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ABSTRACT

Cutting-edge Space Situational Awareness (SSA) research calls for improved methods for

rapidly characterizing resident space objects. In this thesis, this will take the form of

speeding up convergence of spacecraft attitude estimates, and of a non-model-based

approach to the detection of vibrational modes. Because attitude observability from

photometric data is angle-based, dual-site simultaneous photometric observations of a

resident space object are predicted to improve the convergence speed and steady-state

error of spacecraft attitude state estimation from ground-based sensor data. Additionally,

it is predicted that by adding polarimetric data to the measurements, the speed of

convergence and steady-state error will be reduced further. This thesis models satellite

motion and measurements from ground-based sensors for dual-latitude simultaneous light

curve simulation, then develops a data fusion process to combine photometric, astrometric,

and polarimetric data from both sites in order to more quickly estimate the attitude of an

RSO. The Fractional Fourier Transform shows promise as a non-model-based approach to

the detection of input vibrational frequencies from the degree of linear polarization. The

main results are that dual-site observation geometry is conducive to slight improvements

of attitude filter performance, and the addition of polarimetric data to the measurements

yields much improved performance over both the single-site and dual-site cases.
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1. Introduction and Background

Whereas one might assume the field of aerospace engineering is confined primarily to

the design nuances of spacecraft and aircraft, there are actually many difficulties presented

in the field which are less than obvious. Consider, for example, the growing number of

spacecraft in terrestrial orbit. As of this writing (December, 2020), there are 3,355 active

satellites in the publicly available NORAD catalog, Kelso (2020). This does not paint the

full picture, however, since this includes only the operational spacecraft. If extended to all

types of objects in Earth orbit (excluding the Moon, of course), there are 19,851 valid

two-line element (TLE) sets and 1,372 lost TLE sets. To take things a step further, SpaceX

has plans to launch a total of 42,000 satellites as part of its Starlink space-based internet

service (C. Henry, 2019). Knowing all of this, it becomes increasingly obvious that we

could be presented with a significant problem when launching and operating satellites.

To provide some additional motivation, consider the cost to develop, produce, and

operate a satellite. For example, the average cost of a GOES meteorological satellite in

fiscal-year 2000 was around $84 million (Wertz & Larson, 1999), or close to $125 million

in fiscal-year 2020 when adjusted for inflation. This does not even include the cost of the

launch vehicle, which could in some cases double the cost. When dealing with such high

stakes, it follows that it is important to understand the potential hazards that could be

created if an anomalous resident space object (RSO) imposes on any assets. What

naturally comes with understanding an object is a need to understand its dynamics, which

are influenced not only by the shape and size of the object, but also by external perturbing

forces like gravitational fields of other bodies and solar wind, as well as by the internally

generated disturbances. Some of these disturbances could include torques due to vibration

of solar panels, sloshing of propellant, reaction wheel momentum dumping, impulsive

attitude maneuvers, etc. When the only information available is in the form of time,

azimuth, elevation, and some unresolved characteristics of the reflected light, capturing



2

the effects of these internal torques and then correlating them to their source proves to be a

difficult problem to solve, and is currently an interesting and important topic of study in

the broader fields of space situational awareness (SSA), or more recently space domain

awareness (SDA), and this is the problem to be addressed by this thesis in some fashion.

There has been a significant amount of development in the capabilities in the last

twenty or so years of not only the hardware and software, but also in the creative usage of

available information. It turns out that there is a surprising amount of useful information

contained within even the minute changes in brightness of space objects. The analysis of

an object’s brightness as a function of time is known as photometry (Roth, 2009), and it

has been applied to the characterization and classifications of stars, planets, and even

asteroids (Kaasalainen & Torppa, 2001). The latter is of particular interest, since asteroids

are relatively small and dim, much like an RSO in orbit around the Earth. The techniques

applied to the characterization of these rocks has been extended into the realm of SSA,

and the brightness data may be associated and correlated with other sources of data to

improve confidence in both the estimated and inferred characteristics of an RSO. This

unification of multiple data sources for refining estimates falls under data fusion (Mahler,

2004), the theory upon which a large part of SSA has been built.

To ground-based observers, the available sources of data in SSA for object

characterization are reflected light in the form of total brightness, polarization states,

reflected spectrum, Doppler shift, etc. (Hapke, 2012), right ascension, declination, and

range, the last of which can often be available only when using a source of active

illumination such as a laser (i.e. using a laser range finder). Unfortunately, pointing a laser

at an object can interfere with sensitive instrumentation and as such should only be used

with permission of the owner, lest it be considered an act of war. Thus in the case of

unknown objects, we are limited to the object’s position on the celestial sphere and to the

reflected light from passive sources of illumination, primarily being the Sun and possibly

the reflected light from the Moon or the Earth. Of note, light which is reflected off some
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surface will become polarized, the degree of which is an additional piece of useful (albeit

difficult and/or costly to obtain) information. Right ascension and declination will come

from the combination of geographic location of the observation platforms and surrounding

stars in the background image, which may be compared and then matched to templates (or

plates) of known stars in a process known as astrometry (Roth, 2009). All of these sources

of data can, when combined, yield a diverse repertoire of information about an object of

interest.

To unify all of these data sources and then draw conclusions about an object, it is

necessary to have an understanding of some of the physical processes which govern the

motion of the object and the noise in the measurements. Of primary interest to the

characterization of the vehicle in this thesis are going to be the oscillatory motion of a

solar panel and of propellants (as explained further in Chapter 2 and Chapter 3), since

these are some of the more interesting contributors as discovered during preliminary

research with advisors. The torques induced by these vibrations will have an effect on the

vehicle pointing direction, or attitude (Hughes, 2004), and as such estimation of attitude

motion can potentially provide insight into the internal dynamics and henceforth allow for

inferences to be made about the types of propellants being used. Information about the

attitude will be contained in the brightness and polarization states, since the irradiance

measurements will come from reflected (i.e. scattered) light (Whittaker, Linares, &

Crassidis, 2013). The models used to predict the reflection of light were first developed

for computer graphics, but have been repurposed to serve as astronomical and engineering

tools.

There has already been some investigation into light-curve-based characterization of

RSOs, but this has, to the author’s knowledge, been confined primarily to measurements

taken from a single site and has scarcely included polarimetric data. Hence, the key results

to be shown in this thesis are that the addition of a second observation site for attitude

filtering will yield slightly improved speed of convergence and steady-state error, and that
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the addition of polarimetric data yields a significant improvement over photometric data

alone whether taken from a single site or a dual site. Additionally, to detect the vibrational

modes for more complete vehicle characterization and to infer additional information, the

Fractional Fourier Transform (FrFT) will be applied to the degree of linear polarization for

detection of oscillation frequencies.

This thesis is organized in the following way. Chapter 2 will proceed with a review of

the current literature in photometric attitude estimation, followed by a review of the

fundamental concepts of mechanics which are to be applied, including general methods of

analytical dynamics, some aspects of fluid and solid mechanics, and a concise review of

some necessary orbital mechanics. After this, an overview of photometry, reflectance

modeling, and polarimetry will be provided. Finally, a description of the process for

turning images into useful data will be given, and the chapter will then conclude with a

review of the GOES-R mission, of which GOES-16 is to serve as the primary object of

study. Chapter 3 will begin with development of a simplified shape model of GOES-16

and of the relevant reference frames. Following this, the system Lagrangian will be

derived including the effects of slosh and solar panel motion and the method for obtaining

the equations of motion from the Lagrangian is described. Next, the complete model

uniting measurements and assumed dynamics is defined. To conclude this chapter is a

review of unscented Kalman filtering and an overview of the simulation test cases.

Chapter 4 discusses the results of simulating the complex attitude motion of the satellite,

then Chapter 5 covers first the vibrational mode detection results followed by the filtering

results. Finally, Chapter 6 discusses the implications of the prior chapters and offers

suggestions for future work.
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2. Theory

With the background and motivation for dual-latitude photometric estimation of

attitude, the problem must now be described in greater detail. This chapter will begin with

a review of the current photometric attitude estimation literature and an outline of the

proposed improvements. Following this, a review of the necessary fundamentals of

mechanics will be presented, covering the basics of Lagrangians, attitude dynamics,

Eulerian mechanics (AKA rigid body mechanics), low-gravity fluid mechanics,

Euler-Bernoulli beam vibration, and finally a dense discussion of orbital mechanics. After

this, the details of reflectance modeling and photometric, polarimetric, and astrometric

data acquisition through imaging will be explained and their connection to spacecraft

attitude states will be defined. Finally, there is a short review of reference systems and

coordinate transformations, followed by a brief description of the GOES-R series of

geostationary weather satellites.

