847 research outputs found

    A Survey on Dual-Quaternions

    Full text link
    Over the past few years, the applications of dual-quaternions have not only developed in many different directions but has also evolved in exciting ways in several areas. As dual-quaternions offer an efficient and compact symbolic form with unique mathematical properties. While dual-quaternions are now common place in many aspects of research and implementation, such as, robotics and engineering through to computer graphics and animation, there are still a large number of avenues for exploration with huge potential benefits. This article is the first to provide a comprehensive review of the dual-quaternion landscape. In this survey, we present a review of dual-quaternion techniques and applications developed over the years while providing insights into current and future directions. The article starts with the definition of dual-quaternions, their mathematical formulation, while explaining key aspects of importance (e.g., compression and ambiguities). The literature review in this article is divided into categories to help manage and visualize the application of dual-quaternions for solving specific problems. A timeline illustrating key methods is presented, explaining how dual-quaternion approaches have progressed over the years. The most popular dual-quaternion methods are discussed with regard to their impact in the literature, performance, computational cost and their real-world results (compared to associated models). Finally, we indicate the limitations of dual-quaternion methodologies and propose future research directions.Comment: arXiv admin note: text overlap with arXiv:2303.1339

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Geometric modeling and optimization over regular domains for graphics and visual computing

    Get PDF
    The effective construction of parametric representation of complicated geometric objects can facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a 3D shape, the procedure of finding such a parametric representation upon a canonical domain is called geometric parameterization. Regular geometric regions, such as polycubes and spheres, are desirable domains for parameterization. Parametric representations defined upon regular geometric domains have many desirable mathematical properties and can facilitate or simplify various surface/solid modeling and processing computation. This dissertation studies the construction of parameterization on regular geometric domains and explores their applications in shape modeling and computer-aided design. Specifically, we studies (1) the surface parameterization on the spherical domain for closed genus-zero surfaces; (2) the surface parameterization on the polycube domain for general closed surfaces; and (3) the volumetric parameterization for 3D-manifolds embedded in 3D Euclidean space. We propose novel computational models to solve these geometric problems. Our computational models reduce to nonlinear optimizations with various geometric constraints. Hence, we also need to explore effective optimization algorithms. The main contributions of this dissertation are three-folded. (1) We developed an effective progressive spherical parameterization algorithm, with an efficient nonlinear optimization scheme subject to the spherical constraint. Compared with the state-of-the-art spherical mapping algorithms, our algorithm demonstrates the advantages of great efficiency, lower distortion, and guaranteed bijectiveness, and we show its applications in spherical harmonic decomposition and shape analysis. (2) We propose a first topology-preserving polycube domain optimization algorithm that simultaneously optimizes polycube domain together with the parameterization to balance the mapping distortion and domain simplicity. We develop effective nonlinear geometric optimization algorithms dealing with variables with and without derivatives. This polycube parameterization algorithm can benefit the regular quadrilateral mesh generation and cross-surface parameterization. (3) We develop a novel quaternion-based optimization framework for 3D frame field construction and volumetric parameterization computation. We demonstrate our constructed 3D frame field has better smoothness, compared with state-of-the-art algorithms, and is effective in guiding low-distortion volumetric parameterization and high-quality hexahedral mesh generation

    Estimation of Spacecraft Attitude Motion and Vibrational Modes Using Simultaneous Dual-Latitude Ground-Based Data

    Get PDF
    Cutting-edge Space Situational Awareness (SSA) research calls for improved methods for rapidly characterizing resident space objects. In this thesis, this will take the form of speeding up convergence of spacecraft attitude estimates, and of a non-model-based approach to the detection of vibrational modes. Because attitude observability from photometric data is angle-based, dual-site simultaneous photometric observations of a resident space object are predicted to improve the convergence speed and steady-state error of spacecraft attitude state estimation from ground-based sensor data. Additionally, it is predicted that by adding polarimetric data to the measurements, the speed of convergence and steady-state error will be reduced further. This thesis models satellite motion and measurements from ground-based sensors for dual-latitude simultaneous light curve simulation, then develops a data fusion process to combine photometric, astrometric, and polarimetric data from both sites in order to more quickly estimate the attitude of an RSO. The Fractional Fourier Transform shows promise as a non-model-based approach to the detection of input vibrational frequencies from the degree of linear polarization. The main results are that dual-site observation geometry is conducive to slight improvements of attitude filter performance, and the addition of polarimetric data to the measurements yields much improved performance over both the single-site and dual-site cases

    Movimientos simétrico lineales esféricos segmentados para interpolación de orientaciones en planificación de trayectorias de herramienta en CNC de 5 Ejes

    Get PDF
    RESUMEN: Este artículo emplea biarcos cuaterniónicos para interpolar un conjunto de orientaciones con restricciones de velocidad angular. La curva cuaterniónica resultante representa un movimiento simétrico lineal esférico segmentado con continuidad C1 . El propósito de este esfuerzo es poner en uso los movimientos simétrico lineales desde el punto de vista de aproximación e interpolación de movimiento y presentar su potencial aplicación en la simulación de mecanizado por Control Numérico Computarizado (CNC) y planeación de trayectorias de herramienta. Los biarcos cuaterniónicos pueden ser usados para aproximar curvas B-spline cuaterniónicas que representan movimientos esféricos racionales, los cuales tienen aplicaciones en planeación de trayectorias de robots, en CAD/CAM y en gráficas por computador.ABSTRACT: This paper employs quaternion biarcs to interpolate a set of orientations with angular velocity constraints. The resulting quaternion curve represents a piecewise line-symmetric spherical motion with C1 continuity. The purpose of this effort is to put line-symmetric motions into use from the viewpoint of motion approximation and interpolation, and to present their potential applications in Computerized Numerical Control (CNC) machining simulation and tool path planning. Quaternion biarcs may be used to approximate B-spline quaternion curves that represent rational spherical motions that have applications in robot path planning, CAD/CAM and computer graphics
    corecore