = wi/W of each item, where W =

∑
iwi is the sum of all weights. It

then assigns each item i an interval Ii ⊂ [0, 1) by calculating the prefix sum
of the probabilities P(i). To sample, the algorithm generates a random number
U ∈ [0, 1) and searches for the interval Ik with U ∈ Ik [21]. The sampled item
is then k. A linear search takes O(N) for each sample. Using binary search,
this can be improved to O(log(N)). While the method is easy to understand and
implement, it is not efficient enough for selecting a large number of samples.

2.2 Cutpoint Method

Fishman and Moore introduce the cutpoint method [21], a modification of the lin-
ear scan algorithm. Their algorithm divides the interval [0, 1) into m segments.
Each segment stores a reference to the first interval of a linear scan that inter-
sects with the segment. Instead of performing a linear scan looking for U from
the beginning, scanning can then be started at the reference of segment bU ·mc.
The structure needs O(N +m) space and provides a trade-off between sampling
performance and memory usage. For m � N , the method’s runtime is still de-
pendent on log(N) and therefore not efficient enough for drawing a large number
of samples. In contrast, the methods explained in the following sections are able
to sample in time O(1).

17

18 CHAPTER 2. RELATED WORK

2.3 Lookup Table
A method that can sample in constant time is a lookup table. First, all weights
need to be converted to integers by expressing them in the form wi = α · di,
where di ∈ N0 is the integer weight of each item and α ∈ R+ is a constant chosen
small enough to evenly divide allwi. After that, an array of size

∑
i di is allocated.

Every item i is written to the array di times. To sample, a uniform random element
from the array is returned [40]. A big disadvantage of the lookup table is that the
space requirements depend not just on the number of items but also on the values
of their weights. Even for just two items, the space requirements and therefore the
construction time can be arbitrarily high. For example, the weights w0 = 10−k

and w1 = 1− 10−k lead to a space requirement of 10k lookup table entries.

2.4 Alias Table
Alias tables, introduced by Walker [63], are a data structure for sampling from
discrete distributions. An alias table T has N rows, where N is the number of
items in the input set. Each row represents a bucket that can be sampled. It has
two columns, namely a weight Twi ∈ R and an alias T ai ∈ {0, ..., N − 1}. To
sample, a uniform random number U ∈ [0, 1) is used to select a row k = bU ·Nc
from the table. The algorithm then uses the decimal places frac(U · N) to either
return the item k or its alias T ak by checking if (U ·N−k) ·W/N < Twk , where W
is the sum of all weights. Alias tables allow for sampling an item by generating
only one uniform random number and performing one lookup in the data structure.
Sampling an item is therefore in O(1). It is possible to construct an alias table for
every discrete distribution. The idea is that heavy items that are more likely to be
sampled than a table row (wi > W/N) give excess weight to the buckets of one
or more light items. This procedure is illustrated in Figure 2.1.

2.4.1 Walker’s Construction
The original alias table construction algorithm by Walker [63] subtracts W/N
from each item’s weight and stores the result in Bi, describing the left-over space
in each bucket that may be negative. The algorithm then loops over the items
and searches for the bucket k with maximum remaining weight and bucket l with
minimum remaining weight. It then assigns T al := k. The weight of the light
item’s bucket is assigned the share of W/N that it fills: Twl := Bl/(W/N) + 1.
The remaining weights compensate each other using Bk := Bk +Bl and Bl := 0.
This continues until all items have remaining weight Bi = 0. The construction
therefore requires time O(N2) and does not lend itself to parallelization.

2.4. ALIAS TABLE 19

2⋅W
N

W
N

0

(a) Input weights

2⋅W
N

W
N

0

(b) Constructed table

Figure 2.1: Illustration of alias table construction. Buckets of items with weight
smaller than the average are filled with excess weight of heavy items.

2.4.2 Vose’s Construction

Vose [62] develops a variation of the alias table construction algorithm with the
main idea of explicitly maintaining lists of light and heavy items. Items with
weight wi ≤ W/N are considered light and are added to the list l. The other
items are considered heavy and are added to the list h. While there are items
available, the algorithm takes a heavy item j ∈ h. It then distributes the excess
weight of that item by taking light items and filling their buckets. The item j is
stored as the alias of those light items and the excess weight of j is decreased
accordingly. When the remaining weight of j drops below W/N , it is considered
light and added to l. In each iteration, at least one of the light items’ buckets is
filled, ensuring that the running time is in O(N).

2.4.3 Sweeping Alias Table Construction

Hübschle-Schneider and Sanders [27] introduce an alternative alias table con-
struction algorithm that does not require a secondary array or preprocessing. It
is therefore more space efficient than Vose’s [62] approach. The algorithm uses
two indices, i and j, that always point to the next light and heavy item. In each
iteration, either the bucket of a light item is filled from a heavy item or the remain-
ing weight of a heavy item drops belowW/N and its bucket is filled from the next
heavy item. Therefore, one of the pointers can be advanced to point to the next
item. Because i and j are monotonic, the algorithm has linear time complexity.
An advantage on CPUs is that the algorithm accesses the memory linearly and
does not need preprocessing for classifying the items.

20 CHAPTER 2. RELATED WORK

2.4.4 Parallel Alias Table Construction
The algorithms described in the previous sections are all sequential. For large
data sets, sequential construction of the alias table can become a performance bot-
tleneck. Hübschle-Schneider and Sanders [27] extend the idea of the sweeping
alias table construction to develop the parallel splitting-based alias table construc-
tion algorithm (PSA). The method uses a two-step approach, as described in the
following paragraphs.

Splitting During the first step, splitting, the algorithm precomputes the state of
the sweeping construction (see Section 2.4.3) at s positions. These splits define
sections that can later be worked on in parallel. The algorithm selects a number
of light and heavy items in a way that the number of items in each section is N/s
and the weights are balanced. This is done by executing a binary search on the
prefix sums of light and heavy items. To deal with the weight that does not fully
fit into an section, the algorithm stores the remaining weight as spill. The result
of the splitting step is a list of section boundaries and their respective spill values.

Packing The second step then writes the actual alias table. In parallel, each pro-
cessor takes one of the sections. If there is weight spill from the previous section,
the algorithm initializes the weight that needs to be distributed accordingly. It then
iterates over the items of the section and distributes weight from buckets of heavy
items to buckets of light items like in Vose’s algorithm (see Section 2.4.3).

2.4.5 PSA+
Hübschle-Schneider and Sanders [27] develop a semi-greedy variant of their PSA
algorithm, called PSA+. The idea is that instead of calculating prefix sums and
splits for all items, the algorithm greedily builds the alias table in fixed-size sec-
tions until each section runs out of light or heavy items. PSA+ then only performs
the PSA construction with the remaining items. When assigning uniform random
weights to each item, it is possible to pack a majority of the items greedily.

2.4.6 Sampling on GPUs
Constructing alias tables on the GPU is not covered in the literature yet. Mohanty
et al. [42] implement the sampling step of alias tables for Monte Carlo simula-
tions. They use two independent tables in order to sample 2-dimensional values.
Their implementation shows a significant increase in sampling throughput when
comparing to the CPU. In their work, the tables only need to be constructed once.
They therefore construct the table on the CPU and copy it afterwards.

2.5. BROWN’S METHOD 21

2.4.7 NP Completeness

Smith and Jacobson [55] analyze the performance of alias table sampling. They
note that table rows without an alias (Twi = W/N) can be sampled more efficiently
than rows with an alias. By reducing the NP complete problem Numerical 3-
Dimensional Matching to the problem of building an alias table with minimal
items having an alias, they show that the problem is NP complete. An input that
can lead to a non-optimal alias table is to takew0 = 0.5, wn = 1.5 and for all other
items i 6∈ {0, N} take wi = 1.0. This results in a bucket size of W/N = 1. A
greedy algorithm might assign the alias of all items to the subsequent item instead
of moving the excess weight of the very last heavy item to the front. As this is a
rather theoretical result, we do not minimize the number of items without an alias.

2.5 Brown’s Method

Brown’s Method [15, 53] is a random sampling algorithm that is similar to alias
tables. It uses one single array D that contains items and their aliases alter-
nately. To sample an item, the algorithm generates a uniform random number
U ∈ [0, N) ⊆ R. The item to be sampled is then determined by accessing
DbUc+U−wbUc . A problem that the author notes is that in order for the algorithm
to be unbiased, the lower digits of U (namely frac(U)) need to be uniformly dis-
tributed. This can become a problem when dealing with large floating point num-
bers. The problem can be solved by drawing another random number U2 ∈ (0, 1]
and returning D2·bUc+U2−wbUc instead. For sampling, the method needs two mem-
ory access operations to unrelated locations. We therefore assume that it is slower
than standard alias tables.

2.6 Sarno’s Method

Sarno et al. [53] propose a branchless sampling method using a lookup table
of only N items. Their algorithm generates a new set of items with weights
wsarno
i := i ·wi ·N . It then uniformly samples an item from the new set. While the

method actually samples different random variables than the ones given as input,
it preserves mean and variance. The modified distribution is still useful for Monte
Carlo simulations. This thesis focuses only on exact solutions.

22 CHAPTER 2. RELATED WORK

2.7 Binder’s Method

Binder and Keller [11] introduce a monotonic sampling algorithm for GPUs that
can sample inO(1) average case and inO(log(N)) worst case running time. They
use a modification of the cutpoint algorithm (see Section 2.2). In order to find the
actual samples within the cut regions, they use a radix tree forest. They introduce
a parallel algorithm for GPUs to construct the forest.

The authors criticize the fact that the alias method is not monotonic. When
using a monotonic sampling algorithm, a higher random number U also generates
a higher sample. Other examples for monotonic sampling algorithms are scanning
(see Section 2.1) or the cutpoint method (see Section 2.2). When sampling with
a quasi-random number generator (see Section 1.1), monotonic methods are able
to preserve the low discrepancy. In this thesis, we do not consider the additional
requirement of monotonicity and are rather interested in a better throughput.

2.8 Space-Efficient Rejection Sampling

Bringmann and Larsen introduce an algorithm for weighted sampling that is based
on rejection sampling [14]. The basic idea is that instead of filling the buckets of
items with an alias, they just keep them empty and reject samples that would draw
the empty bucket space. For each item i, they calculate Occi := bN · wi/W c+ 1
and then generate an array A that contains it Occ(i) times.

For sampling, they choose a uniform random index k in A. If Ak is the first
occurrence of the item (k = 1 or Ak−1 6= Ak), they use the remaining weight
(frac(N · wAk

/W)) to decide if they accept the sample. If the sample is rejected,
they just sample again. The probability for accepting a sample is > 0.5, so the
expected time for sampling is in O(1).

Because A contains a linear, ordered list of numbers, it is enough to just store
the fact that a new item starts at position i. This makes it possible to store A
implicitly in a bit array. The actual item that is stored in position i can then be
calculated using the rank (number of bits before position i that are 1).

2.9 Applications

The following section introduces applications of weighted random sampling that
can be found in the literature. Some methods are specifically focused on alias
tables or are especially interesting on GPUs.

2.9. APPLICATIONS 23

2.9.1 Graph Generation

Graphs have many applications in computer science. The World Wide Web, maps
or social networks are only a few examples of graphs. Graphs in real world appli-
cations are getting larger and larger, so research is done to develop algorithms that
can process large graphs. In order to test the algorithms, researchers need data
sets. Unfortunately, real world data sets are often not publicly available. R-MAT
(Recursive Matrix) [17] is a model to generate large, realistic network graphs that
can be weighted, bipartite and directed while having only a few input parameters
to tweak. The algorithm recursively generates the adjacency matrix by splitting
the matrix into 4 quadrants. Edges are “dropped” onto the graph one-by-one de-
pending on probability parameters for each of the quadrants. In each recursion
layer, the parameters are modified with noise for better fluctuation. Hübschle-
Schneider and Sanders [26] suggest an algorithm that precomputes paths of the
recursion process and calculates their probability. To insert an edge, they sample
from the paths using an alias table. In general, many random graph generation
algorithms benefit from fast sampling techniques, as noted in Ref. [46].