2.1. Attitude Estimation From Photometry

For nearly two decades, light curves have been used in astronomy to estimate the

shapes and sizes of asteroids (Kaasalainen & Torppa, 2001; Kaasalainen, Torppa, &

Muinonen, 2001). The general technique has been to first assume some dynamical model

relating the motion of the asteroid within its own frame, then relate this to the variations in

brightness. When the rotation and light scattering properties are known, there exists a

unique shape which will create any given light curve. Extending the estimated parameters

to include the rotation and scattering properties was, in this instance, a matter of

performing a grid search over the possible values until finding a solution to match the

measurements. This is largely possible because asteroids are convex bodies and the

algorithms used converge robustly toward the same unique solution when parameters are

correct. While there have likely been many refinements in this algorithm since then which
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are applicable to asteroids, this technique has been taken and adapted to estimation of the

shape, size, and rotation rates of RSOs.

By adapting the work of Crassidis (2003) in developing an unscented filter for attitude

estimation, it has been shown possible to use light curve inversion to estimate attitude

motion when the shape is well known (C. Wetterer & Jah, 2009). In a similar fashion to

the complete asteroid light curve inverse problem, this work has been extended to include

surface parameters, geometry, and other features by fusion of astrometric and photometric

data (Jah & Madler, 2007; Linares, Crassidis, Jah, & Kim, 2010; C. J. Wetterer, Chow,

Crassidis, Linares, & Jah, 2013). There can be difficulty in detecting the synodic

variations in brightness for high altitude RSOs, so shape-dependent analysis methods may

be preferable since they do not require detection of synodic variations (Hall & Kervin,

2014). There have been methods developed for determining the albedo, shape, and size of

high-altitude RSOs based only on temporal photometry (Hall, Calef, Knox, Bolden, &

Kervin, 2007; Hejduk, Cowardin, & Stansbery, 2012), so these parameters will be

assumed known to a level of certainty which allows for a simple shape model of the

satellite. Hejduk (2007) showed that deep-space orbital debris objects have different

photometric properties from other spacecraft types, so it can be assumed that an object of

interest is known to be an operational satellite.

While the majority of the aforementioned papers show a great deal of promise, a

number of attitude observability studies have been performed and make the outlook

appear more grim. First, the chosen model for reflectance will have a significant impact

on the brightness predictions (Subbarao & Henderson, 2019). This can be problematic,

since determining with certainty which model is “best” for any given task is not a simple

task. For the sake of development, the most commonly used model in SSA applications

will be adopted for this thesis, namely that of Ashikhmin and Shirley (2000). Using this

reflectance model as a performance baseline, Hinks, Linares, and Crassidis (2013) showed
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that the observability of local disturbances depends on the projected attitude angles of the

object itself.

To begin discussion of improvements, define the Fisher Information Matrix (FIM) as,

FIM = E

#
B
Bx ln p(y|x)

T B
Bx ln p(y|x)

+
(2.1)

where x denotes an arbitrary vector of system states to be estimated, and y denotes a

vector of measurements which depend on x. The FIM serves as a means of quantifying the

total amount of information about the system states contained in a collection of

measurements, and its inverse is the Cramèr-Rao lower bound on the state estimation error

covariance Q (Crassidis & Junkins, 2012):

Q = E (x´ x̂)(x´ x̂)T
(
ě FIM´1 (2.2)

The above inequality, known as the Cramér-Rao rule, suggests from an intuitive

standpoint that a higher value of ||FIM || will yield a lower bound on estimation

covariance, and thus improve the observability of the attitude. The primary source of this

intuition is offered in the following lemma and proof.

Lemma. The inverse of a real-valued and positive definite matrix αA, where α ą 1 is a

real scalar, will have a lower norm than the inverse of the matrix A.

Proof. Define A : A P Rnˆn, A ą 0 and α : α P R, α ą 1. Then,

(αA)´1 =
1

α
A´1

Taking the norm of both sides,

(αA)´1 =
1

|α| A
´1
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but since α ą 1,

1

|α| A
´1 =

1

α
A´1

It is self-evident now that 1
α
A´1 ă A´1 since 1

α
ă 1. QED

The dependence of ||FIM || on attitude is shown more clearly in Figure 2.1, where the

log of the spectrum of FIM becomes large in two regions: first where the attitude

perturbation is small, and second where the attitude approaches the edges of the attitude

range which reflects light to the observer. On the edges, however, measurements may be

difficult since these correspond to extremely dim values of apparent magnitude as seen in

Figure 2.2.

Figure 2.1 Information Magnitude as a Function of Attitude (Hinks et al., 2013, p. 7).

Of note, this attitude information study was confined to measurements from a single

site, and thus the information matrix allows for only the given regions. There has been

some work which suggests that the convergence of orbit determination filters can be sped

up using dual-site observations, as shown in Figure 2.3 (Z. W. Henry, Vavala, Zuehlke,

Henderson, & Grage, 2020). While there has been some work done on simultaneous
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Figure 2.2 Apparent Brightness as a Function of Attitude (Hinks et al., 2013, p. 4).

dual-site brightness observations (Fulcoly, Kalamaroff, & Chun, 2012; Gasdia, Barjatya,

& Bilardi, 2017), it has not yet included extensive analysis of improved observability of

attitude states or of state estimate convergence speed. Knowing all of this, the problem to

be investigated in the present work is the improved observability of attitude motion from

dual-latitude simultaneous observations. Should the attitude states become significantly

more visible to the analyst, multi-site observations could become essential to the future of

spacecraft characterization.

An additional measurement which could increase ||FIM || may be the polarization

states of the reflected light, since the degree of polarization is not completely dependent

on the total amount of reflected light and there are additional effects to consider. There is

currently research being performed which investigates both spacecraft seismology and

attitude/material estimation by using polarimetric remote sensing techniques. These

papers are relatively new and there is a significant amount of research to be done in these

areas. For example, Watson and Hart (2017); Watson, Hart, Hilton, Codona, and Pereira

(2018) were able to reconstruct audio signals from surface acoustics of a metal object

which were detected using only an optical polarimeter. This is promising, since it has been
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Figure 2.3 Percent error in estimated position for single-site and dual-site filtering
(Z. W. Henry, Vavala, et al., 2020).

suggested that photometry may be insufficient for detecting these small-amplitude seismic

activities (Z. W. Henry, Udrea, et al., 2020). In further support of polarimetric

investigation, Dianetti and Crassidis (2019) showed a promising result that surface

materials may be accurately and reliably determined from polarized light curves. Given

this aforementioned work, it is worth investigating the effects of polarimetric remote

sensing on satellite attitude observability and seismic detection.

Northern hemisphere dual-latitude observation geometry is shown in Figure 2.4,

where, from the Earth center, r1 and r2 point to the northern and southern observer,

respectively. Note that the RSO position vector r
E
and the range vectors ρ1 and ρ2 which

point from each site to the RSO are not necessarily in the same plane as r1 and r2. Such an

Figure 2.4 Dual-latitude observation geometry (Z. W. Henry, Vavala, et al., 2020).
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observation geometry could extend the range of observable states from brightness alone,

forming a basis for this thesis. It is predicted that, given some angle γ3 between ρ1 and ρ2,

there will be an increased attitude observability range. This will be tested by developing a

mathematical model of measurements and satellite dynamics, followed by simulation of

observations of an object perturbed by solar panel vibrations and propellant slosh. Finally,

this will be compared to data collected on the GOES 16 satellite using a real telescope

located atop the MicaPlex building at the Daytona Beach campus of Embry-Riddle.

2.2. Fundamentals of Mechanics

This section will provide an overview of the fundamentals of mechanics which are

required for understanding the derivation of the satellite attitude equations of motion. It

thus offers no novel results, but its contents are presented due to their importance for

understanding the later developments. The most important results from many sources of

general mechanics information will be presented in this chapter (Goldstein, 1980; Hughes,

2004; Lanczos, 1970; Meirovitch, 2003; Schaub & Junkins, 2018). The latter reference is

particularly useful for mechanics as it pertains to space vehicles, and Hughes is a

specialized text for spacecraft attitude dynamics. The rest are more general, but their

contents are useful and insightful nonetheless.

There are two primary goals of solving problems in dynamics: to describe the motion

of a body or system of bodies, and to predict the motion. Both of these can be difficult to

achieve when systems become complex, so several systematic methods of setting up and

solving for motion have been developed throughout history. The best known is the method

of Sir Isaac Newton due to the ingenious description of motion in terms of three universal

laws, most importantly that motion is the result of unbalanced external forces. Although

Newton’s method for solving dynamics problems is intuitive for small systems, it can

become rapidly complex when considering many objects whose motion depends not only

on each other but also on the externally applied forces. Thus arose the need for a more
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holistic approach to the problems of mechanics which was eventually met by

Joseph-Louis Lagrange in his generalization of mechanics to arbitrary systems.

In Lagrange’s formulation of dynamics, he derived using the methods of the calculus

of variations a scalar quantity dependent on the kinetic energy and potential energy of the

system as a whole. This came to be known as the Lagrangian, which will be denoted as L.

