102 research outputs found

    Classification of Microscopic Malaria Parasitized Images Using Deep Learning Feature Fusion

    Get PDF
    An infectious disease that causes a chronic and potentially life-threatening infection caused by microorganisms of the Plasmodium class, is malaria, or malarial disease. It is critical to detect the presence of Malaria parasites as early as possible to ensure that antimalarial treatment is adequate to cure the particular type of Plasmodium. This is to reduce death rates and to focus on various infections in the event of an adverse outcome. The purpose of this study was to develop an artificial intelligence approach capable of separating parasitized erythrocytes from normal basophilic erythrocytes as well as platelets overlying the red blood cells to overcome the high cost of Ma-laria diagnostic equipment. The tone and texture characteristics of erythrocyte images were extracted using histo-gram thresholds and watershed methods, and then fused with Squeeze Net and ShuffleNet algorithms. The measures included planning, preparing, approving, and testing Deep Convolution Neural Network Segmentation without preparation using a graphic processor unit. A total of 96 percent accuracy and specificity was obtained for the position of malaria in red blood cells based on the results of all of the tests. It has been demonstrated that deep learning can be effective in the field of clinical pathology. This provides new directions for development as well as increasing awareness of researchers in this field

    Detection Of Malaria Parasites In Human Blood Cells Using Convolutional Neural Network

    Get PDF
    Malaria is a blood disease caused by the Plasmodium parasite which is transmitted by the bite of the female Anopheles mosquito. The diagnosis of malaria is carried out by a microscopist through examination of human blood cells. Their level of accuracy depends on the quality of the tool, expertise in classifying and counting infected and uninfected parasite cells. The disadvantages of examining this way include the difficulty in making a diagnosis on a large scale and the poor quality of the results. The dataset used in model evaluation is a dataset developed by LHNVBC which contains 27,558 cell image data. The malaria dataset will be processed through data science processing using a Convolutional Neural Network with the ResNet architecture. The model will conduct training on the dataset and then the model will be able to recognize malaria parasites in human blood cells. The model will be trained by optimizing multinomial logistic regression using Stochastic Gradient Descent (SGD) and Nesterov momentum values. The results of training data validation accuracy from model training with 50 epochs were obtained at 96.23% and 97% after being tested on data testing

    Explainable Transformer-Based Deep Learning Model for the Detection of Malaria Parasites from Blood Cell Images

    Get PDF
    Malaria is a life-threatening disease caused by female anopheles mosquito bites. Various plasmodium parasites spread in the victim’s blood cells and keep their life in a critical situation. If not treated at the early stage, malaria can cause even death. Microscopy is a familiar process for diagnosing malaria, collecting the victim’s blood samples, and counting the parasite and red blood cells. However, the microscopy process is time-consuming and can produce an erroneous result in some cases. With the recent success of machine learning and deep learning in medical diagnosis, it is quite possible to minimize diagnosis costs and improve overall detection accuracy compared with the traditional microscopy method. This paper proposes a multiheaded attention-based transformer model to diagnose the malaria parasite from blood cell images. To demonstrate the effectiveness of the proposed model, the gradient-weighted class activation map (Grad-CAM) technique was implemented to identify which parts of an image the proposed model paid much more attention to compared with the remaining parts by generating a heatmap image. The proposed model achieved a testing accuracy, precision, recall, f1-score, and AUC score of 96.41%, 96.99%, 95.88%, 96.44%, and 99.11%, respectively, for the original malaria parasite dataset and 99.25%, 99.08%, 99.42%, 99.25%, and 99.99%, respectively, for the modified dataset. Various hyperparameters were also finetuned to obtain optimum results, which were also compared with state-of-the-art (SOTA) methods for malaria parasite detection, and the proposed method outperformed the existing methods

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Classification and quantification of malaria parasites using convolutional neural networks.

    Get PDF
    Applied Thesis submitted to the Department of Computer Science, Ashesi University, in partial fulfillment of Bachelor of Science degree in Computer Science, April 2018.Malaria is currently one of the most deadly diseases in the world. While there are different treatment methods for the disease, the search for new drugs against malaria is still a very important area of research. One of the main challenges in manufacturing drugs against malaria is efficiently evaluating the performance of the drugs on the parasites since it requires, amongst others, precise measurements of the parasite growth-stages as well as their counts in blood smear images. The current gold-standard for making such detail diagnosis is manual microscopy which is tedious. This research showed that convolutional neural networks can be used to identify the different growth-cycle stages of Plasmodium parasites, even in situations where there is little data. Employing a variety of data augmentation techniques and transfer learning, a semantic segmentation model was built to discriminate between trophozoites, gametocytes and normal red blood cells with an accuracy of 85.86% in 353 Giemsa-stained thin blood smears. The results showed that it is possible to perform densepredictionsonGiemsa-stained thin blood smears using convolutional neural networks

    Classification and quantification of malaria parasites using convolutional neural networks

    Get PDF
    Undergraduate thesis submitted to the Department of Computer Science, Ashesi University, in partial fulfillment of Bachelor of Science degree in Computer Science, April 2018Malaria is currently one of the most deadly diseases in the world. While there are different treatment methods for the disease, the search for new drugs against malaria is still a very important area of research. One of the main challenges in manufacturing drugs against malaria is efficiently evaluating the performance of the drugs on the parasites since it requires, amongst others, precise measurements of the parasite growth-stages as well as their counts in blood smear images. The current gold-standard for making such detail diagnosis is manual microscopy which is tedious. This research showed that convolutional neural networks can be used to identify the different growth-cycle stages of Plasmodium parasites, even in situations where there is little data. Employing a variety of data augmentation techniques and transfer learning, a semantic segmentation model was built to discriminate between trophozoites, gametocytes and normal red blood cells with an accuracy of 85.86% in 353 Giemsa-stained thin blood smears. The results showed that it is possible to perform dense predictions on Giemsa-stained thin blood smears using convolutional neural networks.Ashesi Universit

    Automatic recognition of different types of acute leukaemia using peripheral blood cell images

    Full text link
    [eng] Clinical pathologists have learned to identify morphological qualitative features to characterise the different normal cells, as well as the abnormal cell types whose presence in peripheral blood is the evidence of serious haematological diseases. A drawback of visual morphological analysis is that is time consuming, requires well-trained personnel and is prone to intra-observer variability, which is particularly true when dealing with blast cells. Indeed, subtle interclass morphological differences exist for leukaemia types, which turns into low specificity scores in the routine screening. They are well-known the difficulties that clinical pathologists have in the discrimination among different blasts and the subjectivity associated with their morphological recognition. The general objective of this thesis is the automatic recognition of different types of blast cells circulating in peripheral blood in acute leukaemia using digital image processing and machine learning techniques. In order to accomplish this objective, this thesis starts with a discrimination among normal mononuclear cells, reactive lymphocytes and three types of leukemic cells using traditional machine learning techniques and hand-crafted features obtained from cell segmentation. In the second part of the thesis, a new predictive system designed with two serially connected convolutional neural networks is developed for the diagnosis of acute leukaemia. This system was proved to distinguish neoplastic (leukaemia) and non-neoplastic (infections) diseases, as well as recognise the leukaemia lineage. Furthermore, it was evaluated for its integration in a real-clinical setting. This thesis also contributes in advancing the state of the art of the automatic recognition of acute leukaemia by providing a more realistic approach which reflects the real-life complexity of acute leukaemia diagnosis

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science
    corecore