2.9.2 Text Generation

Hmedeh et al. [23] develop a recommender that suggests news articles from multi-
ple RSS feeds. For their evaluation, they use alias tables to generate large numbers
of synthetic subscriptions with specific word distributions.

2.9.3 Graph Databases

GraphJet [54] is a graph database developed at Twitter that is used to give rec-
ommendations in real-time. The database stores a bipartite graph where one set
contains users and the other set tweets. Labeled edges between users and tweets
represent interactions, such as marking a tweet as favorite. The graph is repre-
sented in adjacency lists that are organized in multiple segments. Only the most
recent segment is written to. After a segment is full, it is optimized for reading
speed. In order to generate recommendations for the timeline, GraphJet performs
a random walk on the bipartite graph. It starts with a user and follows edges to
tweets and back to users repeatedly. An outgoing edge within a segment is sam-
pled by generating a uniform random number between 0 and the degree of the
vertex. In order to sample edges from different segments, the algorithm keeps
track of the total degrees in each segment and then uses an alias table to choose
the segment that the edge should be sampled from.

24 CHAPTER 2. RELATED WORK

2.9.4 Nuclear Medicine

In simulations, random numbers with specific distributions are often required.
One example is the dose planning method used in nuclear medicine [65]. Nu-
clear medicine can be used to analyze physiological processes in patients. To do
that, the patients consume a nuclear emitter. Attaching the emitter to specific sub-
stances allows for observing how those substances travel through a living body. In
order to minimize the radiation exposure on the patient, the process is simulated
with the patient’s specific anatomy beforehand. Wilderman and Dewaraja [65]
simulate how the nuclear energy travels through the body by using path tracing.
In order to sample source positions for simulated particles, they use an alias table
initialized with the measured intensity of the nuclear emitter.

2.9.5 Stochastic Flow Networks

Flow networks are graphs with weighted edges that can be compared to water
pipes. They have a specific source node and a sink node. Each edge can transport
a specific capacity, comparable to the diameter of the pipe. A flow is an assign-
ment of numbers to edges where each number is from the interval [0, capacity].
The total incoming flow at each node must match the outgoing flow, except for
source and sink. Stochastic flow networks modify the definition by assigning
varying capacities to each edge using a probability distribution. Alexopoulos and
Fishman [7] introduce a Monte Carlo method for determining the maximum flow.
To sample the capacity of edges, they use alias tables.

2.9.6 Noise Function Generation

In computer graphics, noise functions are an important building block of proce-
dural texturing and modeling. One of the most famous examples is the Perlin
noise [47], a superposition of multiple frequencies. Another noise function that
is extremely flexible is the Sparse Gabor Convolution [31]. It is determined by
using a convolution of white noise with the gabor kernel. Because convolutions
are simply a multiplication in the frequency domain, the Sparse Gabor Convolu-
tion noise allows for precise control over the appearance by modifying the kernel
in the frequency domain. Galerne et al. [22] present an optimized version they
call bandwidth-quantized Sparse Gabor Convolution and a way to automatically
estimate the parameters to look like exemplar Gaussian textures. To determine the
kernel parameters, they use weighted random sampling from alias tables. For their
interactive noise editor or for dynamic noise changes, they explicitly highlight that
it is important to be able to quickly construct the alias tables.

2.9. APPLICATIONS 25

2.9.7 Image-based Lighting
In photorealistic image rendering, Monte Carlo methods are used to estimate the
amount of incoming light on a surface. Light could originate from any direction,
so all directions can contribute to the final image. In order to speed up conver-
gence, it is advisable to use importance sampling, a technique where directions
that likely contribute more light are sampled with higher probability. A method to
achieve photorealistic lighting in a scene is to use real images such as environment
maps as a light source. Burke et al. [16] introduce bidirectional importance sam-
pling, a way to combine both reflectivity and distribution of lights. They account
for the fact that the reflectance function is different for each point on the surface by
estimating the light distribution at runtime. They then use importance sampling
from an alias table that is built from the light distribution in the scene. In con-
trast, multiple importance sampling by Veach [60] mixes samples from different
distributions instead of sampling the target distribution directly.

2.9.8 Machine Learning
Latent Dirichlet Allocation (LDA) [12,57] is a method for topic modeling. Given
a set of documents (usually text), it can determine and assign relevant topics. The
method assumes that each topic has a specific distribution of words that character-
ize it. It can then, for each document, provide a distribution of underlying topics.
The algorithm first assigns random topics to each word. It then iteratively scans
the documents, modifying their classification, until the process converges. During
classification, weighted random sampling from different distributions is needed.

Steele and Tristan [56] optimize LDA modeling on GPUs by choosing the
loop variables in a way that achieves coherent memory access (see Section 1.3.3).
Instead of assigning a document to each thread, the threads of a warp work to-
gether to first read data into the local memory. To sample, the authors use the
binary search method (see Section 2.1). Li et al. [33] review different sampling
algorithms for LDA modeling. While alias tables are fast to construct and fast
to sample, the authors use a slower approach. The reason is that at the time of
writing their paper, no parallel algorithm for constructing alias tables was known.

26 CHAPTER 2. RELATED WORK

Chapter 3

Algorithm Design

The following chapter introduces our newly developed split, pack and sampling
methods. For preliminary measurements, we use a Nvidia GeForce RTX 2080
GPU. The full hardware setup and extensive performance evaluations can be found
in Section 5.

3.1 Split Method

In the following section we introduce our optimized split methods for parallel
alias table construction. We denote the number of splits with the variable s.

3.1.1 Baseline Method

As a baseline, we transfer the original split algorithm by Hübschle-Schneider and
Sanders [27] (see Section 2.4.4) to the GPU.

3.1.2 Partial p-ary Split

The original split algorithm of Ref. [27] uses binary search to find the split po-
sitions. On GPUs, this works well because threads of the same group search for
neighboring splits. Therefore, the first search iterations take the same branches
and therefore access the same array elements. The GPU can coalesce these mem-
ory operations. The binary search method does not utilize the fact that GPUs have
multiple memory banks that can be accessed in parallel. In each iteration with
binary search, a group only reads from a single memory bank. We hereby intro-
duce a new search operation that we call partial p-ary search that utilizes multiple
memory banks.

27

28 CHAPTER 3. ALGORITHM DESIGN

p-ary Search For finding an item in a sorted list, Kaldewey et al. [30] evaluate p-
ary search on GPUs. With p-ary search, each iteration splits the search range into
p groups by looking at equally distributed memory locations in parallel. Instead
of halving the search range in each iteration, p-ary search can therefore reduce
the search range by 1/p. The GPU has 32 memory banks that can be accessed
in parallel, though. Even when p > 32 or there are bank conflicts, the GPU can
schedule memory operations efficiently. After each memory access the threads
synchronize and limit the search range to one of the sections. For GPUs, thread
synchronization is cheaper than memory access. When using the p-ary search
algorithm as described in the literature, all threads cooperate to search for one
single item. Still, Kaldewey et al. demonstrate a speedup for large numbers of
queries.

Partial p-ary Search For searching multiple items in a sorted list, we introduce
the new partial p-ary search algorithm. The method, to our knowledge, has not
previously been described in the literature. Our method can be used if each thread
group looks for multiple elements that are close together in memory. Our partial
p-ary search algorithm works in two phases. The first phase executes p-ary search
for all items of the group at once. In each iteration, instead of continuing the
search on one section, partial p-ary search reduces the search range to the smallest
and largest section that contain at least one of the searched elements. Therefore,
in contrast to p-ary search, a range of more than one section might be used for
the next iteration. The algorithm continues with that until it is no longer able to
reduce the search range. In the second phase, each thread looks for its own item
using ordinary binary search. The binary search operation only needs to search
the range determined by the p-ary search operation. We call the method partial
p-ary search because only the first iterations of searching are executed in p-ary
fashion before falling back to standard binary search. Algorithm 3.1 illustrates
the idea.

Application to Splitting When looking for splits during parallel alias table con-
struction, threads have to search for the number of heavy items to include. For our
new partial p-ary split algorithm, we use partial p-ary search instead of binary
search.

3.1.3 Uncompetitive Methods
The following paragraphs introduce additional approaches to splitting. Prelimi-
nary experiments show that the methods are uncompetitive, so we only describe
them briefly.

3.1. SPLIT METHOD 29

Algorithm 3.1: Partial p-ary search
function binarySearch(〈l1, ..., lN〉: List to search in,

x: Item to search, (a, b): Initial search range)
while a−b > 1 do

s := (a + b) / 2
if ls > x then b := s else a := s + 1

return a

function partialParySearch(〈l1, ..., lN〉: List to search in,
〈x1, ..., xp〉: Ordered items to search, t: Thread index)

(a, b) := (0, N)
〈s1, ..., sp〉: Pivots of all threads (shared)
〈r1, ..., rp〉: State of all threads (shared)

while range can be reduced do
st := a + t · (b−a)/(p−1)
if x0 > lst then

rt = smaller
else if xp < lst then

rt = larger
else

rt = within
a := sm where m is the maximum number with rm == smaller
b := sn where n is the minimum number with rn == larger

return binarySearch(l, xt, a, b)

30 CHAPTER 3. ALGORITHM DESIGN

Inverse split For each of the s threads, the baseline split method performs a
binary search for the number j of heavy items from h to include. To make use
of interleaved addressing, we present the inverse split algorithm. It starts one
thread for each item in h and checks them all in parallel, performing a simple
loop over all s splits. The idea is that having the number of heavy elements j fixed
throughout the kernel call allows for reducing memory operations. The method
is 60 times slower than the baseline method and makes the transferred memory
amount more than 500 times larger.

Parallel inverse split The parallel inverse split method extends on the idea of
inverse splitting. Using a 2-dimensional grid for the execution, each loop iteration
of k can be done in its own thread in parallel. Kernels therefore no longer need
any loops. The method is 70 times slower than the baseline method and increases
the transferred memory amount by a factor of 1500.

3.2 Pack Method

The following section introduces our new algorithms for packing an alias table
on the GPU. The pack step is similar to the sequential alias table construction but
starts at a specific position that is determined by the split.

3.2.1 Baseline Method

As a baseline, we transfer the original pack algorithm by Hübschle-Schneider and
Sanders [27] (see Section 2.4.4) to the GPU.

3.2.2 l and h in Shared Memory

The baseline pack method accesses the l and h arrays in a way that cannot be
coalesced. For the shared memory pack method, we first copy the interesting array
sections to shared memory. Copying can take place in an efficient interleaved
fashion. The threads that then execute the actual packing read l and h from
shared memory instead of the global memory. Because the shared memory region
is much faster, the inefficient access pattern has a significantly lower performance
penalty. Packing itself is, except for the accessed memory locations, identical to
the baseline method.

3.2. PACK METHOD 31

3.2.3 Weight in l and h Arrays

Using the original pack method by Hübschle-Schneider and Sanders [27], the l
and h arrays only store the index of the light and heavy items. The pack method
reads items from the arrays and then loads the corresponding weight from the in-
put array. Using the shared memory method above, access to the l and h arrays is
cheap but access to the weights array is still expensive and not properly coalesced.
Instead of only storing the item index in l and h, we now also store the weight of
the items. When partitioning the input items into the l and h arrays, the weights
array needs to be read anyway. We can therefore directly write the weights in a
coalesced way without additional read operations.

3.2.4 Chunked Loading

A disadvantage of the shared memory method is that it needs a large number of
splits because the shared memory is rather small. The idea of the chunked pack
method is to reduce the number of splits required by loading the l and h arrays
to shared memory in chunks as needed. As soon as all threads of a block have
no light or no heavy items left, the threads cooperate to load new data from the
global l and h arrays to shared memory in an interleaved way (see Algorithm 3.2).
Packing itself (packUntilChunkEnd) is similar to the baseline pack method,
differing only in the initialization of i, j and w, and an additional check for the
chunk size.