It is defined as,

L = T ´ V (2.3)

where T and V are respectively the total kinetic and potential energy of the entire system.

Additionally, Lagrange showed that from L, the ith equation of motion can be computed

directly as,

d

dt

BL
Bq̇i

´ BLBqi
= Qi (2.4)

where qi are generalized coordinates and Qi are generalized forces derived from

nonconservative external influences. This method provides a benefit over Newton’s vector

method since there is no need to consider the internal forces between particles, it requires

kinematics only on the level of velocity, and it involves only the scalar-valued function L.

There are some situations for which Newton’s method is superior, but it becomes

exceedingly tedious when a system becomes more complex. Of interest in this study is the

attitude motion of a spacecraft as a result of several internally-generated torques, so the

methods of Lagrange will be used to set up the dynamical model.

While Equation 2.4 is an incredibly useful tool, it is not always the best approach to

solving the problems of dynamics in its basic form. In the case of attitude dynamics,

where one might wish to express the motion in terms of attitude quaternions (i.e. Euler

parameters), it can be more efficient to make use of the so-called “quasi-coordinates”

which arise when selecting how to represent the velocity or acceleration before the
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displacement. For this formulation, Equation 2.4 takes the form (Meirovitch, 2003),

d

dt

BT
Bω + [ω̃]

BT
Bω = Q (2.5)

where ω may be integrated to get the quasi-coordinates and [ω̃] is the skew-symmetric

cross-product matrix:

[ω̃] ”





0 ´ω3 ω2

ω3 0 ´ω1

´ω2 ω1 0




. (2.6)

In the case of attitude mechanics, the components of ω refer to the angular velocities of

the body as described in the body-fixed frame. It is numerically convenient to express the

attitude in terms of quaternions (i.e. Euler parameters) since they are non-singular in their

description of attitude. For a given rotation angle Φ about some principal axis of rotation

ê, the quaternion vector is defined as (Schaub & Junkins, 2018),

β =





β0

β1

β2

β3





=





cos (Φ/2)

e1 sin (Φ/2)

e2 sin (Φ/2)

e3 sin (Φ/2)





(2.7)

subject to the constraint,

β20 + β
2
1 + β

2
2 + β

2
3 = 1 (2.8)
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First defining the following matrix,

B(β) =





´β1 ´β2 ´β3

β0 ´β3 β2

β3 β0 ´β1

´β2 β1 β0





(2.9)

the quaternions are related to the body-frame angular velocities by the kinematic equation,

β̇ =
1

2
B(β)ω (2.10)

An assumption which will be made for several components of this system is that there

is no relative motion between the mass elements of a continuous body, i.e. they will be

assumed to be rigid bodies. This assumption can be made for the main body of the

spacecraft and to some extent for the solar panels. When the vibrations are small (as they

often are), large-scale motion of the solar panels of a body can be predicted under a

rigid-body assumption, and the effects of vibrations may be applied as torques which act

on the spacecraft as a whole. The kinetic energy of an infinitesimal mass element of any

body is,

dT =
1

2
ṙ ¨ ṙdm (2.11)

which leads to a closed-form expression for the kinetic energy of the entire body:

T =
1

2

ż

B

ṙ ¨ ṙdm (2.12)

where ṙ represents the velocity of each mass element dm in an inertial frame N . By the

transport theorem, this can be expressed as (Schaub and Junkins, 2018),

N ṙ = B ṙ+ Nω
B
ˆ r (2.13)
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where the superscripts denote the reference frames in which each vector is described, and

the subscript B denotes the body being described. Because each mass element of a rigid

body does not move with respect to its body-fixed frame, B ṙ = 0 and thus T takes the

form,

T =
1

2

ż

B

(Nω
B
ˆ Nr) ¨ (Nω

B
ˆ Nr)dm (2.14)

This may also be written as,

T =
1

2

ż

B

NωT
B

N r̃ T N r̃ Nω
B
dm (2.15)

where [r̃] is the skew-symmetric cross-product matrix corresponding to r. The absence of

relative motion between the mass elements in the body-fixed frame also implies that Nω
B

is constant across the body, so the kinetic energy simply takes the form,

T =
1

2
NωT

B

ż

B

N r̃ T N r̃ dm Nω
B
” 1
2
NωT

B

NIB
Nω

B
(2.16)

Here, the integral term defines the mass moment of inertia for the body. This may also be

computed from the center of mass of the body at rcg by applying the parallel axis theorem:

NIB =
BIB +M [r̃cg][r̃cg]T (2.17)

whereM is the total mass of the body. From here, it is a simple task to obtain the kinetic

energy of any rigid body. By combining Equations 2.16 and 2.17, the kinetic energy of

any rigid body B is as follows:

TB =
1

2
NωT

B

BIB +M [r̃cg][r̃cg]T Nω
B

(2.18)
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2.3. Mechanics of Slosh

Before explaining the energy contributions of slosh to the Lagrangian, it will be useful

to explain what is meant by the term “slosh” in the case of space vehicles. While the key

results for slosh modeling will be presented here, a more thorough treatment of propellant

slosh is contained in the NASA monograph entitled The Dynamic Behavior of Liquids in

Moving Containers (Abramson, 1966) or its updated version (Dodge, 2000). In

microgravity, the “sloshing” of propellant most frequently refers not to large-amplitude

motion of the fluid center of mass, but rather to the small-scale motion of the its free

surface. This motion is highly nonlinear and there has yet to be any closed-form solution

for it, but a number of approximations have entered the literature and become standard for

estimating the effects of propellant slosh. One such approximation is that of a mass spring

dampener (MSD) lumped-parameter system with a portion of the propellant mass

assumed stationary, and the fluid assumed to be composed of several linear MSD systems,

as shown in Figure 2.5. For the sake of space, the details for calculating the model

parameters will not be presented here and the results alone are instead shown in Table 2.1.

Figure 2.5Mass-spring-dampener approximation model for propellant slosh (Dodge, 2000,
p. 44).



17

Table 2.1

Model Parameters for computing slosh motion in a cylindrical tank (Abramson, 1966).

Parameter Value
Spring Constant, K mliq

g
1.19h

tanh 3.68h
d

2

Slosh mass, m mliq
d
4.4h

tanh 3.68h
d

Stationary Mass, m0 mliq ´m
Distance fromm to surface, l d

3.68
tanh 3.68h

d

Distance fromm0 to surface, l0
mliq
m0

h
d
´ d2

8h
´ l m

m0

This model assumes that the Bond number–a measure of the relative importance of

inertial versus capillary and surface tension forces–is sufficiently low that the fluid will

remain fairly stationary and essentially be “stuck” to the sides of the tank. The Bond

number is defined to be,

Bo =
ρgr2

σ
(2.19)

where ρ is the fluid density, g is the net acceleration of the spacecraft, r is the

characteristic radius, and σ is the surface tension. In general, there will be some critical

Bond number Bocrit at which the fluid interface becomes unstable and there is a large shift

in the fluid center of mass. The computation of Bocrit depends greatly on the properties of

the fluid and on the shape of the tank, but can be expected to be between 1 and 3 for a

variety of conditions (Dodge, 2000). Because g will certainly be very low for an orbiting

satellite under nominal conditions, it will be assumed that Bo ” Bocrit for the purposes of

simulation and the bulk of the fluid acceleration will be assumed due to surface tension

forces such that Equation 2.19 may be rearranged to be,

g = Bocrit
σ

ρr2
(2.20)

To justify the use of Equation 2.20 for the restorative acceleration, the Cassini

spacecraft propellant tanks were roughly shaped and assumed 40% then 70% full. The
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slosh frequencies for nitrogen tetraoxide (NTO) in the oxidizer tank and

monomethylhydrazine (MMH) in the fuel tank were calculated. These values were then

compared to those predicted by Enright and Wong (1994) and those actually measured by

Lee and Stupik (2015). These are presented in Tables 2.2 and 2.3, and it is clear that the

use of Equation 2.20 is justifiable for creating a “ballpark” estimate of the slosh for the

purposes of this system.

Table 2.2

Comparison of predicted slosh frequency to prior results for Cassini spacecraft at 40% fill.

Equation 2.20 Enright and Wong Lee and Stupik
NTO 2.914 mHz 2.9 mHz 2.81 mHz
MMH 4.512 mHz 4.5 mHz 4.36 mHz

Table 2.3

Comparison of predicted slosh frequency to prior results for Cassini spacecraft at 70% fill.

