194,258 research outputs found

    Pembuatan Aplikasi Multimedia Untuk Membantu Siswa Sekolah Dasar Dalam Mempelajari Sains

    Get PDF
    Science is very important in our everyday lives. That is the reason why students have to learn science since the beginning of their primary school. However, many students find difficulties in studying science. Some experts believe that the use of multimedia software can help students in learning science. In this case, the creation of science learning aid software with multimedia capabilities can be useful for both students and teachers. With the software’s capability of visualizing the objects, and enhancing it with animation and sound, students are expected to have better understanding. Based on the software’s evaluation performed by the students and teachers, most respondents found that the science learning aid software are really helpful in studying science

    Visualizing a Plant Cell

    Get PDF
    Why visualizing science is important, especially as a school student

    Quantifying the interdisciplinarity of scientific journals and fields

    Full text link
    There is an overall perception of increased interdisciplinarity in science, but this is difficult to confirm quantitatively owing to the lack of adequate methods to evaluate subjective phenomena. This is no different from the difficulties in establishing quantitative relationships in human and social sciences. In this paper we quantified the interdisciplinarity of scientific journals and science fields by using an entropy measurement based on the diversity of the subject categories of journals citing a specific journal. The methodology consisted in building citation networks using the Journal Citation Reports database, in which the nodes were journals and edges were established based on citations among journals. The overall network for the 11-year period (1999-2009) studied was small-world and scale free with regard to the in-strength. Upon visualizing the network topology an overall structure of the various science fields could be inferred, especially their interconnections. We confirmed quantitatively that science fields are becoming increasingly interdisciplinary, with the degree of interdisplinarity (i.e. entropy) correlating strongly with the in-strength of journals and with the impact factor.Comment: 23 pages, 6 figure

    Integrated Lesson (CS and Math)

    Get PDF
    Fifth Grade Computer Science Lessons Table of Contents Continuation of Looping with Exponents INTRODUCE Math and CS Integration Activity 1: Repeated Addition and Repeated Multiplication Activity 2: Visualizing growth by multiplication Activity 3: Visualizing exponential growth Activity 4: Comparison of growth by multiplication and exponents Activity 5: Writing your own code for multiplication and exponen

    Superheat: An R package for creating beautiful and extendable heatmaps for visualizing complex data

    Full text link
    The technological advancements of the modern era have enabled the collection of huge amounts of data in science and beyond. Extracting useful information from such massive datasets is an ongoing challenge as traditional data visualization tools typically do not scale well in high-dimensional settings. An existing visualization technique that is particularly well suited to visualizing large datasets is the heatmap. Although heatmaps are extremely popular in fields such as bioinformatics for visualizing large gene expression datasets, they remain a severely underutilized visualization tool in modern data analysis. In this paper we introduce superheat, a new R package that provides an extremely flexible and customizable platform for visualizing large datasets using extendable heatmaps. Superheat enhances the traditional heatmap by providing a platform to visualize a wide range of data types simultaneously, adding to the heatmap a response variable as a scatterplot, model results as boxplots, correlation information as barplots, text information, and more. Superheat allows the user to explore their data to greater depths and to take advantage of the heterogeneity present in the data to inform analysis decisions. The goal of this paper is two-fold: (1) to demonstrate the potential of the heatmap as a default visualization method for a wide range of data types using reproducible examples, and (2) to highlight the customizability and ease of implementation of the superheat package in R for creating beautiful and extendable heatmaps. The capabilities and fundamental applicability of the superheat package will be explored via three case studies, each based on publicly available data sources and accompanied by a file outlining the step-by-step analytic pipeline (with code).Comment: 26 pages, 10 figure

    Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map

    Get PDF
    Uncertainty is widely spread in real-world data. Uncertain data-in computer science-is typically found in the area of sensor networks where the sensors sense the environment with certain error. Mining and visualizing uncertain data is one of the new challenges that face uncertain databases. This paper presents a new intelligent hybrid algorithm that applies fuzzy set theory into the context of the Self-Organizing Map to mine and visualize uncertain objects. The algorithm is tested in some benchmark problems and the uncertain traffics in Named Data Networking (NDN). Experimental results indicate that the proposed algorithm is precise and effective in terms of the applied performance criteria.Peer ReviewedPostprint (published version

    Reseñas monografías: "Visualizing the Structure of Science"

    Get PDF

    A Data Science Course for Undergraduates: Thinking with Data

    Get PDF
    Data science is an emerging interdisciplinary field that combines elements of mathematics, statistics, computer science, and knowledge in a particular application domain for the purpose of extracting meaningful information from the increasingly sophisticated array of data available in many settings. These data tend to be non-traditional, in the sense that they are often live, large, complex, and/or messy. A first course in statistics at the undergraduate level typically introduces students with a variety of techniques to analyze small, neat, and clean data sets. However, whether they pursue more formal training in statistics or not, many of these students will end up working with data that is considerably more complex, and will need facility with statistical computing techniques. More importantly, these students require a framework for thinking structurally about data. We describe an undergraduate course in a liberal arts environment that provides students with the tools necessary to apply data science. The course emphasizes modern, practical, and useful skills that cover the full data analysis spectrum, from asking an interesting question to acquiring, managing, manipulating, processing, querying, analyzing, and visualizing data, as well communicating findings in written, graphical, and oral forms.Comment: 21 pages total including supplementary material
    corecore