3.2.5 Uncompetitive Methods

The following paragraphs introduce additional approaches for packing alias ta-
bles. Because preliminary experiments show that they are uncompetitive, they are
only described briefly.

Alias Table in Shared Memory When writing the finished alias table, the global
memory is accessed inefficiently. We experiment with a method that writes the
finished alias table to the shared memory instead of the global memory. It then
copies the result back to the global memory in an interleaved fashion. A problem
of the method is that different threads of multiple groups can write to overlapping
sections of the alias table. Additionally, depending on the distribution of weights,
the memory range that is written to can be too large for the shared memory. Even
with optimal distributions that do not cause overlap of the alias table, preliminary
experiments show a worse performance than with the baseline method.

32 CHAPTER 3. ALGORITHM DESIGN

Algorithm 3.2: Chunked pack method
function chunkedPack()

while not all threads are finished do
copyChunks()
if current thread is not finished then

packUntilChunkEnd()

function copyChunks()
foreach worker thread do

if light items are mostly used up then
Copy light items to shared memory

if heavy items are mostly used up then
Copy heavy items to shared memory

function packUntilChunkEnd()
i, j, w: State like in the PSA method
Restore state of i, j, w
while true do

if light or heavy array ran out of items then
Store state of i, j, w
return

// Normal packing loop
if w ≤ W/N then

...
else

...
Mark thread as finished

3.3. PSA+ 33

Pre-filled Alias Table Hübschle-Schneider and Sanders [27] do not use the
weights array in the pack step. Instead, they initialize the alias table with the
weights. That way, the pack method can use memory access operations that are
less scattered. Preliminary experiments show that the pre-filled pack method is
roughly 15% slower than the baseline method and reads 40% more data from
global memory. This is caused by the fact that the plain weights array is packed
more densely than the alias table entries. In addition to the pack method itself
being slower, it also requires preprocessing to copy the weights.

Sweeping Pack Method The primary bottleneck of the pack method is its mem-
ory access. Both reading the l and h arrays and writing to the alias table cannot
be coalesced directly. For the sweeping pack method, instead of using the l and h
arrays to access the next light/heavy item, we use the original sweeping alias table
construction algorithm that reads the weights array linearly to search for the next
item (see Section 2.4.3). Preliminary experiments show that the method is more
than 3.7 times slower than the baseline method.

Reordering l and h Arrays Each thread reads a section of the l and h arrays
to fill the alias table. Because the arrays are sorted by item index, write operations
to the alias table are done in a way that cannot be coalesced. In order to make
concurrent memory access of the threads more local, we reorder the l and h arrays
before executing the prefix sum and the split kernel. Preliminary experiments
show that the method is up to 2.2 times slower than the baseline method.

Precomputed weight[l[i]] The pack method accesses the weights array
indirectly using weight[l[i]]. To speed up this memory access, we develop
a method that precomputes an array for both l and h that contains the weights di-
rectly. Preliminary experiments show that the pack step of the method is roughly
10% slower than the baseline method. While the method is able to decrease the
total memory read volume by 10%, the L1 cache hits are reduced by 20%. Addi-
tionally, the method needs more time for preprocessing.

3.3 PSA+
Hübschle-Schneider’s and Sanders’ algorithm [27] executes PSA+ before parti-
tioning into the l and h arrays. For that, it uses the sweeping pack method, which
is not efficient on GPUs. Packing greedily before partitioning is therefore infeasi-
ble. Packing greedily after partitioning would reduce the total time no more than
the time saved because of the prefix sums with fewer items. The idea of our PSA+

34 CHAPTER 3. ALGORITHM DESIGN

implementation is to perform greedy packing while partitioning. During partition-
ing, the arrays are already available in the fast shared memory. With this method,
we are able to reduce both the time of the prefix sum and the memory reads and
writes to the l and h arrays. Our PSA+ implementation does not perform any
additional access to global memory that would not have been done with PSA.

3.4 Sampling
In the following section we introduce our new GPU algorithms for drawing sam-
ples from an alias table.

3.4.1 Baseline Method
The baseline sampling method directly follows the algorithm by Walker [63] (see
Section 2.4). Preliminary experiments with constant table size N indicate that the
throughput scales with the number of samples. The reason is that items that are
sampled a second time might still be in the cache. The larger the fraction of the
table that fits into the cache, the higher the maximum sampling throughput.

3.4.2 Cached Sectioned Sampling
To increase the number of cache hits, we use a similar idea as in Algorithm R (see
Section 1.2.1). For uniform sampling, Algorithm R splits the items to be sampled
into multiple sections. Because each thread then accesses more local memory
areas, the method is more cache efficient. Like in Algorithm R, it is possible
to determine the sections without communication by using a PRNG. Splitting an
alias table is easier than splitting a generic weighted distribution because its rows
are sampled uniformly. Our new cached sectioned sampling algorithm calculates
a section and a number of samples to draw for each group. It then simply draws
samples from that section, relying on the cache to improve sampling throughput.
The size of the sections serves as a tuning parameter between the number of sec-
tions to calculate and the cache hit probability.

3.4.3 Cached Limited Sectioned Sampling
Even if the whole section would theoretically fit into the cache, the cached sec-
tioned sampling method only achieves a small increase in throughput. This is due
to multiple groups being scheduled to each SM and therefore evicting each other’s
cache entries. Our new cached limited sectioned method allocates (but does not
use) so much shared memory that only one single group can be executed on each

3.4. SAMPLING 35

SM. Like the cached sectioned method, the limited sectioned method allows for
using the section size as a tuning parameter.

3.4.4 Shared Memory Sectioned Sampling
Our new shared memory sampling algorithm explicitly copies each group’s sec-
tion to the fast shared memory in an interleaved fashion. Each group then only
uses the shared memory for actual sampling. The section size is limited by the size
of the shared memory, so it cannot be used as a tuning parameter. The method can
achieve higher peak speeds because it can sample with multiple groups per SM
but it has a higher startup overhead.

36 CHAPTER 3. ALGORITHM DESIGN

Chapter 4

Implementation

The following chapter explains how we implement the alias table construction and
sampling algorithms that are introduced in Chapter 3.

4.1 Class Structure
To provide a broad overview of the code structure, in the following section we
introduce the class structure.

Construction Our base class SamplingAlgorithm handles weight genera-
tion and provides a common interface. This allows for developing other sampling
algorithms. To have a comparison with a completely different method than alias
tables, we implement the rejection method of Bringmann and Larsen [14]. The
corresponding section of the class diagram is displayed in Figure 4.1.

Alias Tables The AliasTable class is parent to all alias table construction
methods on CPU and GPU. The class defines the table itself, as well as its valida-
tion. Because the different CPU methods differ significantly, they all are modeled
as individual classes (see Figure 4.2). The GPU implementations, which are the
core contribution of this thesis, are based on the PSA method [27] and therefore
all share a similar code structure. They can be modeled as a single base class
AliasTableSplitGpu that calls the different split and pack methods.

Split Methods Storing a kernel in a class is not supported by the nvcc com-
piler, so we model each split method as a C++ namespace. The class diagram still
visualizes the namespaces as classes because they are conceptually used as such.
The basic split method can be used from the CPU but all other methods are so

37

38 CHAPTER 4. IMPLEMENTATION

aliasTable

SamplingAlgorithm

#weights: safeArray
#W: double

#N: int
#storageLocation: StorageLocation

+preBuild()
+build()
+postBuild()

RejectionSampling

#A: safeArray<int>
#elementsPerItem: safeArray<int>

+build()

+benchmarkBuild(weightOfOutlier:double): float

SafeArray<T>

-data: T*
+size: size_t

+malloc(size_t:n,StorageLocation:location)
+free(location:StorageLocation)

Timer

+start()

+stop()
+elapsedMillis(): float

sampling

Figure 4.1: Diagram of general classes related to construction of sampling data
structures.

aliasTable

AliasTableSplit

+SplitConfig
+prefixWeightL: safeArray<double>
+prefixWeightH: safeArray<double>

+l: safeArray<int>
+h: safeArray<int>

+build()
+split()

+pack()

AliasTableSweep

+build()

AliasTableStack

+h: std::vector<int>

+l: std::vector<int>

+build()

AliasTableNp

-build()

AliasTableSplitGpu

+weightsGpu: safeArray<double>

+aliasTableGpu: safeArray<TableRow>

+preBuild()
+build()

+postBuild()
+split()

+pack()

packMethodsplitMethod

TableRow AliasTable

#aliasTable: safeArray<TableRow>

+verifyTableCorrectness()

Figure 4.2: Diagram of alias table construction classes. The CPU based methods
are modeled as individual classes.

closely tied to the GPU architecture that they only contain optimized GPU code.
The different split methods are displayed in Figure 4.3.

Pack Methods Similarly to the split methods, we develop different pack meth-
ods, each in its own namespace. Each pack method offers a GPU kernel and
internal helper functions. Our methods provide a pack method that is easy to
read for understanding the basic concept. The packOptimized method is op-
timized for performance and therefore harder to read. The class structure of the
pack methods is displayed in Figure 4.4.

Sampling We develop and optimize different techniques to perform the actual
sampling, all modeled as individual classes. The special method SamplerExpected
returns the multiplication of each item with its probability. It can be used to com-
pare the actual random samplers with their expected values. The classes are dis-
played in Figure 4.5.

4.1. CLASS STRUCTURE 39

splitMethod

SplitMethodBasic

+<<global>> splitKernel(): void

SplitMethodInverseParallel

+<<global>> splitKernel(): void
SplitMethodParySearch

+<<global>> splitKernel(): void

SplitMethodInverse

+<<global>> splitKernel(): void
BinarySearchChecker

+status: int
+sigma: double

+check(): void

Figure 4.3: Diagram of different split methods for alias table construction.

packMethod

PackMethodBasic

+pack(): void

+packOptimized(): void
+<<global>> packKernel(): void

PackMethodBasicShared

+copyToSharedMemory(): void

+<<global>> packKernel(): void

PackMethodSweep

+pack(): void
+packOptimized(): void

+<<global>> packKernel(): void

PackMethodNoWeights

+pack(): void
+packOptimized(): void

+<<global>> packKernel(): void

PackMethodNoWeightsSharedTable

+pack(): void

+packOptimized(): void
+<<global>> packKernel(): void

PackMethodNoWeightsShared

+pack(): void
+packOptimized(): void

+<<global>> packKernel(): void

Figure 4.4: Diagram of different pack methods for alias table construction.

sampling

Sampler

+name(): String

+benchmarkSampling(): double
+getSamplingDistribution(numSamples:int): std::vector<int>

SamplerGpu

+samplingAlgorithm: SamplingAlgorithm

+benchmarkSampling(): double

SamplerRejection

+benchmarkSampling(): double

SamplerExpected

+benchmarkSampling(): double

SamplerCpu

+benchmarkSampling(): double

SamplerGpuSectionedShared

+benchmarkSampling(): double

SamplerGpuSectioned

+benchmarkSampling(): double
+calculateSection(): SamplerSection

SamplerGpuBasic

+benchmarkSampling(): double

SamplerSection

+start: int
+end: int

+numSamples: int

Figure 4.5: Diagram of different methods to perform weighted sampling.

40 CHAPTER 4. IMPLEMENTATION

4.2 Preliminaries

In order to develop test cases, we implement different alias table construction
methods on the CPU. For an explanation of the algorithms, see Chapter 2. We
also implement different prefix sum algorithms on the GPU.

Vose’s Construction on the CPU The construction by Vose [62] is based on
stacks. The most important difference of our implementation to the paper is float-
ing point inaccuracies. If there are no light items left and the last remaining heavy
item is slightly heavier than W/N , the algorithm tries to retrieve a light item that
does not exist. To circumvent the problem, we handle remaining items separately
as soon as one of the queues runs out of items, like in the implementation by
Hübschle-Schneider and Sanders [27].