Equation 2.20 Enright and Wong Lee and Stupik
NTO 3.081 mHz 3.2 mHz 3.30 mHz
MMH 4.771 mHz 5.1 mHz 5.12 mHz

2.4. Euler-Bernoulli Beams

The contributions of the solar panel vibrations to the attitude motion of the spacecraft

can be approximated using an Euler-Bernoulli beam. Euler-Bernoulli beam theory arises

as a simplification of continuum mechanics which applies to small deflections of a beam

subject only to lateral loads. It is applicable here because generally a solar panel will not

have large-amplitude vibrations, and the shape of the panel largely confines any

deflections to the direction normal to its surface. See Junkins and Kim (1993) and

Meirovitch (1967) for more information. To arrive at this, we note that for a rotating hub

with a flexible body attached to it that (Schaub & Junkins, 2018),

Tpanel =
1

2
Ihubθ̇

2 +
1

2

ż L

r0

ρA(ẏ + xθ̇)2dx (2.21)
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Vpanel =
1

2

ż L

r0

EI(y2)2dx (2.22)

Figure 2.6 Euler-Bernoulli beam on a rotating hub (Junkins and Kim, 1993, p. 157).

where x is the coordinate along the panel neutral axis p̂1, y = y(x, t) is the displacement

of the panel from that axis in the p̂3 direction, and θ̇ is the component of hub rotation

normal to the surface of the solar panel. Because the solar panel of GOES 16 resembles a

cantilevered beam, the appropriate boundary conditions are,

y(r0, t) = 0 y1(r0, t) = 0

y2(L, t) = 0 y3(L, t) = 0

By assuming a quadratic lumped-parameter approximation of mode shapes φ(x) with n

modes and that y(x, t) is expressable as,

y(x, t) =
nÿ

k=1

φk(x)qk(t), (2.23)

the equation of motion for the solar panel becomes,

[M ]q̈+ [K]´ θ̇2(´2[H ]´ [M ]) q = ´θ̈N (2.24)
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where q is a vector of time functions to be solved for, and first defining,

ψij = ´
1

2

ż x

0

φ1iφ
1
jdz, (2.25)

the matrices [M ], [H], and [K] are square with elements defined as,

Mij =

ż L

0

ρφiφjdx (2.26)

Kij =

ż L

0

EIφ2iφ
2
jdx (2.27)

Hij =

ż L

0

ρ(R + x)ψijdx (2.28)

and N is a vector with components,

Ni =

ż L

0

(R + x)φidx. (2.29)

Now by assuming the vibrational mode shape to be,

φk(x) =
x

L

k+1

, (2.30)

Equations 2.26–2.29 become,

Mij =
ρL

i + j + 3
(2.31)

Kij = EI
ij(i+ 1)(j + 1)

L3(i+ j ´ 1) (2.32)

Hij = ´
ρ(i + 1)(j + 1)L

4(i+ j + 1)
(2.33)

Ni =
L2

i+ 3
(2.34)
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These matrices may now be computed for any order n when the dimensions and material

properties of the solar panel are known.

2.5. Orbital Mechanics

Because the orbital motion and attitude motion are to be assumed decoupled, the

orbital motion can be simulated by direct numerical integration of the equation of orbital

motion. By defining the inertial position vector of the satellite in Cartesian coordinates as,

r = x y z

T

(2.35)

the equation of motion may be written as,

r̈ = ´ µC||r||3 r+ ad (2.36)

where µC = 398, 600.44 km3s´2 is the gravitational parameter and ad is a vector of

disturbance terms, which may include things such as the effects of Earth’s oblateness, and

solar radiation pressure. If these two are considered, the disturbance term will take the

form,

ad = aJ2 + asrp (2.37)

where aJ2 represents the oblateness effects computed for J2. Higher-order oblateness

terms (J3, J4, ...) are left out since their contribution is several orders of magnitude lower

than the already tiny effects from J2. With only this disturbance term, aJ2 becomes,

aJ2 = ´
3

2
J2µC

R2C
||r||4





1´ 5 xz2||r||3

1´ 5 yz2||r||3

3´ 5 z3||r||3




(2.38)

RC = 6378.1 km is the mean equatorial radius for Earth. While the J2 perturbation does

play a role, the largest perterbative contributor at geostationary altitude is that of solar
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radiation pressure, which can be written in the form,

asrp = ´
psrpcrA@
m

r@/sat
||r@/sat||

(2.39)

where psrp = 4.57ˆ 10´6 N/m2 is the solar pressure per unit area, cr P [0, 2] is the

effective reflectivity of the spacecraft,A@ is the exposed area to the Sun, and r@/sat is the

vector from the satellite to the Sun. In practice, cr is difficult to determine since it varies

with time and material properties. A value of 0 represents full transmission of the light, 1

represents a perfect black body where all light is absorbed, and a value of 2 represents a

perfectly reflective surface.

2.6. Photometry and Reflectance Modeling

When observing any kind of object in space–human-made or not–with which no direct

communication exists, the only available source of information about it which is

obtainable from ground-based observation is the light radiated or reflected by it. There are

several techniques of data collection and analysis which can be used to draw conclusions,

but a common method is to measure the total radiation intensity over some wavelength

region–e.g. visible light, I-band, etc. Referred to as photometry, this discipline has, in a

broad sense, existed since the Greek astronomer Hipparchus first introduced the concept

of stellar magnitudes in the second century BC. While his original work was more or less

subjective guesswork, the now logarithmically defined stellar magnitude scale has

continued to exist through today as the method of describing the relative intensity of light

emitted by stars, and has been extended to include objects such as asteroids and RSOs.

When analyzing photometric data, there is not always a known object for comparison,

so generally the object is compared to some assumed-unchanging object in the image, be

it a star or even the background radiation. The magnitude difference ∆M between two

objects in some wavelength window is given by (Roth, 2009),

∆M = M1 ´M2 = ´2.5 log10
Φ1
Φ2

(2.40)
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where Φ1 and Φ2 represent the total radiation fluxes of the two objects in the given time

window. In the case of RSOs, most light which is detected by the photometer is reflected

directly from the Sun which has a known visual magnitude Msun = ´26.74 (Williams,

2018) and visible-light flux Csun = 455 W
m2 , leading to an expression for the magnitude of

the RSO in terms of Fobs, which the fraction of light reflected off an object as seen by the

observer (Dianetti, Weisman, & Crassidis, 2018),

M =Msun ´ 2.5 log10
Fobs
Csun

(2.41)

When a body has several facets from which it may reflect light as is the case for

essentially every human-made object, Fobs becomes a sum over all nf facets such that the

magnitude is given by,

M =Msun ´ 2.5 log10
nfÿ

k=1

Fobs,k
Csun

(2.42)

Computation of each Fobs,k is a science in and of itself, and the reflectance models in

use were by and large developed in the computer graphics community. Before proceeding

with the model to be used in this thesis, the model developed by Cook and Torrance (1982)

along with its associated notation will be reviewed due to its relative simplicity in order to

develop an intuition for reflectance. Following this, the reflectance model to be applied

will be described in detail. The geometry of reflection is shown in Figure 2.7 along with

the unit vectors along the surface normal of a facet N, along the direction toward the

incident light source L, along the direction toward the observer V, and the angle bisector

of V and L, H. The angles α and θ are given by cosα = H ¨N and cos θ = H ¨V = H ¨ L.

For development, note that if each facet has a unit normal vector described in the body

frame BNk, this vector may be rotated to the inertial frame by the transformation,

NNk = CNB(β)BNk (2.43)
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where CNB(β) is the transformation matrix from frame B to frame N as a function of the

attitude quaternion:

CNB(β) =





β20 + β
2
1 ´ β22 ´ β23 2(β1β2 + β0β3) 2(β1β3 ´ β0β2)

2(β1β2 ´ β0β3) β20 ´ β21 + β22 ´ β23 2(β2β3 + β0β1)

2(β1β3 + β0β2) 2(β2β3 ´ β0β1) β20 ´ β21 ´ β22 + β23




(2.44)

For ease of notation, NNk will simply be denoted by N and the reflectance model will be

for a single facet.

Figure 2.7 Geometry of reflection (Cook & Torrance, 1982, p. 9).

Defining now the solid angle dωi as the projected area of the light source divided by

the square of the distance to the source, the reflected intensity reaching the viewer from

each light source is

Ir = RIi(N ¨ L)dωi (2.45)

where Ii is the incident light intensity and R is the bidirectional reflectance, defined to be

the ratio of reflected intensity in a given direction to the energy of the incident light. R

may generally be expressed as a linear combination of two components, the specular

reflectance Rs and the diffuse reflectanceRd:

R = sRs + dRd (2.46)
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where s+ d = 1. The specular reflectance represents the light which is reflected off the

surface of the material, whereas the diffuse reflectance represents either the light which

first penetrates beneath the material and scatters before emerging or the light from

multiple surface reflections which occur for significantly rough surfaces. In the case of

electrical conductors such as metals, there is essentially zero depth penetration due to

reemission of electromagnetic waves caused by near-surface electron excitation. This

means that reflection effectively occurs at the surface and the diffuse component may be

assumed null when the surface roughness is sufficiently low, such that R = Rs.