Sweeping Construction on the CPU The sweeping alias table construction [27]
can be used to construct alias tables on single-threaded CPUs without a need for
additional data structures. The method is the fastest of our single-threaded CPU
implementations, even though in Ref. [25], the stack construction is the fastest.
Because our focus lays on the GPU, we do not further investigate that behavior.

Splitting Construction on the CPU For the PSA construction [27], our CPU
implementation generates all the necessary data structures for the parallel case but
then executes the actual steps sequentially. It is easier to debug than GPU-only
solutions and, because CUDA allows for sharing code between CPU and GPU,
the implementation can be re-used on the GPU.

Prefix Sum Prefix sums play a major role in the PSA method. We therefore
implement and compare the basic and the work-efficient method on the GPU. The
methods are explained in Section 1.4. We also develop an in-place variant of the
work-efficient prefix sum algorithm for arbitrary array lengths. This is achieved
by calculating the prefix sum in batches of blockSizek. Nvidia’s cub library ships
with a prefix sum implementation that uses the work-efficient algorithm. The de-
velopers pay special attention that the memory access is aligned with the hardware
banks [2]. For tuning parameters like the block size, the developers implement
case distinctions for different hardware architectures. The cub library is faster
than our own implementation by an order of magnitude. For constructing alias
tables, we therefore only use cub’s prefix sums.

4.3. PARTITIONING OF LIGHT AND HEAVY ITEMS 41

4.3 Partitioning of Light and Heavy Items
The split and pack methods both need an array of references to the positions of
light items l and an array of references to the position of heavy items h. The
following section explains our considerations for that process.

Classification Kernel As a baseline method, we classify items using a dedicated
kernel. The kernel checks the weight of each item and then either writes 0 (light
item) or 1 (heavy item) to a temporary array. After calculating a prefix sum P of
the temporary array, we use it to determine the locations of items in the l and h
arrays. Because each item is either light or heavy, a single prefix sum is enough
for both arrays. A heavy item i is written to h[Pi] and a light item to l[i− Pi].

On-demand Classification Instead of explicitly calculating a classification ar-
ray, we use a modified iterator to classify items on-the-fly during the prefix sum
calculation. Additionally, we pre-calculate the division W/N on the CPU instead
of in every thread on the GPU. In total, we achieve a speedup of 2.5 over the
baseline method.

Cub::DevicePartition We achieve an additional speedup of 1.7 by using the
cub library’s partition function. We combine the ideas of the paragraphs above by
reading the weights array and classifying items on-demand during partitioning, as
well as using a pre-calculated W/N value. The library method inverts the second
partition, so the sentinel elements (see Ref. [27]) need to be handled separately.

4.4 Split Method
In the following section we describe implementation details of our new split algo-
rithms. The algorithms themselves are introduced in Section 3.1. We continue to
denote the number of splits to be calculated with the variable s.

4.4.1 Baseline Method
As a baseline, we transfer the original split algorithm from Ref. [27] to the GPU.
For that, we start one GPU thread for each split, like it is described in the original
paper. For a small number of splits, starting s groups of size 1 is fastest because
it allows better load balancing between multiple SMs. When using an optimized
packing method with a large number of splits (introduced in Section 3.2.3), the
method can profit from a large group size because the first memory accesses dur-
ing binary search are the same and can be shared between all threads.

42 CHAPTER 4. IMPLEMENTATION

Algorithm 4.1: Branched memory
reads
int x;
if (condition)

x = array[a];
else

x = array[b];

Algorithm 4.2: Optimized branched
memory reads
int *xPtr;
if (condition)

xPtr = array + a;
else

xPtr = array + b;
int x = *xPtr;

4.4.2 Partial p-ary Split
The partial p-ary split method is specifically designed to be efficient on GPUs, so
no major changes to the pseudocode in Section 3.1 are needed. Each thread stores
the check results in an array that is located in the shared memory. Looking through
those check results for determining the new boundaries a and b is then performed
in parallel. Preliminary experiments show that a good threshold to switch to binary
search is when the search range of p-ary search cannot be reduced to less than p/8.

4.5 Pack Method
The following section describes implementation considerations for the pack algo-
rithms that are introduced in Section 3.2.

4.5.1 Baseline Method
For the baseline method, we build upon the CPU implementation. The origi-
nal method as it is introduced by Hübschle-Schneider and Sanders [27] performs
memory access in both of the if branches. Our optimized version only performs
pointer arithmetics in branches. The actual memory operation is then done for
both branches at once. Algorithms 4.1 and 4.2 illustrate the idea of moving mem-
ory reads. The optimization makes the method up to two times faster.

4.5.2 l and h in Shared Memory
For the shared memory method, we start groups with 512 threads. Those threads
cooperate to copy the interesting sections of the l and h arrays to the shared mem-
ory in an interleaved way. After that, most of the threads terminate, which allows
the GPU to free up resources. Only the threads of one single warp then perform

4.5. PACK METHOD 43

the actual packing. The shared memory size per group is limited. To make it
possible to copy the section’s data to the shared memory, the split method needs
to generate significantly more sections than when using the baseline method. We
query the hardware parameters of the GPU to decide how many splits are needed
to still fit the arrays into the shared memory.

4.5.3 Weight in l and h Arrays
By using C++ macros, we make it possible to switch between l and h with and
without weights. Building upon the shared memory method, the weights are writ-
ten during partitioning and then copied to the shared memory for packing.

4.5.4 Chunked loading
The chunked pack method reduces the number of splits required by loading chunks
of the l and h arrays to shared memory on demand. We copy data from the global
memory when either the l or h chunk is used up. If the other chunk is used up
by more than 50%, we also load more data for that one. This avoids threads run-
ning out of data early. In preliminary experiments, we find the optimal number
of splits to be around 10 · |Threads|. Because we copy new chunks even if the
items are not used up, some leftover items are overwritten. To reduce the num-
ber of global memory read operations, a modification of the algorithm re-uses
the already loaded items and moves them to the beginning of the shared memory
region. The performance of the modification is worse than the original chunked
method because it requires more synchronization and adds more branches that are
not entered by all threads. We therefore do not reuse items and simply load the
whole chunk from global memory. Because the memory banks can be accessed
in parallel, this is not a big problem. Using asynchronous copy operations is not
covered here but looks promising with preliminary tests showing a 5% speedup.

4.5.5 Uncompetitive methods
In the following section, we present our implementations and optimizations of
pack methods that are uncompetitive.

Alias Table in Shared Memory A problem of storing the final alias table sec-
tions in shared memory is that threads of multiple groups can write to overlapping
sections of the alias table. Additionally, depending on the distribution of weights,
the memory range that is written to can be too large for the shared memory. Our
implementation for the method is only a proof-of-concept that assumes that the
table can be packed without any overlap and is still slower than the baseline.

44 CHAPTER 4. IMPLEMENTATION

Pre-filled Alias Table The alias table’s rows are stored as structs with weight,
alias and padding, while the input weights are a tightly packed array. The fastest
method to copy the input weights to the table is to copy them to the GPU normally
and then use a kernel that fills the table. An alternative, a memcopy2D operation
with spread, is significantly slower. This applies to both copying from the host to
the device and copying from the device to the device.

Sweeping Pack Method On GPUs, even when a loop is only executed on one
thread, all other threads of the same warp have to wait. This makes the sweeping
pack method 4.5 times slower than the baseline pack method. We also develop
an optimized version where the loop is shared for both of the if branches. That
method still is 3.7 times slower than the baseline method.

Reordering l and h Arrays For reordering, we use a number of memcpy calls
(device to device). We perform preliminary experiments with different arrange-
ments, for example round-robin or random distribution. The performance of the
reordered pack method is, depending on the weight distribution, between 1.04
times and 2.2 times slower than the baseline method.

Precomputed weight[l[i]] For constructing the precomputed array, we
start a kernel that loads items from the l and h arrays in an interleaved way. The
simple kernel directly writes to a new array.

4.6 PSA+
The PSA+ algorithm (see Section 2.4.5) simultaneously speeds up every step of
the PSA algorithm because it reduces the number of items that need to be taken
care of. It greedily packs parts of the alias table without building the full data
structures like prefix sums. The remaining items that cannot be packed greedily
are then handled with the normal PSA algorithm.

Custom Partition Our PSA implementation partitions items from the input dis-
tribution to the l and h arrays using the cub library. For PSA+, we implement
our own partitioning step to be able to directly pack the items there. The algo-
rithm reads the weights array in an interleaved fashion and determines if items
are light or heavy. It then uses a group-local atomic variable to determine indices
for storing items and weights in a shared memory array. After that, the items are
written back to the global memory in an interleaved fashion. The performance of
our re-implementation is similar to the method from the cub library.

4.7. SAMPLING 45

Pack while Partitioning Before writing the l and h arrays back to the global
memory, we can now perform greedy packing. We do that by assigning each
thread the same number of light and heavy items. After packing greedily, the
progress of the individual threads is stored. All threads of a group then work
together to only copy items back to the global memory that are not handled yet.
A complication of PSA+ is that the greedy packing step can leave some items
partially packed, meaning that some of a heavy item’s excess weight is already
distributed to light items. Using a competitive pack method, the items in the l
and h arrays are saved together with their weight (see Section 3.2.3). For the last
remaining heavy item, our PSA+ algorithm updates the item’s weight, re-classifies
it and then write it to either the light or the heavy array. This avoids the need for
an additional data structure for partially packed items.

4.7 Sampling

In the following section we describe precautions to be taken when implementing
our new sampling algorithms.

4.7.1 Random Number Generator

For sampling, a random number generator is the most important requirement.
Some generator algorithms are presented in Section 1.1. To be able to compare
sampling throughput between multiple generators, we use C++ templates that al-
low for exchanging the generator implementation. We implement templates for
the xorwow and Mersenne Twister generators from Nvidia’s curand library.

Mersenne Twister internally uses synchronization, so either all threads of a
group must draw a random number from the same state or none. While this is not
a problem for the baseline sampling method, it causes problems with determining
the sections for sectioned sampling (see Section 3.4.2). To split up the table, we
repeatedly need to set a seed during kernel runtime. We therefore cannot use the
Mersenne Twister generator for sectioned sampling.

Preliminary experiments show that plain xorwow (without an alias table) can
sample with around 26 GSamples/s and Mersenne Twister can sample with around
25 GSamples/s. These numbers can therefore be seen as an upper bound for alias
table sampling. We execute our final benchmarks with the faster and more flexible
xorwow generator.

46 CHAPTER 4. IMPLEMENTATION

40

80

120

100 200
Threads

G
ro

up
s

(a) Mersenne Twister

40

80

120

0 100 200 300 400 500
Threads

G
ro

up
s

1

2

3

4

GSamples/s

(b) Xorwow

Figure 4.6: Sampling throughput of the baseline method, depending on the num-
ber of groups and the number of threads per group of the CUDA grid. Uniform
random weight distribution with a table size of 106 items.

4.7.2 Baseline Method

The baseline method follows the algorithm described by Walker [63]. Each thread
draws samples independently of other threads. On CPUs, reducing the number of
branches (and therefore jumps) is vital. Contrarily, our tests for sampling on GPUs
show that this is less important. Memory access, which is the bottleneck of the
method, is only performed in one of the branches. To make sure that the compiler
does not optimize away drawing the samples, we sum up the samples (modulo 2)
in a local variable.

Group size For determining the grid size of the kernel, we perform preliminary
experiments. Figure 4.6 shows the influence of the number of groups and number
of threads on sampling throughput with the baseline method. We observe peaks
for group sizes that are multiples of the number of SMs in the GPU. The xorwow
generator reaches its maximum throughput with 46 blocks and 192 threads each.
The Mersenne Twister generator reaches its maximum throughput with 46 blocks
and 256 threads each.1 For Mersenne Twister, the number of threads per group is
limited to at most 256. For the evaluations in Chapter 5, we therefore use above
grid sizes.

1The measurements are different to the GTX 1650 Super, where the best group size differs
more between the PRNGs. There, the maximum for xorwow is achieved at 19 blocks and 256
threads each. The maximum for Mersenne Twister is achieved at 136 blocks and 32 threads each.

4.8. PERFORMANCE OPTIMIZATION 47

One-PRNG-per-kernel-call-per-thread Xorwow needs to generate PRNG sub-
sequences in each thread, which has more startup overhead than using indepen-
dent seeds. The One-PRNG-per-kernel-call-per-thread (pK-pT) scheme (see Sec-
tion 1.1.2) allows for skipping the generation of subsequences. We implement the
scheme using SHA1 and MD5 hashes for seed generation. Preliminary experiments
show that this yields a throughput improvement of 0.2% for drawing from alias
tables. Because the improvement is not significant but increases the complexity
of random number generation, we do not develop the approach further.

4.7.3 Sectioned Sampling Methods
Because each CUDA group runs on a single SM, all its threads share the same L1
cache. We therefore split the alias table by group, not by thread. For determining
the sections, we start with the whole alias table as one large section and then
recursively split it in half. We then randomly determine how many samples need
to be drawn from each half. While an implementation of the binomial distribution
is available in the C++ standard libraries, it is not available in Nvidia’s curand
library. For N > 30, the normal distribution is a good approximation of the
binomial distribution [37] and computationally much easier to evaluate. As N �
30 always holds in our case, we use normally distributed random deviates. We
choose the size of the sections so that they completely fit into the L1 cache. The
RTX 2080 uses 96 kB of L1 cache [1], which is enough for 6144 rows. The
number of groups must therefore be large (well over 1000 even for 107 items) to
achieve optimal cache utilization.

4.8 Performance Optimization
In the following section we describe general performance improvements that do
not change the algorithms conceptually. Because the changes are responsible for
significant speedups, we still document them here.

4.8.1 Managed Memory Allocations
Using manual instead of managed memory transfer is key to consistently achieve
good performance. This is because optimizations in one kernel’s memory access
can negatively affect other kernel’s running time when using managed allocations.
These allow for direct sharing of memory address regions between CPU and GPU
with automatic transfers when accessing memory on the other device. This leads
to unpredictable behavior. Using explicit memory transfers alleviates this at the
cost of increased design complexity.

48 CHAPTER 4. IMPLEMENTATION

Algorithm 4.3: Memory access
without compiler aids
TableRow row;
rows[index] = row;

STG.E.64.SYS [R4] R52
STG.E.64.SYS [R4+0x8] R2

Algorithm 4.4: Memory access with
compiler aids
TableRow row;
reinterpret_cast<int4>(&rows[index])

= *reinterpret_cast<int4*>(&row);

STG.E.128.SYS [R12] R4

4.8.2 Compiler Aids for Memory Access

Preliminary versions2 of the pack method write too much data to the L2 cache. A
reason for this excessive amount can be found when inspecting the generated as-
sembler code using Nvidia NSight Compute. Assigning the alias table rows is not
fully optimized by the compiler and generates two 64 bit store operations instead
of a single 128 bit store operation. Using two 64 bit transactions is inefficient be-
cause the GPU’s memory uses transactions of 32 bytes. When only storing 64 bit
without coalescing, 75% of the bandwidth is wasted. By casting the TableRow
struct to an int4, we trick the compiler into using one single 128 bit store oper-
ation instead. Casting only works because the alias table array is properly aligned
in the memory, which is ensured when allocating. Algorithms 4.3 and 4.4 give an
example for the C code we use and the assembler code that is generated from it.

Memory transfer measurements

To determine the effect of the compiler aid, we provide preliminary measurements
of the memory transfer volume in the paragraphs below. For construction, we use
the p-ary split method and the shared memory pack method withN = 5·107 items
and s = 580.000 splits. The measurements are performed on a GTX 1650 Super.

Split Method The split method theoretically writes s · 16 B = 9 MB to the
global memory. Our measurements show a transfer of 13 MB (18 MB to the L2
cache). The split method’s global memory read operations are performed by the
search operation. In each iteration, it reads 4 double values (prefix sum of light
and heavy items in two positions). Each of the s threads roughly needO(log(|h|))
steps, so an estimate for the theoretical read volume is log2(0.5 · N) · s · 4 · 8 B
+s · 8 B ≈ 434 MB. The actual amount that is read from the global memory
is 1050 MB (620 MB to the L2 cache). The difference can be explained with

2Measurements of versions without the optimization are not included in this document.

4.8. PERFORMANCE OPTIMIZATION 49

the fact that the GPU uses memory transactions of 32 bytes, so large parts of
the transactions are not actually used. The cache hit rate is rather small (4% L1,
15% L2) but that is expected for a search operation that only accesses items once.
While the compiler aid can be applied to reading the l and h array’s items, the
effect is insignificant.

Pack Method The pack method theoretically needs to write the alias table once,
resulting inN · 16 B = 762 MB of global memory writes. Our measurements show
total writes to the global memory of 849 MB. The amount of memory written to
the L2 cache in our preliminary versions3 is 3075 MB and therefore significantly
higher. Using the compiler aids, we are able to reduce this to 1490 MB, which
also makes the pack operation nearly 50% faster. This is still double the expected
value. The reason again are the 32 byte transactions of the GPU. Because threads
of the same warp write to unrelated memory locations of the alias table, the oper-
ations cannot be coalesced and half of the transactions’ data is wasted. The pack
method reads 9 MB of splits and the complete l and h arrays with weights, re-
sulting in N · 16 B = 762 MB from global memory. The measured amount from
the global memory is 778 MB and the amount from the L2 cache is 774 MB. The
cache hit rate (66% L1, 67% L2) is significantly higher than with the split method.
The compiler aids for memory access reduce the SOL value4 of the pack method
from 61% down to only 37%. Even though the SOL value is decreased in this
case, the performance gets better. The reason is that we write the same data but
with more efficient operations.

Sampling When using the compiler aids, the baseline xorwow sampling method
gets up to 2 times faster and the cached sectioned method 30% faster. The sec-
tioned shared method is not influenced by the change because most of its memory
operations are served from shared memory. Drawing 109 samples from an alias
table of size 106, the baseline sampling method reads 79 GB of data from the
global memory. The cached sectioned method reduces that to 77 GB. The shared
memory method reduces the data transfer by two orders of magnitude down to 340
MB. The raw table size is 106 · 16 B = 15 MB. The rest of the memory operations
are caused by the PRNG initialization.

3Measurements of versions without the optimization are not included in this document.
4The speed of light value compares the achieved memory throughput with the theoretical max-

imum. Usually, a larger SOL value is better.

50 CHAPTER 4. IMPLEMENTATION

4.8.3 Multiple Streams
A common performance improvement that is suggested in Nvidia’s best practices
guide [3] is to use multiple streams. Streams allow for executing different kernels
at the same time instead of serializing them.

Prefix sums Using the competitive alias table construction methods, only the
prefix sums can be executed in parallel. Profiling an implementation with multi-
ple streams shows that the GPU still executes the prefix sums nearly serialized.
The time improvement is measurable but below 1%. Because the support for mul-
tiple streams complicates the code without a real benefit, we do not use multiple
streams for prefix sums in our implementation.

Interleaved Split and Pack Nvidia’s best practices guide [3] also suggests to
use parallelism by performing work in an interleaved fashion. When implement-
ing an algorithm that consists of two tasks, the usual pattern is to first process
all items with one task and then all with the other task. In some cases, it can be
more efficient to run the first task with a few items at a time and then already run
the second task in parallel. When using our shared memory pack method, a large
number of splits needs to be calculated. We implement additional parallelism by
changing the split and pack methods to only look at a small number of splits at
a time. After 10% of the splits are done, we record an event which then triggers
the pack step of that section to run on another stream. Preliminary experiments
show that even though the method actually executes in parallel, it does not make
the total construction time faster.

4.8.4 GPU Architecture Parameters
Hard-coded values like block dimensions or actual worker threads have an ef-
fect on the performance. Optimizing such parameters is an ongoing research
topic [19]. We choose a simple method to optimize our parameters using a Python
script. Iteratively, the script modifies one of the parameters at random. It then
recompiles5 and tests the new version. If the new parameters lead to better perfor-
mance than the previous minimum, it updates the parameters. If the performance
is worse, it keeps the old ones. Following the idea of simulated annealing, the
script slowly decreases the step size.

Our optimizer script is able to achieve significant speedups by fine-tuning only
a few parameters. Table 4.1 shows measurements using 107 items with the shared

5Making the values configurable at run-time decreases the performance because the values
need to be passed to every kernel.

4.9. VERIFICATION 51

Distribution SMW6 Group size Time
p-ary Split Pack PSA+

Power law7 64 512 512 512 – 3.87 ms
32 547 523 552 – 3.46 ms

Uniform weights 64 512 512 512 – 4.90 ms
24 519 510 551 – 3.91 ms

Uniform PSA+ 64 512 512 512 512 3.33 ms
11 532 512 490 512 2.75 ms

Table 4.1: Results of the GPU architecture parameter optimization.

memory pack method and partial p-ary split. To our surprise, often values that
are not multiples of the warp size work best. The number of worker threads that
actually pack items (in contrast to just help with copying) has by far the most im-
pact. Unfortunately, the best parameters depend on the input distribution. While
it is possible to achieve a speedup of up to 1.25 for uniform random weights by
fine-tuning the parameters, other distributions get slower when using that config-
uration. The parameters therefore need to be optimized for the actual use-case.
Repeating the optimization process of the uniform weight distribution multiple
times yields similar parameter values.

4.8.5 Cache configuration
Because L1 cache and shared memory are located in the same hardware area,
CUDA allows for expressing a preference for the cache configuration. Developers
can choose to dedicate a higher portion of the available storage to the L1 cache
or to the shared memory. The limited sectioned method is the only one that is
influenced significantly, so we use a manual cache configuration for its kernel.

4.9 Verification
In the following section we describe different checks and how they help us to
ensure that table construction is correct and sampling is unbiased.

Manual Comparison For a manual test, we assign a weight distribution that
is easy to recognize and check for humans. We then generate the alias table,
sample from it on the CPU and plot the resulting distribution. This provides a

6Number of shared memory worker threads that perform the actual packing.
7Shuffled power law distribution with exponent=1.

52 CHAPTER 4. IMPLEMENTATION

first, quick look at the behavior of the generated table. Many of the problems
during development can be debugged by visualizing the sampled distribution, for
example when experiencing sections that are skipped during construction.

Summing up the Table Entries In order to automatically verify that an alias
table is correct, we sum up the weights of items and aliases. We then compare the
result with the input distribution. This allows for ensuring table validity without
manual comparisons. These unit tests are executed automatically every time a
table is constructed in debug mode. Additionally, we test the construction with
various weight distributions on every program run.

Sampling Distribution To test the sampling step on the GPU, we pass an array
to the sampling method and count the actual sampled items. To avoid a perfor-
mance impact, the test is removed in release builds using macros. For an au-
tomated unit test, we verify that the maximum difference between expected and
sampled distribution is small enough. A proper statistical Kolmogorov-Smirnov
test [38] on the sampled and expected distribution results in p-values of 0.9959
(D=0.026, 106 samples), 0.6654 (D=0.046, 105 samples) and 0.1725 (D=0.07,
104 samples). We can therefore not assume that the distributions are different.

Chapter 5

Evaluation

In the following chapter we perform measurements comparing our newly devel-
oped methods among each other, as well as with the parallel CPU implementation
by Hübschle-Schneider and Sanders [27].

5.1 Experimental Setup
For the evaluation, we use multiple different machines, including standard con-
sumer hardware. The machines are specified in the following paragraphs. Unless
otherwise noted, our measurements are performed on machine A, which is consis-
tently 2 times faster than on Machine B. We therefore only provide measurements
on Machine B for the rare cases where the machines exhibit different behavior.
The GPU code is compiled using nvcc on CUDA 11.1. The measurements are
performed by using GPU timers, which have a negligible impact on the perfor-
mance.