In addition to direct illumination from individual sources, background lighting may

cause illumination of the object of interest (e.g. starlight or Earthshine). This is called

ambient illumination, and may often be assumed uniform over the hemisphere of

illuminating angles. The reflected intensity due to ambient illumination is,

Ira = RaIiaf (2.47)

where,

f =
1

π

ż

S

(N ¨ L)dωi (2.48)

is the fraction of the illuminating hemisphere which is not blocked by nearby objects. The

domain of integration is the unblocked portion. Thus, the reflected intensity is,

Ir = RaIiaf +
ÿ

k

Iik(N ¨ Lk)dωikRs (2.49)

which accounts for multiple direct illumination sources as well as the ambient

illumination. In this particular case, the Sun will be the only source of light to be

considered so that the summation has only a single term and the reflected intensity

becomes,

Ir = RaIiaf + Ii(N ¨ L)dωiRs (2.50)
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While this approach is intuitively satisfying, what it has in ease of understanding it

lacks in ease of implementation. In order to shape the specular lobe, it requires the

surfaces of the spacecraft to have some degree of roughness attributed to them, which in

turn requires more complex and expensive modeling and simulation. For this reason, to

find an expression for Fobs,k in Equation 2.42, a different approach to the above will be

employed since it is not only more straight forward to implemene, but also because it has

been used many times before and has shown to predict measured brightnesses fairly well

(Z. W. Henry, Vavala, et al., 2020). First, the Fresnel reflectance F is given by the Fresnel

equation for unpolarized incident light (Schlick, 1994):

F (c) =
1

2

(a´ c)2 + b2
(a+ c)2 + b2

1 +
(a+ c´ 1/c)2 + b2
(a´ c+ 1/c)2 + b2 (2.51)

where c ” cos θ = H ¨ V, and a and b are given by,

a2 =
1

2

a
(n2 ´ k2 + c2 ´ 1)2 + 4n2k2 + n2 ´ k2 + u2 ´ 1

b2 =
1

2

a
(n2 ´ k2 + c2 ´ 1)2 + 4n2k2 ´ n2 + k2 ´ u2 + 1

Because the distribution of n and k are seldom known for all wavelengths and are

frequently available only for select values in the middle of the visible light spectrum, the

angular dependence of F at some wavelength λ may be approximated as,

F (c, λ) = F (1, λ) + (1´ F (1, λ)) F̄ (c)´ F (1, λ)
1´ F0

(2.52)

where F̄ (c) is computed using Equation 2.51 by choosing experimentally determined

values of n and k at a given wavelength, and F (1, λ) is the Fresnel factor or reflectance at

normal incidence for the wavelength of interest. Noting that the main difference in
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Equation 2.52 is when c arrives at 1, Schlick made the further approximation,

F (c, λ) = F (1, λ) + (1´ F (1, λ))(1´ c)5 (2.53)

so that F only depends on F (1, λ). This may then be used in a bidirectional reflectance

distribution function (BRDF), which in a similar fashion to R may be written as a sum of

both a specular and a diffuse term:

ρ = ρs + ρd (2.54)

The BRDF model to be used is that developed by Ashikhmin and Shirley (2000), since it

has been used extensively for attitude estimation (Hinks et al., 2013; Subbarao &

Henderson, 2019) and has been shown to be the best fit for measured BRDFs (Ngan,

Durand, & Matusik, 2005). The specular term for this BRDF model is given by,

ρs(L,V) =
a
(ni + 1)(nj + 1)

8π

(N ¨H)z
(N ¨ V) + (N ¨ L)´ (N ¨ V)(N ¨ L)F (c, λ) (2.55)

where,

z =
ni(H ¨ i)2 + nj(H ¨ j)2
1´ (H ¨ N)2 (2.56)

The vectors i and j are unit vectors parallel to the facet surface, and form an orthonormal

basis with N. The terms ni and nj are user inputs to the reflectance model which control

the shape of the specular lobe. When ni ‰ nj , the model can give an appearance of a

“brushed” surface, as in Figure 2.8. In contrast to the diffuse term in the previous

development referring to light which transmits through the surface before being reemitted,

the diffuse term here refers to light which is reflected equally in all directions. The diffuse

part of the BRDF is given by,

ρd(L,V) =
28Rd
23π
(1´Rs) 1´ 1´ N ¨ L

2

5

1´ 1´ N ¨ V
2

5

(2.57)
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With both of these terms, ρ(L,V) may be used to compute Fobs,k :

Fobs,k = ρ
Csun(L ¨ Nk)Ak(V ¨ Nk)

d2
(2.58)

where Ak is the total area of the kth facet and d is the distance from the object to the

observer. Thus, the visual magnitude of the RSO is given by,

Mv = ´26.74´ 2.5 log10
nfÿ

k=1

ρ
(L ¨ Nk)(V ¨ Nk)

d2
Ak (2.59)

where nf is the total number of facets for the spacecraft model.

In case it is not immediately apparent to the reader, a clear benefit to this approach

over that of Cook and Torrance is that the shape and size of the specular lobe (i.e. the

“blob” of glint) is controlled entirely by the two parameters ni and nj , as opposed to a

requirement of surface generation using hundreds or thousands of randomly oriented

facets on each spacecraft face. For one thing, this would clearly increase the total number

of required computations. For another, it complicates the reshaping of the specular lobe.

Thus, there is a significant benefit to the implementation process for the Ashikhmin and

Shirley model over that of Cook and Torrance.



29

Figure 2.8 Metallic spheres for various values of ni (horizontal) and nj (vertical)
(Ashikhmin & Shirley, 2000, p. 27).

2.7. Polarimetric Modeling

A further extension of the information from reflected light can be found in its

polarization, since light which is reflected off a surface may often become polarized. To

begin this discussion, there is first a review of the basic wave-like description of

electromagnetic energy. Much of this review comes from Schott (2009) and Hapke

(2012), and those texts should be consulted for more detailed descriptions. The field

strength at any location along the propagation direction z and time t at a particular

wavelength λ may be expressed as,

εx(z, t, λ) = ε0x sin ωt´ 2π
z

λ
+ φx (2.60a)

εy(z, t, λ) = ε0y sin ωt´ 2π
z

λ
+ φy (2.60b)

where φx and φy are the phase shift parameters, x is in the direction perpendicular to the

plane of propagation, y in the direction parallel to the plane of propagation but normal to

the direction of propagation, and ε0x and ε0y are the maximum amplitudes for each of the
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directions. By letting φ = φy ´ φx represent the phase shift between the x and y

components, the electromagnetic vector traces out a polarization ellipse which can be

implicitly described by the following equation:

ε2x
ε20x
+
ε2y
ε20y
´ 2εxεy
ε0xε0y

cosφ = sinφ (2.61)

Figure 2.9 Polarization ellipse.

The polarization ellipse, depicted in Figure 2.9, has its major axis oriented at an angle ψ,

where,

tan 2ψ =
2ε0xε0y
ε20x ´ ε20y

(2.62)
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A convenient and concise way of representing the polarization states is using the Stokes

vector, which is defined as,

S =





I

Q

U

V





=





ε20x + ε
2
0y

ε20x ´ ε20y

2ε0xε0y cosφ

2ε0xε0y sinφ





(2.63)

where I denotes the total intensity, Q denotes the 0˝ and 90˝ linear polarization states, U

denotes the +45˝ and ´45˝ polarization states, and V denotes the circular polarization.

Intuitively, the linear polarization states describe the dominance of one orientation over

another and the circular polarization state–which arises due to partial absorption of

electromagnetic energy before reemission–describes the relative phase shift between the

orientations. For metals, which have primarily specular reflection off many randomly

oriented surfaces, this effect is largely negligible and the x and y components can be

assumed to have the same phase angle.