Machine A (RTX) The GPU that we use for most measurements is a Nvidia
GeForce RTX 2080, which has 2944 CUDA cores and 8 GB of global memory
with up to 448 GBps of memory bandwidth [1]. The driver version is 455.45. The
host features an Intel Core i5-750 processor with 4 cores and 4 threads, as well as
2 memory channels [28]. The operating system we use is Ubuntu 16.04.

Machine B (GTX) For comparison, we also perform measurements on a ma-
chine that is equipped with a cheaper Nvidia GeForce GTX 1650 Super. The card
has 1280 CUDA cores and 4 GB of global memory with up to 192 GBps of mem-
ory bandwidth [45]. The driver version is 450.66. The host features an Intel Xeon
1230-v3 processor with 4 cores and 8 threads, as well as 2 memory channels [29].
The operating system we use is an up-to-date Arch Linux as of 2020-10-07.

53

54 CHAPTER 5. EVALUATION

25

50

75

100

2500 5000 7500 10000
Number of splits

D
ur

at
io

n
pe

r
sp

lit
 (

ns
)

Split method

Baseline

P−ary search

Figure 5.1: Time needed for determining a single split using different split algo-
rithms. Using 107 input items with uniform random weights.

Machine C (Intel) For providing comparisons with a powerful CPU, we use a
machine with four Intel Xeon Gold 6138 CPUs (4 × 20 cores with 160 hyper-
threads) and 256 GB of DDR4 RAM [25]. The machine does not feature a GPU
and runs Ubuntu 20.04. The code is compiled with g++ 9.3.0.

Machine D (AMD) Another machine with a powerful CPU that we measure on
has a single-socket AMD EPYC 7551P CPU (1× 32 cores with 64 hyper-threads)
and 256 GB of DDR4 RAM [25]. The machine does not feature a GPU and runs
Ubuntu 20.04. The code is compiled with g++ 9.3.0.

5.2 Construction

In the following section we evaluate the performance of alias table construction
on the GPU using our new algorithms.

5.2.1 Splitting

A comparison of our split methods is plotted in Figure 5.1. On the x-axis, the
figure shows s, the number of splits. The inverse methods are omitted as they are
entirely uncompetitive. Independently of the number of splits, the partial p-ary
split method is up to 1.5 times faster than the baseline method. This reduces the
running time of the overall shared memory table construction by up to 15%.

5.2. CONSTRUCTION 55

0.6

0.9

1.2

1.5

5.0e+06 1.0e+07 1.5e+07 2.0e+07
Number of items

D
ur

at
io

n
pe

r
ite

m
 (

ns
)

Pack method

Baseline

Chunked shared memory

Pre−filled table

Pre−filled table (Shared memory)

Shared memory

Figure 5.2: Construction duration for a single item using different pack algo-
rithms. The time includes both splitting and packing. Items use uniform random
weight.

Method Duration per item
Sweeping 2.41 ns
Precomputed weight[l[i]] 1.55 ns
Re-ordering l and h 1.58 ns

Table 5.1: Construction duration for a single item using uncompetitive methods.
The input is 107 items with uniform random weights.

5.2.2 Packing

In Figure 5.2 we compare the construction speed between our pack methods. Be-
cause the pack method has an influence on the number of splits to calculate, the
figure shows the full construction time including p-ary split and the respective
pack method. The shared memory methods exhibit a clear improvement over
the methods that access the global memory directly. Uncompetitive methods are
omitted from the plot for better readability but are listed in Table 5.1.

l and h in Shared Memory The shared memory pack method achieves a per-
formance improvement over the baseline method even if it requires to spend more
time in the splitting step. Because of the better alignment, the method reduces the
total amount of data that is read from the L2 cache by 57%.

Weight in l and h Arrays The pack method with weights in l and h achieves
a speedup of 15% in comparison to the shared memory method without weights.
The pack step gets 2 times faster while the split and partition steps get 2 times

56 CHAPTER 5. EVALUATION

slower. The reason for that is that including the weights increases the size of the
elements of l and h items from 8 bytes to 12 bytes (+4 padding). This means
that the shared memory can hold fewer items and therefore more splits need to
be calculated. The partition method gets slower because it needs to perform more
memory write operations.

Chunked Method The chunked pack method itself is slower than the shared
memory method because it uses memory access that can be coalesced not as well.
At the same time, the method speeds up the splitting step significantly because
the section size is no longer limited by the available shared memory. In total,
the chunked pack method is slightly faster than the shared memory method for
large N . On the GTX 1650 Super, this difference is a bit more visible. The chun-
ked method is closer to the original idea of Hübschle-Schneider and Sanders [27]
where the number of splits matches the number of executing threads.

5.2.3 PSA+

In cases where items have uniform random weights, PSA+ can greedily handle
around 90% of the items. Therefore, the standard PSA method only needs to be
executed on a fraction of the input data. A reason why Hübschle-Schneider and
Sanders’ [27] algorithm can pack a higher fraction of the items greedily is that our
section size for packing greedily is limited by the shared memory and therefore
rather small. We introduce a threshold for the number of light and heavy items that
are needed before greedy packing is attempted. This makes it possible to reduce
the performance impact of distributions where greedy packing is not promising.
Using uniform random weights with 107 items, PSA+ achieves a speedup of 1.5 to
PSA and using a shuffled power law distribution with exponent 0.5, it achieves a
speedup of 1.4. On the GTX 1650 Super, it achieves a speedup of up to 2.2. When
using a higher value for the exponents or not shuffling the input, our PSA+ imple-
mentation gets slower. Figure 5.3 shows a profiling output comparing PSA and
PSA+ with different weight distributions and N = 107 items. While PSA+ does
not work for all distributions, it achieves significant speedups when supported.

5.2.4 Weight Distributions

Construction speed is strongly influenced by the weight distribution. For uniform
random weights, the split kernel reads up to 7 times more data from the device
storage than for the power law distribution. The more balanced the number of light
and heavy items, the more items need to be considered in the split step’s search
operation. Using the chunked pack method, the influence of the split method can

5.2. CONSTRUCTION 57

PSA+

Chunked

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

(a) Uniform weights

PSA+

Chunked

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

(b) Power law (exponent=0.5, shuffled)

PSA+

Chunked

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

Step Sum Partition/PSA+ Prefix sum Split Pack

(c) Power law (exponent=1)

Figure 5.3: Construction duration of an alias table of size 107. Comparison of
different weight distributions with either PSA or PSA+.

0

1

2

3

4

0% 25% 50% 75% 100%
Fraction of heavy items

To
ta

l b
ui

ld
 d

ur
at

io
n

(m
s)

(a) Heavy items at random positions

0

1

2

3

4

0% 25% 50% 75% 100%
Fraction of heavy items

Step

Pack

Split

Prefix sum

Partition

Sum

(b) Heavy items sorted to the beginning

Figure 5.4: Construction duration of an alias table with 107 items and varying
fraction of heavy items. Because we use the chunked shared method, the variance
of the split duration is rather small.

58 CHAPTER 5. EVALUATION

PSA+

Chunked

P−ary split

Weight in l/h

Shared memory

DevicePartition

Initial

0 ms 5 ms 10 ms 15 ms

Step Sum Partition Prefix sum Split Pack

Figure 5.5: Construction duration of different methods that are developed in this
thesis. Measurements taken from a table of size 107 with uniform random weights.

be mostly eliminated. The pack step is dependent on the fraction of heavy items
only if the items are located at random positions throughout the input weights.
Figure 5.4 shows measurements with items of weight either 1 or 2, where the
fraction of items with weight 2 is varied.

5.2.5 Progress during this Thesis

Over time, the performance of our algorithms improves significantly. Between our
first implementations and the baseline, we achieve a speedup of 10 using mem-
ory access and group dimension optimizations. We then change the algorithms
conceptually to improve the performance. Figure 5.5 shows the milestones of
achieving an additional speedup of 4 to the baseline.

5.2.6 Comparison with Hübschle-Schneider and Sanders

As displayed in Table 5.2, our GPU-based chunked method achieves a speedup of
34 over the CPU-based PSA method [27].1 Figure 5.6 shows that our method is
faster even when the input weights are present on the host and the resulting alias
table is transferred back to the host. In fact, our construction method is faster than
the time it takes to transfer a constructed alias table to the GPU.

1For the speedup we compare the RTX 2080 card on machine A with the CPU of machine B.
Machines A and B are both consumer devices but the CPU of machine B is faster.

5.2. CONSTRUCTION 59

Method Machine Build duration
107 108

Ref. [27] C – 83.1 ms
D – 151.5 ms
B (CPU) 136.1 ms 1126.7 ms

Ours A (RTX 2080) 4.0 ms 32.8 ms
B (GTX 1650 Super) 8.1 ms –2

Table 5.2: Construction duration comparison with different machines and
Hübschle-Schneider’s method [27]. Input are 107 and 108 items with a shuffled
power law distribution.

0

5

10

15

0e+00 2e+06 4e+06 6e+06
Number of items

D
ur

at
io

n
pe

r
ite

m
 (

ns
)

Method

CPU (by LHS, 4 threads)

GPU with transfer to device

GPU with transfer to device and back

GPU without transfer

Figure 5.6: Construction duration of a single item when including or excluding
memory transfers. Comparing uniform random weights with different table sizes.

5.2.7 Struct-of-Arrays

Unless otherwise noted, we use array-of-structs storage for the alias tables be-
cause Hübschle-Schneider and Sanders [27] describe it as faster on CPUs. We
can confirm the CPU result on the GPU. Constructing an alias table that is stored
as struct-of-arrays with the shared memory method is around 25% slower than
array-of-structs. The array-of-structs method uses a struct with a content of 12
bytes, which is padded to 16 bytes by the compiler. When memory usage is a
critical constraint, the struct-of-arrays method can have the advantage that its two
arrays are each tightly packed.

2While the alias table itself can be stored on the GTX 1650 Super, its 4 GB of memory are not
enough to store the temporary data structures for alias table construction.

60 CHAPTER 5. EVALUATION

5.3 Sampling

Figure 5.7 shows a comparison of the baseline sampling method and the three
sectioned methods with N = 106. Figure 5.8 shows the same comparison when
drawing samples from a table with 107 items. For drawing only a few samples, the
baseline method is fastest. It does not need any preprocessing and quickly reaches
its maximum speed. The shared memory methods have a significant overhead
for determining the sections or copying data. If the number of samples drawn is
increased, the investment pays out and the sectioned methods can generate up to
15 GSamples/s.

Figure 5.9 visualizes which method is best when varying both table size and
number of samples. The sectioned methods are better when drawing many sam-
ples from a small table. While the shared memory method can achieve higher
peak throughputs, the sectioned limited method is more generic and achieves a
decent throughput in more cases.

5.3.1 Comparison with Hübschle-Schneider and Sanders

In Table 5.3 we compare the sampling throughput of our sectioned limited method
with the CPU implementation of Hübschle-Schneider and Sanders [27]. We assign
shuffled power law distributed weights to each item. For sampling, the GPU has
a clear advantage because its memory can handle random access operations much
more efficiently. On the tested consumer machines, our parallel GPU method has
up to 56 times more throughput than Hübschle-Schneider’s method.3 Even on
the powerful machine C, they achieve no more than 2 GSamples/s, which we can
easily outperform using consumer hardware.

5.3.2 Space-efficient rejection sampling

Bringmann’s space-efficient rejection sampling algorithm [14] (see Section 2.8)
first builds a data structure in linear time and then samples from that in expected
constant time. Our implementation shows a similar construction speed as alias
tables. Sampling is significantly slower, having a throughput of up to 0.9 GSam-
ples/s. This is caused by the fact that if one thread needs to reject a sample and
draw again, the other threads in the same warp have to wait. The method is not a
good fit for GPUs and sectioned sampling cannot be applied.

3For the speedup we compare the RTX 2080 card on machine A with the CPU of machine B.
Machines A and B are both consumer devices but the CPU of machine B is faster.

5.3. SAMPLING 61

0

5

10

15

0e+00 2e+08 4e+08
Number of samples drawn

G
S

am
pl

es
/s

(a) Total

0

3

6

9

12

0e+00 2e+07 4e+07 6e+07
Number of samples drawn

G
S

am
pl

es
/s

Method

Baseline

Sectioned

Sectioned Limited

Shared memory

(b) Detail

Figure 5.7: Comparison between sampling methods depending on the number of
samples drawn. Input is a uniform random weight distribution of size 106.

0.0

2.5

5.0

7.5

10.0

0e+00 2e+08 4e+08 6e+08 8e+08
Number of samples drawn

G
S

am
pl

es
/s

(a) Total

0

1

2

3

0e+00 4e+07 8e+07
Number of samples drawn

G
S

am
pl

es
/s

Method

Baseline

Sectioned

Sectioned Limited

Shared memory

(b) Detail

Figure 5.8: Comparison between sampling methods depending on the number of
samples drawn. Input is a uniform random weight distribution of size 107.

0e+00

1e+07

2e+07

3e+07

0e+00 2e+06 4e+06 6e+06
Table size

N
um

be
r

of
 s

am
pl

es

Best method

Baseline

Sectioned

Sectioned Limited

Shared memory

Figure 5.9: Comparison which method has the highest throughput depending on
table size and number of samples drawn. The input distribution are uniform ran-
dom weights.

62 CHAPTER 5. EVALUATION

Method Machine MSamples/s
106 107 108 109

Ref. [27] C – – 2231 1675
D – – 910 909
B (CPU) 238 171 163 –

Ours A (RTX 2080) 13438 10148 2442 –
B (GTX 1650 Super) 6223 3474 1060 –

Table 5.3: Sampling throughput comparison with Hübschle-Schneider’s method.
Drawing 109 samples from a table of varying size. For N ≤ 107, we use our
sectioned limited sampling algorithm. ForN = 108, we use our baseline sampling
algorithm.

2

3

4

5

2.5e+06 5.0e+06 7.5e+06 1.0e+07
Number of items to sample from

G
S

am
pl

es
/s Method

Array−of−structs

Struct−of−arrays

Struct−of−arrays (edge case)

Figure 5.10: Sampling throughput of array-of-structs and struct-of-arrays. We
assign special weight distributions where either no item has an alias (edge case)
or all items have the next item as their alias (others).

5.3.3 Struct-of-Arrays

Sampling from the struct-of-arrays storage scheme is slower than from array-
of-structs. Only in the edge case of an alias table where all items have weight
Twi = W/N (see Section 2.4.7), struct-of-arrays is slightly faster. Because of
the two arrays, sampling an item requires two memory operations. Figure 5.10
shows performance measurements of the baseline sampling method when using
the array-of-structs and the struct-of-arrays storage.

5.4. POWER USAGE 63

5.4 Power Usage
In 2015, data centers already used around 1% of the global power consumption.
Until 2025, this amount is expected to increase to up to 4.5% [9]. An important
cost factor of high performance clusters is cooling, as 1 W of power consumption
requires up to 1 W of cooling [41]. Reduced power usage results in less heat
being produced, reducing the amount of cooling needed. For comparing the CPU
and the GPU implementation, a simple speedup is not enough. The two devices
differ heavily in their architecture. Comparing the power usage is a better metric
than hardware cost because it is not influenced by market decisions and gives an
estimate of the run-time cost.

In this thesis, our main goal is to improve the performance. While more ef-
ficient code usually leads to less power usage, we do not explicitly optimize our
implementation for low power usage. Techniques like undervolting or throttling
are not evaluated. We also do not use techniques like power aware task schedul-
ing [34]. For a study of what instructions and what memory access operations
require most energy on GPUs, we refer to Ref. [18]. In cases where energy effi-
ciency is crucial, FPGAs can provide a comparable performance to GPUs while
having a better energy efficiency [41].

Experimental Setup The power usage of GPUs is influenced by many factors,
for example by the temperature [49]. The experiments in this section are executed
at room temperature. Before each measurement, we wait for the system to idle
and cool down. The supply voltage is kept at the factory defaults. The total power
usage of the GPU, including memory and voltage converters, can be measured
with Nvidia’s nvtop utility [49]. It does not contain CPU and RAM, so we
use an external power measurement device.4 When idle, machine A has a power
consumption of 50 W and its RTX 2080 has a power consumption of 1 W.

Construction During construction of a table with 108 items, the GPU of Ma-
chine A has a power consumption of 167 W. The power consumption of the whole
system is 263 W. This is a 213 W increase to the idle state, while the measurements
with nvtop only show an increase of 166 W. Running the GPU code therefore
also increases CPU and RAM power usage. To compensate for different hard-
ware setups, we calculate the power usage with the difference between idle and
load state using external measurements. The time to construct a single alias table
is 32.8 ms. Constructing an alias table therefore uses 213 J/s · 32.8 ms ≈ 7 J.
Measurements on the other machines are displayed in Table 5.4.

4For machines A and B, we use a BaseTech Cost Control 3000. For machines C and D, we use
a Voltcraft Energy Check 3000.

64 CHAPTER 5. EVALUATION

Machine Power usage
A (RTX 2080) 7 J/108 items
B (GTX 1650 Super) –5

B (CPU implementation [27]) 47 J/108 items
C (CPU implementation [27]) 45 J/108 items
D (CPU implementation [27]) 25 J/108 items

Table 5.4: Power usage of constructing an alias table of size 108, depending on
the hardware used. Shuffled power law distribution with exponent=1.

Machine Power usage
A (RTX 2080) 69 J/GSample
B (GTX 1650 Super) 69 J/GSample
B (CPU implementation [27]) 511 J/GSample
C (CPU implementation [27]) 242 J/GSample
D (CPU implementation [27]) 181 J/GSample

Table 5.5: Power usage of sampling from an alias table of size 108, depending on
the hardware used. Shuffled power law distribution with exponent=1.

Sampling When drawing 109 samples from an alias table of size 108, the GPU
has a power consumption of 130 W. The external measurement shows 216 W for
the whole system. At a sampling frequency of 2.4 GSample/s, this means that
sampling needs 166 J/s / 2.4 GSample/s ≈ 69 J/GSample. Measurements of the
other systems are displayed in Table 5.5. While the RTX 2080 has more than
double the TDP than the GTX 1650 Super [1, 45], its increased sampling speed
leads to exactly the same power usage per GSample.

Summary For construction, our GPU implementation needs only 14% of the
power that the CPU implementation of Ref. [27] needs on a personal computer
(Machine B). When comparing to the powerful 4-socket server (machine C), our
implementation needs 15% of the power. For sampling, our implementation only
needs 13% of the power on a personal computer and 28% on the server. This
makes our method suitable for use in data centers where power usage must be
considered carefully.

5The card does not have enough memory to hold temporary data structures during construction
for table size N = 108. An extrapolation based on measurements with smaller N results in ≈
7 J/108 items.

Chapter 6

Conclusion

In this thesis, we present new algorithms that make construction of and sampling
from alias tables applicable on GPUs. We are able to achieve significant speedups,
even if the algorithm by Hübschle-Schneider and Sanders [27] that we build upon
is not efficient on GPUs. Our algorithms are more energy efficient than the CPU
implementations.

Construction We introduce a new search algorithm, partial p-ary search, that
enables fast splitting. Our pack method with chunked loading to the shared mem-
ory adapts the memory access pattern to be more efficient on GPUs. We demon-
strate a speedup of 33.2 over the CPU implementation [27]. We even achieve
significant speedups when including the memory transfers.

Sampling For a large number of samples, our sectioned limited sampling algo-
rithm is significantly faster than previously known algorithms. This is achieved by
dividing the alias table into sections which can then be sampled in a more cache-
efficient way. While the original method by Hübschle-Schneider and Sanders [27]
can sample with up to 2 GSamples/s on an expensive 4-socket server, we demon-
strate up to 13 GSamples/s on consumer hardware.

Future Work We plan to test the fast GPU alias table construction in real-world
applications like graph generation (see Section 2.9). Additionally, we plan to
evaluate partial p-ary search on its own, which, to our knowledge, is not covered
in the literature yet. It would be interesting to evaluate our algorithms on an Apple
M1 processor, where CPU and GPU share the same memory pool and therefore do
not need transfers [10]. We also plan to experiment with using block-wise prefix
sums [25] to reduce the memory volume.

65

66 CHAPTER 6. CONCLUSION

Chapter 7

Appendix

7.1 List of Figures
1.1 Random distributions . 5
1.2 Random number generators . 7
1.3 GPU architecture . 10
1.4 GPU memory coalescing . 11
1.5 GPU memory alignment . 12
1.6 Interleaved addressing . 13
1.7 Basic prefix sum . 14
1.8 Work-efficient prefix sum . 15

2.1 Alias table . 19

4.1 General construction classes . 38
4.2 Alias table construction classes 38
4.3 Split method classes . 39
4.4 Pack method classes . 39
4.5 Sampling classes . 39
4.6 Sampling throughput by grid size 46

5.1 Time for splitting . 54
5.2 Construction duration by pack method 55
5.3 Construction duration of PSA and PSA+ 57
5.4 Construction duration by fraction of heavy items 57
5.5 Construction duration overall comparison 58
5.6 Construction duration with memory transfers 59
5.7 Sampling throughput with table size 106 61
5.8 Sampling throughput with table size 107 61

67

68 CHAPTER 7. APPENDIX

5.9 Heatmap of sampling method with highest sampling throughput . 61
5.10 Sampling throughput with struct-of-arrays 62

7.2 List of Tables
4.1 Results of the parameter optimization process 51

5.1 Construction duration of uncompetitive pack methods 55
5.2 Construction duration on different machines 59
5.3 Sampling throughput on different machines 62
5.4 Power usage of table construction 64
5.5 Power usage of sampling . 64

7.3 List of Algorithms
1.1 Xorshift . 6
1.2 Xorwow . 7
3.1 Partial p-ary search . 29
3.2 Chunked pack method . 32
4.1 Branched memory reads . 42
4.2 Optimized branched memory reads 42
4.3 Memory access without compiler aids 48
4.4 Memory access with compiler aids 48

Bibliography

[1] Nvidia turing gpu architecture. https://images.nvidia.
com/aem-dam/Solutions/design-visualization/
technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, 2018.
Accessed: 2020-12-14.

[2] Cub: cub namespace reference. https://
nvlabs.github.io/cub/namespacecub.html#
abec44bba36037c547e7e84906d0d23ab, 2020. Accessed:
2020-08-17.

[3] Cuda c++ best practices guide. https://docs.nvidia.com/
cuda/pdf/CUDA_C_Best_Practices_Guide.pdf, 2020. Ac-
cessed: 2020-07-15.

[4] curand | nvidia developer. https://developer.nvidia.com/
curand, 2020. Accessed: 2020-07-15.

[5] Green 500. https://www.top500.org/lists/green500/
2020/06/, 2020. Accessed: 2020-10-06.

[6] Top500. https://www.top500.org/lists/top500/2020/06/,
2020. Accessed: 2020-10-06.

[7] Christos Alexopoulos and George S Fishman. Capacity expansion in
stochastic flow networks. Probability in the Engineering and Informational
Sciences, 6(1):99–118, 1992.

[8] Gene M Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
spring joint computer conference, pages 483–485, 1967.

[9] Anders Andrae. Total consumer power consumption forecast. Nordic Digital
Business Summit, 10, 2017.

69

https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://nvlabs.github.io/cub/namespacecub.html#abec44bba36037c547e7e84906d0d23ab
https://nvlabs.github.io/cub/namespacecub.html#abec44bba36037c547e7e84906d0d23ab
https://nvlabs.github.io/cub/namespacecub.html#abec44bba36037c547e7e84906d0d23ab
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://developer.nvidia.com/curand
https://developer.nvidia.com/curand
https://www.top500.org/lists/green500/2020/06/
https://www.top500.org/lists/green500/2020/06/
https://www.top500.org/lists/top500/2020/06/

70 BIBLIOGRAPHY

[10] Apple. Apple m1 chip - apple. https://www.apple.com/mac/m1/,
2020. Accessed: 2020-12-12.