The Stokes vector is frequently normalized to the intensity such that,

S =





1

Q/I

U/I

V /I





(2.64)
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Given now the normalized Stokes vector of a ray Si incident on a surface which is then

reflected by some angle θr, define R(θr) to be the rotation matrix given by,

R(θr) =





1 0 0 0

0 cos 2θr ´ sin 2θr 0

0 sin 2θr cos 2θr 0

0 0 0 1





(2.65)

The Stokes vector of the reflected light is then given by,

Sr = R(θr)MSi (2.66)

where whereM is the Mueller matrix of the surface (Chang et al., 2002). The Mueller

matrix is a means of quantifying the polarimetric effects of the interface between two

mediums with different indices of refraction, and for Fresnel reflectance of an incident

beam it is given by,

M =
1

2





RK + R RK ´ R 0 0

RK ´ R RK + R 0 0

0 0 2Re(rKr
˚) 2Im(rKr

˚)

0 0 ´2Im(rKr˚) 2Re(rKr˚)





(2.67)

where RK = |rK|2 and R = |r2| are the reflectance coefficients corresponding to the

perpendicular and parallel components of reflection. Given the complex coefficient of

refraction n = nr + nii, these reflectances are,

RK =
[cos θ ´G1]2 +G22
[cos θ +G1]2 +G22

(2.68)

R =
[n2 cos θ ´G1]2 + [2nrni cos θ ´G2]2

[n2 cos θ +G1]2 + [2nrni cos θ +G2]2
(2.69)
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where,

G21 =
1

2

"
n2 ´ sin2 θ + n2 ´ sin2 θ 2 + 4n2rn

2
i

1/2
*

(2.70)

and,

G22 =
1

2

"
´ n2 ´ sin2 θ + n2 ´ sin2 θ 2 + 4n2rn2i

1/2
*

(2.71)

In the context of SSA, the primary source of illumination will be the Sun, whose

emitted light is mostly randomly polarized (i.e. non-polarized). This indicates that the

incident Stokes vector on an RSO surface will be given by,

Si =





1

0

0

0





(2.72)

and therefore, by carrying out the operation in Equation 2.66, the Stokes vector reflected

off some surface toward a polarimeter is given by,

Sr =
1

2





R +RK

(R ´ RK) cos 2θr

(R ´ RK) sin 2θr

0





(2.73)

Because Equation 2.73 considers reflection off a single surface, some further

consideration must be made to predict the “total” Stokes vector which considers every

surface. First, assume it is of the form,
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Sr,total =
nfÿ

k=1

wkSr,k (2.74)

where wk denotes some unknown weight for the reflected Stokes vector from each

surface, and nf once again denotes the total number of faces. Noting that the Stokes

vector is normalized to the total intensity, the weight corresponding to face k may be

assumed to be given by the ratio of the reflected intensity from face k to the total

measured intensity of light from the BRDF. Under this assumption, from the flux portion

of Equation 2.59, we arrive at,

wk =
ρk
(L¨Nk)(V¨Nk)

d2
Ak

řnf
j=1 ρj

(L¨Nj)(V¨Nj)
d2

Aj
=

ρk(L ¨ Nk)(V ¨ Nk)Akřnf
j=1 ρj(L ¨ Nj)(V ¨ Nj)Aj

(2.75)

Thus, the process of computing the Stokes vector incident on the polarimeter is

summarized as follows:

1. Find θr for each surface from Nk ¨ V

2. Compute R and RK given n = nr + nii for some material

3. Compute Sr,k for each surface

4. Find appropriate weights wk based on flux from each respective surface

5. Weight and sum all contributions to get Sr,total

This of course does not account for instrumental polarization and noise, which must often

be modeled and corrected for (Snik & Keller, 2013). For the purposes of this thesis, it will

be assumed that these effects are accounted for and that the system has a polarimetric

sensitivity on the order of 10´4.

2.8. From Images to Astrometric and Photometric Data

Fundamentally, the task of collecting and processing on-sky images of a known object

into useful data is fairly straight-forward. Because the object is in this case geostationary,
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the electro-optical tracking system may be turned off once the object is centered. From

here, the image integration time and gain are adjusted until an appropriate signal-to-noise

ratio (SNR) is achieved. Once this is accomplished, an image set may be collected for as

long as weather permits. To get from the image set to a set of useful numbers, a few things

must be noted.

Figure 2.10 Sample frame used to identify objects and platesolve (Z. W. Henry, Vavala, et
al., 2020).

First, the stars are practically stationary in the J2000 inertial frame. This means that

any RSO is going to move in a significantly different direction and speed to the stars. The

second thing to note is that there are most likely to be more stars in an image than there are

RSOs. This is perhaps obvious, but is nonetheless fundamental to the correlation of data

between frames. Third, the geocentric RA and DEC of any star is going to be effectively

the same as the topocentric RA and DEC. Because plate solved astrometric data is output

in the geocentric reference frame, this means that the measured RA and DEC of the RSO

is in actuality going to be in the topocentric frame.

The first two points allow for an RSO to be classified as any object in the frame whose

change in position relative to the previous frame differs greatly from that of the stars. To

draw an analogy, this is akin to the blink comparator, a classical astronomical tool which
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has been used to discover asteroids and other planetary bodies. A sample image

containing GOES-16 and two other objects is shown in Figure 2.10. GOES-16 was

identified in this image as the bottom-most object using the orbit visualization tool on

Celestrak (Kelso, 2020). The other two objects are the Brazilian geosynchronous satellites

SGDC (top) and Star One C3 (middle).

Figure 2.11 Digital aperture and sky background annulus around GOES-16 (Z. W. Henry,
Vavala, et al., 2020).

To measure the visual magnitude of the RSO, the standard method of digital

photometry is employed; comparing the object to a known star in the image after

plate-solving. This means summing the total number of analog-to-digital units (ADU) of

both the object and of the star, and the brightness of the object is then,

Mv,rso =Mv,ref ´ 2.5 log10
ADUrso
ADUref

(2.76)

whereMv,rso is the visual magnitude of the RSO andMv,ref is the visual magnitude of the

reference star. To define the edges of an object, for the sake of accurate and consistent

counting, the point-spread function (PSF) is assumed to be Gaussian. The digital aperture

radius is then selected to have three times the full-width half maximum (FWHM). Next,
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sky background is subtracted by defining an inner and outer annulus at four and five times

the FWHM, respectively. This region is assumed to be representative of the sky behind the

object for the purpose of background subtraction. A sample image of the digital aperture

around GOES-16 is shown in Figure 2.11. For details on RSO identification, inter-frame

correlation, and the remainder of the algorithm, see Z. W. Henry, Vavala, et al. (2020).

2.9. Reference Frames and Coordinate Transformations

For convenience, the frames may sometimes be expressed in vectrix notation, as in the

following example:

A ” â1 â2 â3

T

(2.77)

where âi are the orthonormal unit vectors of frame A, spanning R3. For details on the

properties of vectrices, refer either to Hughes (2004) or Shuster (1993). Following this

convention, the direction cosine matrix (DCM) to rotate any frame I to any frame J will

be denoted CJI and is defined as,

CJI = I ¨ JT =





î1 ¨ ĵ1 î1 ¨ ĵ2 î1 ¨ ĵ3

î2 ¨ ĵ1 î2 ¨ ĵ2 î2 ¨ ĵ3

î3 ¨ ĵ1 î3 ¨ ĵ2 î3 ¨ ĵ3




(2.78)

For example, the DCM to rotate from frame C to frame N (which will be useful later) is,

CNC = C ¨NT =





ĉ1 ¨ n̂1 ĉ1 ¨ n̂2 ĉ1 ¨ n̂3

ĉ2 ¨ n̂1 ĉ2 ¨ n̂2 ĉ2 ¨ n̂3

ĉ3 ¨ n̂1 ĉ3 ¨ n̂2 ĉ3 ¨ n̂3




=





cosΘ sinΘ 0

´ sinΘ cosΘ 0

0 0 1




(2.79)

A well-known and important property of the DCM is that the DCM to rotate from

frame I to frame J is the same as the DCM to rotate from frame I to some intermittent
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frameK premultiplied by the DCM from frame K to frame J :

CJI = CJKCKI (2.80)

This will allow for easy rotation of, say, the solar panel frame into the inertial frame via

the following DCM:

CNP = CNECEBCBP (2.81)

since each of these intermittent frames differ from each other by only a single angle.

2.10. Fractional Fourier Transform

A tool which has been revived and forgotten several times over the past century is

Fractional calculus, which generalizes the derivatives and integrals of functions to

arbitrary degree (Oldham & Spainer, 2006). The integer degrees (e.g. first or second

derivative) are, in the fractional sense, special cases of this more general formulation of

calculus. The theory is somewhat complex, but there have been many applications

discovered in the past few decades which are applicable in image processing, control

design, and signal processing. One of the useful tools which arose from the generalized

methods of fractional calculus is the fractional Fourier transform (FrFT), which has

allowed for lower cost implementation of non-model-based signal processing and filtering

(Sejdić, Djurović, & Stanković, 2011).

To make a long story short, the FrFT is a generalization of the Fourier transform to an

arbitrary degree α. It is common to let,

α =
aπ

2
(2.82)

and then define,

Aα ”
exp´iπsgn(sinα)/4 + iα/2

| sinα|1/2 (2.83)
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so that the FrFT of a signal f(t), denoted Fa tfu, can be expressed in terms of

0 ă |a| ă 2:

Fa tfu =
ż 8

´8
Ba(t, τ)f(τ)dτ (2.84)

where,

Ba(t, τ) = Aα exp iπ(t2 cotα ´ 2tτ cscα+ τ 2 cotα (2.85)

Of note, the above definition simplifies the ordinary Fourier tranform when a = 1 and the

inverse Fourier transform when a = ´1.

Figure 2.12 Rotation in time-frequency domain (Almeida, 1994, p. 3085).

The benefit to using a Fourier transform of fractional order is that the FrFT of a

function corresponds to a rotation of its Wigner-Ville distribution function (WVDF) in the

time-frequency domain to dependence on a new coordinate system (u, v), as in Figure

2.12. Hence, it provides time and frequency information about a signal. The Wigner-Ville

distribution of a function f is defined as,

Wf(t, ω) =

ż 8

´8
f(t+ τ/2)f˚(t´ τ/2)e´2πωτi (2.86)
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where ω denotes the frequency, i is the complex variable, and f˚ denotes the complex

conjugate of f . After applying the FrFT to f , the WVDF in the rotated coordinate system

is given by,

Wfa(u, v) =Wf(t cosα ´ ω sinα, t sinα+ ω cosα) (2.87)

This can be advantageous in that a partial rotation can be used to maximize the amplitude

of a signal in the frequency domain. Additionally, depending on the nature of the noise,

band-pass filters may be applied to the function after partial rotations in the time-frequency

domain to eliminate effects which are not exclusively frequency-dependent (Kutay,

Ozaktas, Arikan, & Onural, 1997). This can be seen in Figure 2.13. The algorithm used

for approximating the FrFT in terms of the fast-fourier transform and the

Hermite-Gaussian functions is described in Ozaktas, Arikan, Kutay, and Bozdagi (1996).

Figure 2.13 Noise separation in the αth domain (Kutay et al., 1997, p. 1130).

2.11. GOES-R Series Mission

The Geostationary Operational Environmental Satellites (GOES) R-series satellites

are Earth monitoring platforms maintained and operated by the National Oceanic and

Atmospheric Administration (NOAA), providing advanced imagery and atmospheric
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measurements of Earth’s Western Hemisphere, real-time mapping of lightning activity,

and improved monitoring of solar activity and space weather (GOES-R Series Mission,

n.d.). These satellites are good subjects for observation for a number of reasons, first and

foremost being that they are fairly large objects and are thus relatively easy to spot.

Because they must maintain geostationary earth orbit (GEO), there must be propellant

onboard and frequent impulsive stationkeeping maneuvers will be required. Additionally,

each of them is equipped with a large solar panel which will provide an interesting source

of vibrations. Finally, there is a wealth of information available about them in a databook

which was prepared for NASA and made publicly available (GOES-R Series Data Book,

2019). Figure 2.14 depicts the fully deployed GOES-R satellite.

Figure 2.14 Fully deployed GOES-R Satellite (GOES-R Series Data Book, 2019, p. 2-1).
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3. Methodology

This chapter collects the important results from Chapter 2 and applies them to the

problem of dynamical modeling, simulation, and attitude estimation of GOES-16. It

begins with a definition of important coordinate frames, then proceeds to a derivation of

the Lagrangian which characterizes the complex “hidden” attitude motion of the satellite.

Following this, there is a discussion of the simulation of the equations of motion. Next is a

summary of the important measurements to be included in the Kalman filter. Then, the

unscented Kalman filter process is described in detail as it pertains to this problem, and

the simulation test cases and methods for vibrational mode detection are described.

Finally, there is a brief description of the physical experiment setup which was used for

tuning the reflectance model parameters.

3.1. Reference Frame Definitions

Before the kinetic and potential energies can be derived, the reference frames must be

defined. The inertial reference frame denoted N is the Earth-centered J2000 frame, for

which the n̂1 vector points toward the vernal equinox and n̂3 points along the Earth’s axis

of rotation. Measured with respect to this frame is the observer frame C, defined such that

the observer position vector r has components in the ĉ1 and ĉ3 directions only. C is offset

from N by the current local sidereal time Θ, and ĉ3 is in the same direction as n̂3.

Following the spacecraft are the co-moving local vertical, local horizontal frame–denoted

E–which is defined such that ê1 points toward nadir and ê3 points along the orbit normal.

It will be assumed that the Advanced Baseline Imager is affixed to this frame. For a visual

depiction of these frames, refer to Figure 3.1. The bus frame–denoted B–which is a

body-fixed frame with b̂1 pointing along ê1 ; and the frame P which is fixed with respect

to the solar panel such that p̂1 is normal to the bus surface and pointed along ´ê2. The

mass displacements for propellant slosh are to be considered in the B frame since they
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will be constrained only to motion parallel to the b̂2–b̂3 plane. For a visual depiction of

these frames in relation to E, refer to Figure 3.2.

Figure 3.1 ECIF Depiction of Inertial Frame N , Observer Frame C, and Satellite LVLH
Frame E.

Figure 3.2 Simplified model of GOES Satellite, depicting body frame B, LVLH frame E,
and panel frame P . Not to scale.
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3.2. Derivation of Lagrangian

Having reviewed the fundamental concepts of mechanics and established the pertinent

coordinate frames, the Lagrangian may be derived. For this system it will be expressed as,

L = Tbody + Tpanel + Tslosh ´ (Vpanel + Vslosh) (3.1)

where Tbody, Tpanel, and Tslosh are respectively the kinetic energy of the dual-spin body,

the solar panel, and the propellant.

As mentioned in the previous chapter, there are two primary sources of vibration are of

interest for this research: those caused by propellant slosh and those caused by solar panel

flexing. This section will first develop the background information required for

understanding the dynamics of these phenomena and their relationship to the motion of a

spacecraft. The spacecraft will be simplified and approximated to be a two-box dual-spin

rigid body with a flexible solar panel and two compartmented mass-spring systems

representing the propellant tanks.

3.2.1 Rigid Body Components

Firstly, because the body of the spacecraft is assumed rigid, the kinetic energy of the

nadir-pointing camera is, from the previous chapter,

Tc =
1

2
NωT

E
[Ic]

Nω
E

(3.2)

where Nω
E
is the angular rotation rate of E with respect to N , and [Ic] is its moment of

inertia. Similarly, the kinetic energy of the bus is,

Tb =
1

2
NωT

B
[Ib]

Nω
B

(3.3)

where,
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Nω
B
= Nω

E
+ CNE

Eω
B

(3.4)

Then, including parallel axis theorem, the total kinetic energy of the spacecraft body is

simply,

Tbody =
1

2
NωT

E
[Ic] +mc [r̃c] [r̃c]

T Nω
E
+
1

2
NωT

B
[Ib] +mb [r̃b] [r̃b]

T Nω
B

(3.5)

Finally, the kinetic energy of the solar panel will assume that the solar panel is rigid to

capture the broader motions, and the torque caused by it will later be described using the

methods of Junkins and Kim (1993). The angular velocity of the solar panel is,

Nωp =
Nωb + CNB

Bωp (3.6)

and thus the kinetic energy of the panel is,

Tpanel =
NωTp [Ip] +mp [r̃p] [r̃p]

T Nωp (3.7)

3.2.2 Contribution of Fuel Slosh

To derive the kinetic energy of the sloshing fluid, the fluid will first be assumed stuck

to the end of the propellant tanks at the side of the spacecraft pointed away from the Earth.

For fluid motion as in the case of Bo ă Bocrit, the sloshing will be approximated–as

previously mentioned–using a mass-spring-dampener model as depicted in Figures 3.3

and 3.4. The stationary masses will be denoted byM , the slosh masses bym, spring

constants as k/2, and the x and y displacements for each mass are denoted as such. To

distinguish between the fuel and oxidizer, the subscripts f and o will be used.

By modeling the motion with point masses, the total kinetic energy contributed by

sloshing is given by,

Ts =
1

2
movo ¨ vo +

1

2
m0ov0o ¨ v0o +

1

2
mfvf ¨ vf +

1

2
m0fv0f ¨ v0f (3.8)
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Figure 3.3 Profile view of fuel (left) and oxidizer (right) mass spring dampener model.

Figure 3.4 Top-down view of fuel and oxidizer mass spring dampener model.

where the velocities of the stationary masses are,

v0o = Nωb ˆ (´h0ob̂1 + rob̂2) (3.9a)

v0f = Nωb ˆ (´h0f b̂1 ´ rf b̂2) (3.9b)

and the velocities of the slosh masses are,

vo = Nωb ˆ (hob̂1 + (xo + ro)b̂2 + yob̂3) + ẋob̂2 + ẏob̂3 (3.10a)
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vf = Nωb ˆ (hf b̂1 + (xf ´ rf )b̂2 + yf b̂3) + ẋf b̂2 + ẏf b̂3 (3.10b)

Using the notation of Hughes (2004), the operations may be carried out for the oxidizer as

follows,

v0o = [N ω̃b]CNB(´h0ob̂1 + rob̂2) (3.11)

and

vo = [N ω̃b]CNB(hob̂1 + (ro + xo)b̂2 + yob̂3) + CNB(ẋob̂2 + ẏob̂3) (3.12)

and similarly for the fuel. The total potential energy of the slosh masses is of the same

form as that for a typical mass-spring system:

Vs = Vo + Vf =
1

2
ko(x

2
o + y

2
o) +

1

2
kf(x

2
f + y

2
f ) (3.13)

where ko and kf represent the spring stiffness constants, which may be computed as

described in Chapter 2.3.