[11] Nikolaus Binder and Alexander Keller. Massively parallel construction of
radix tree forests for the efficient sampling of discrete probability distribu-
tions. arXiv preprint arXiv:1901.05423, 2019.

[12] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet alloca-
tion. Journal of machine Learning research, 3(Jan):993–1022, 2003.

[13] Guy E Blelloch. Prefix sums and their applications. Technical report, Cite-
seer, 1990.

[14] Karl Bringmann and Kasper Green Larsen. Succinct sampling from discrete
distributions. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 775–782, 2013.

[15] FB Brown, DA Calahan, and WR Martin. A discrete sampling method for
vectorized monte carlo calculations. Trans. Am. Nucl. Soc.;(United States),
38(CONF-810606-), 1981.

[16] David Burke, Abhijeet Ghosh, and Wolfgang Heidrich. Bidirectional im-
portance sampling for illumination from environment maps. In ACM SIG-
GRAPH 2004 Sketches, page 112. 2004.

[17] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A re-
cursive model for graph mining. In Proceedings of the 2004 SIAM Interna-
tional Conference on Data Mining, pages 442–446. SIAM, 2004.

[18] Sylvain Collange, David Defour, and Arnaud Tisserand. Power consump-
tion of gpus from a software perspective. In International Conference on
Computational Science, pages 914–923. Springer, 2009.

[19] Thanh Tuan Dao and Jaejin Lee. An auto-tuner for opencl work-group size
on gpus. IEEE Transactions on Parallel and Distributed Systems, 29(2):283–
296, 2017.

[20] Donald e Knuth. The art of computer programming 2: Seminumerical algo-
rithms. Addison-Wesley Publ. Company, 1969.

[21] George S Fishman and Louis R Moore III. Sampling from a discrete distribu-
tion while preserving monotonicity. The American Statistician, 38(3):219–
223, 1984.

https://www.apple.com/mac/m1/

BIBLIOGRAPHY 71

[22] Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Drettakis. Gabor
noise by example. ACM Transactions on Graphics (TOG), 31(4):1–9, 2012.

[23] Zeinab Hmedeh, Harry Kourdounakis, Vassilis Christophides, Cédric
Du Mouza, Michel Scholl, and Nicolas Travers. Content-based publish/-
subscribe system for web syndication. Journal of Computer Science and
Technology, 31(2):359–380, 2016.

[24] Daniel Horn. Stream reduction operations for gpgpu applications. GPU
gems, 2(36):573–589, 2005.

[25] Lorenz Hübschle-Schneider. Communication-efficient probabilistic algo-
rithms: Selection, sampling, and checking. 2020.

[26] Lorenz Hübschle-Schneider and Peter Sanders. Linear work generation of
r-mat graphs. Network Science, pages 1–8, 2019.

[27] Lorenz Hübschle-Schneider and Peter Sanders. Parallel weighted random
sampling. arXiv preprint arXiv:1903.00227, 2019.

[28] Intel. Intel® core™ i5-750 processor (8m cache, 2.66
ghz) product specifications. https://ark.intel.
com/content/www/us/en/ark/products/42915/
intel-core-i5-750-processor-8m-cache-2-66-ghz.
html, 2009. Accessed: 2020-12-15.

[29] Intel. Intel® xeon® processor e3-1230 v2 prod-
uct specifications. https://ark.intel.com/
content/www/us/en/ark/products/65732/
intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.
html, 2012. Accessed: 2020-11-21.

[30] Tim Kaldewey, Jeff Hagen, Andrea Di Blas, and Eric Sedlar. Parallel search
on video cards. In First USENIX Workshop on Hot Topics in Parallelism
(HotPar’09), 2009.

[31] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. Proce-
dural noise using sparse gabor convolution. ACM Transactions on Graph-
ics (TOG), 28(3):1–10, 2009. Presentation: https://www.youtube.
com/watch?v=SqXsm44CCeU.

[32] Pierre L’Ecuyer and Richard Simard. Testu01: Ac library for empirical test-
ing of random number generators. ACM Transactions on Mathematical Soft-
ware (TOMS), 33(4):1–40, 2007.

https://ark.intel.com/content/www/us/en/ark/products/42915/intel-core-i5-750-processor-8m-cache-2-66-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/42915/intel-core-i5-750-processor-8m-cache-2-66-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/42915/intel-core-i5-750-processor-8m-cache-2-66-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/42915/intel-core-i5-750-processor-8m-cache-2-66-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/65732/intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/65732/intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/65732/intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/65732/intel-xeon-processor-e3-1230-v2-8m-cache-3-30-ghz.html
https://www.youtube.com/watch?v=SqXsm44CCeU
https://www.youtube.com/watch?v=SqXsm44CCeU

72 BIBLIOGRAPHY

[33] Kaiwei Li, Jianfei Chen, Wenguang Chen, and Jun Zhu. Saberlda: Sparsity-
aware learning of topic models on gpus. ACM SIGPLAN Notices, 52(4):497–
509, 2017.

[34] Keqin Li. Performance analysis of power-aware task scheduling algorithms
on multiprocessor computers with dynamic voltage and speed. IEEE Trans-
actions on Parallel and Distributed Systems, 19(11):1484–1497, 2008.

[35] Wentian Li. Random texts exhibit zipf’s-law-like word frequency distribu-
tion. IEEE Transactions on information theory, 38(6):1842–1845, 1992.

[36] George Marsaglia et al. Xorshift rngs. Journal of Statistical Software,
8(14):1–6, 2003.

[37] MA Martínez-del Amor. Accelerating membrane systems simulators using
high performance computing with GPU. PhD thesis, Ph. D. thesis, Univer-
sity of Seville, 2013.

[38] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal
of the American statistical Association, 46(253):68–78, 1951.

[39] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
8(1):3–30, 1998.

[40] Richard L. Mitchell and CR Stone. Table-lookup methods for generating
arbitrary random numbers. IEEE Transactions on Computers, (10):1006–
1008, 1977.

[41] Sparsh Mittal and Jeffrey S Vetter. A survey of methods for analyzing
and improving gpu energy efficiency. ACM Computing Surveys (CSUR),
47(2):1–23, 2014.

[42] Siddhant Mohanty, AK Mohanty, and F Carminati. Efficient pseudo-random
number generation for monte-carlo simulations using graphic processors. In
Journal of Physics: Conference Series, volume 368, page 012024. IOP Pub-
lishing, 2012.

[43] Hubert Nguyen. Gpu gems 3. Addison-Wesley Professional, 2007.

[44] Nvidia. Nvidia cuda compute unified device architecture - reference man-
ual. http://developer.download.nvidia.com/compute/
cuda/2_0/docs/CudaReferenceManual_2.0.pdf, 2008. Ac-
cessed: 2020-11-20.

http://developer.download.nvidia.com/compute/cuda/2_0/docs/CudaReferenceManual_2.0.pdf
http://developer.download.nvidia.com/compute/cuda/2_0/docs/CudaReferenceManual_2.0.pdf

BIBLIOGRAPHY 73

[45] Nvidia. Geforce gtx 1650 super graphics card. https://www.nvidia.
com/en-us/geforce/graphics-cards/gtx-1650-super/,
2020. Accessed: 2020-11-14.

[46] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ul-
rich Meyer, Ilya Safro, Peter Sanders, and Christian Schulz. Recent advances
in scalable network generation. arXiv preprint arXiv:2003.00736, 2020.

[47] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics,
19(3):287–296, 1985.

[48] Carolyn L Phillips, Joshua A Anderson, and Sharon C Glotzer. Pseudo-
random number generation for brownian dynamics and dissipative particle
dynamics simulations on gpu devices. Journal of Computational Physics,
230(19):7191–7201, 2011.

[49] Danny C Price, Michael A Clark, Benjamin R Barsdell, Ronald Babich,
and Lincoln J Greenhill. Optimizing performance-per-watt on gpus in high
performance computing. Computer Science-Research and Development,
31(4):185–193, 2016.

[50] Greg Ruetsch and Brent Oster. Getting started with cuda.
https://www.nvidia.com/content/cudazone/download/
Getting_Started_w_CUDA_Training_NVISION08.pdf, 2008.
Accessed: 2020-07-15.

[51] Mutsuo Saito and Makoto Matsumoto. Variants of mersenne twister suit-
able for graphic processors. ACM Transactions on Mathematical Software
(TOMS), 39(2):1–20, 2013.

[52] Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel
Schrade, and Carsten Dachsbacher. Efficient parallel random sam-
pling—vectorized, cache-efficient, and online. ACM Transactions on Math-
ematical Software (TOMS), 44(3):1–14, 2018.

[53] Riyanarto Sarno, Virendra C Bhavsar, and Esam MA Hussein. Generation of
discrete random variables on vector computers for monte carlo simulations.
International Journal of High Speed Computing, 2(04):335–350, 1990.

[54] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and
Jimmy Lin. Graphjet: real-time content recommendations at twitter. Pro-
ceedings of the VLDB Endowment, 9(13):1281–1292, 2016.

https://www.nvidia.com/en-us/geforce/graphics-cards/gtx-1650-super/
https://www.nvidia.com/en-us/geforce/graphics-cards/gtx-1650-super/
https://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
https://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf

74 BIBLIOGRAPHY

[55] J Cole Smith and Sheldon H Jacobson. An analysis of the alias method
for discrete random-variate generation. INFORMS Journal on Computing,
17(3):321–327, 2005.

[56] Guy L Steele Jr and Jean-Baptiste Tristan. Using butterfly-patterned partial
sums to optimize gpu memory accesses for drawing from discrete distribu-
tions. arXiv preprint arXiv:1505.03851, 2015.

[57] Scott Sullivan. Lda algorithm description. https://www.youtube.
com/watch?v=DWJYZq_fQ2A, 2017. Accessed: 2020-07-09.

[58] Myles Sussman, William Crutchfield, and Matthew Papakipos. Pseudoran-
dom number generation on the gpu. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 87–
94, 2006.

[59] J Teuhola and O Nevalainen. Two efficient algorithms for random sam-
pling without replacement. International Journal of Computer Mathematics,
11(2):127–140, 1982.

[60] Eric Veach and Leonidas J Guibas. Optimally combining sampling tech-
niques for monte carlo rendering. In Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques, pages 419–428,
1995.

[61] Jeffrey Scott Vitter. Faster methods for random sampling. Communications
of the ACM, 27(7):703–718, 1984.

[62] Michael D. Vose. A linear algorithm for generating random numbers with
a given distribution. IEEE Transactions on software engineering, (9):972–
975, 1991.

[63] Alastair J Walker. An efficient method for generating discrete random vari-
ables with general distributions. ACM Transactions on Mathematical Soft-
ware (TOMS), 3(3):253–256, 1977.

[64] Tony Warnock. Random-number generators. Los Alamos Science,
15(1987):137–141, 1987.

[65] SJ Wilderman and YK Dewaraja. Method for fast ct/spect-based 3d monte
carlo absorbed dose computations in internal emitter therapy. IEEE transac-
tions on nuclear science, 54(1):146–151, 2007.

https://www.youtube.com/watch?v=DWJYZq_fQ2A
https://www.youtube.com/watch?v=DWJYZq_fQ2A

	Abstract
	Acknowledgments
	Contents
	Introduction
	Random Numbers
	Sampling
	GPUs
	Prefix Sums
	Concepts

	Related Work
	Scan Method
	Cutpoint Method
	Lookup Table
	Alias Table
	Brown's Method
	Sarno's Method
	Binder's Method
	Space-Efficient Rejection Sampling
	Applications

	Algorithm Design
	Split Method
	Pack Method
	PSA+
	Sampling

	Implementation
	Class Structure
	Preliminaries
	Partitioning of Light and Heavy Items
	Split Method
	Pack Method
	PSA+
	Sampling
	Performance Optimization
	Verification

	Evaluation
	Experimental Setup
	Construction
	Sampling
	Power Usage

	Conclusion
	Appendix
	List of Figures
	List of Tables
	List of Algorithms

	Bibliography