3.2.3 Solar Panel Vibrations

To figure the effects of the vibration of solar panels on the attitude motion of the

satellite, the reaction force on the spacecraft body will be calculated by assuming the

panel is an Euler-Bernoulli beam as noted in Section 2.4, then applied as a generalized

force under a coordinate transformation. To substitute these equations into Equation 2.4,

the equations of motion for the panel are related to the body by the torque τ generated as a

reaction force at the point of contact between the panel and the body:

τ +

ż L

r0

ρAx(ÿ + xθ̈)dx = 0 (3.14)

ρA(ÿ + xθ̈) +EIy4 = 0 (3.15)
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For this system,

θ̇ = Nω
B
¨ p̂2 (3.16)

and thus θ̈ comes directly from the equations of motion. From this, y(x, t) can be

computed using the lumped-parameter development from Section 2.4 and numerically

integrated. The torque τ will then be considered a generalized force, i.e. a component of

the vector Q which may be substituted into the equations of motion.

For computation of the lumped-parameter model parameters, some information is

needed about the solar panel. GOES 16 uses 6,720 Spectrolab Ultra Triple Junction (UTJ)

photovoltaic cells arranged to fit an array of five panels which are 135.7 cm ˆ 392.3 cm

each (GOES-R Series Data Book, 2019). The substrate is composed of 140 µm of

germanium, and the panels have a total thickness around 800 µm and a density of 84

mg/cm2 (Spectrolab, n.d.). Using these parameters as a starting point, the simulation can

be tuned until the fundamental vibration frequency is about 0.25 Hz, which is the

frequency which is observed in reality for the GOES-R satellites (Chapel et al., 2014).

3.3. Simulation of Spacecraft Motion

While there is a small degree of coupling between orbital motion and attitude motion,

the dynamics can be treated separately for the purposes of this work since the

measurement of these effects is not a driving factor behind it. Thus, a review of the orbital

dynamics will be provided, followed by a description of the “true” attitude dynamics of

the spacecraft due to the cumulative effects of the motions described thus far in this

chapter which would be hidden to the engineers and scientists in an observatory.

3.3.1 Orbital Motion

Since the orbital motion is assumed to be decoupled from attitude motion, and it is

therefore simulated without consideration of the attitude. Recall from Chapter 3 that the
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equation of orbital motion is,

r̈ = ´ µC||r||3 r+ ad (3.17)

where the disturbance term can include any number of external perturbing accelerations.

The initial conditions for this will come from the public TLE files available from the

Celestrak website Kelso (2020), propagated using a combination of methods described by

Bate, Mueller, White, and Saylor (2020) and Vallado (2013).

3.3.2 Attitude Motion

By combining the results of previous sections, the complete Lagrangian for this

system may be concisely expressed as,

L =
1

2
NωT

E
[Ic] +mc [r̃c] [r̃c]

T Nω
E
+
1

2
NωT

B
[Ib] +mb [r̃b] [r̃b]

T Nω
B

+
1

2
NωTp [Ip] +mp [r̃p] [r̃p]

T Nωp +
1

2
movo ¨ vo +

1

2
m0ov0o ¨ v0o

+
1

2
mfvf ¨ vf +

1

2
m0fv0f ¨ v0f ´

1

2
ko(x

2
o + y

2
o)´

1

2
kf(x

2
f + y

2
f ) (3.18)

which, by substituting the expressions for vo, v0o, vf , and v0f , is fully expanded to be,

L =
1

2
NωT

E
[Ic] +mc [r̃c] [r̃c]

T Nω
E
+
1

2
NωT

B
[Ib] +mb [r̃b] [r̃b]

T Nω
B

+
1

2
NωTp [Ip] +mp [r̃p] [r̃p]

T Nωp ´
1

2
ko(x

2
o + y

2
o)´

1

2
kf (x

2
f + y

2
f)

+
1

2
mo hob̂

T
1 + (ro + xo)b̂

T
2 + yob̂

T
3 [

N ω̃b]
T [N ω̃b] hob̂1 + (ro + xo)b̂2 + yob̂3

+ hob̂
T
1 + (ro + xo)b̂

T
2 + yob̂

T
3 [

N ω̃b]
T ẋob̂2 + ẏob̂3 + ẋ

2
o + ẏ

2
o

+
1

2
mf hf b̂

T
1 + (xf ´ rf )b̂T2 + yf b̂T3 [N ω̃b]T [N ω̃b] hf b̂1 + (xf ´ rf)b̂2 + yf b̂3

+ hf b̂
T
1 + (xf ´ rf )b̂T2 + yf b̂T3 [N ω̃b]T ẋf b̂2 + ẏf b̂3 + ẋ2f + ẏ2f

+
1

2
m0o ´h0ob̂T1 + rob̂T2 [N ω̃b]T [N ω̃b] ´h0ob̂1 + rob̂2

+
1

2
m0f ´h0f b̂T1 ´ rf b̂T2 [N ω̃b]T [N ω̃b] ´h0f b̂1 ´ rf b̂2 (3.19)



50

Due to the high complexity of the Lagrangian of this system, substituting it into Equation

2.4 would require extensive and unnecessary work. Additionally, the resulting equations

of motion are likely to occupy a large amount of space. For the sake of preserving space,

the 45 derivatives required to compute the equations of motion will not be done by hand

or fully displayed in the body of this thesis. Instead, they will be carried out in part by

using the symbolic toolbox in MATLAB. To see the code used for this purpose, refer to

Appendix A. The Lagrange script was downloaded from the MathWorks file exchange

(Ivanovich, 2020).

While the entirety of the calculations will not be shown, it is useful to provide an

example of the process. Thus, for illustrative purposes, the inertial matrices were assumed

to have small integer values in all elements. After running the code with these and

manipulating its output as necessary, the first equation of motion for angular velocity is,

[m0fr
2
f +m0or

2
o +mo(y

2
o + (xo + ro)

2) +mf(y
2
f + (xf ´ rf)2) + 25/2]ω̇1

+ (h0om0oro ´ h0fm0frf ´ hfmf(xf ´ rf )´ homo(xo + ro) + 5)ω̇2

+ (5/2 ´ homoyo ´ hfmfyf)ω̇3

= g1(z, t) +mo[yo(ro + xo)(ω22 ´ ω23) + hoyoω1ω2 ´ ho(ro + xo)ω1ω3

+ (y2o ´ (ro + xo)2)ω2ω3 ´
ho
2
(ẋoω2 + ẏoω3)] +mf [yf(xf ´ rf )(ω22 ´ ω23)

+ hfyfω1ω2 ´ hf(xf ´ rf )ω1ω3 + (y2f ´ (xf ´ rf )2)ω2ω3 ´
hf
2
(ẋfω2 + ẏfω3)]

+m0f(´ω2ω3r2f ´ h0fω1ω3rf) +m0o(´ω2ω3r2o + h0oω1ω3ro)

´ 2[mo(yoẏo + ẋo(xo + ro)) +mf (yf ẏf + ẋf(xf ´ rf ))]ω1 + (hfmf ẋf + homoẋo)ω2

+ (´homoẏo + hfmf ẏf )ω3 (3.20)

where g1(z, t) is the first element of the solar panel torque vector, to be denoted by g. The

rest of the angular velocity equations follow a similar form: several inertial elements

multiplied by angular accelerations equated to a nonlinear function of the states.

Therefore, by defining the state vector to be,
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z = β0 β1 β2 β3 xf yf xo yo ω1 ω2 ω3 ẋf ẏf ẋo ẏo

T

the 15 equations will altogether take the form:

ż = A(z) [(g(z, t) + f(z)] : z, f, g P R15,

A(z) P R15ˆ15

where A(z) is a square matrix which will be defined by dividing it into the following

blocks:

A(z) =





04ˆ7 1
2
B(β) 04ˆ4

04ˆ7 04ˆ3 I4ˆ4

07ˆ7 F´17ˆ7




(3.21)

The elements of the 7ˆ 7 matrix F are the coefficients of the ω̇ terms and ẍ terms from

the equations of motion for angular velocity and slosh mass acceleration. Hence, from the

example in Equation 3.20,

F11 = m0fr
2
f +m0or

2
o +mo(y

2
o + (xo + ro)

2) +mf (y
2
f + (xf ´ rf)2) + 25/2

F12 = h0om0oro ´ h0fm0frf ´ hfmf(xf ´ rf)´ homo(xo + ro) + 5

F13 = 5/2 ´ homoyo ´ hfmfyf

Next, the vector g is,

g(z, t) =





08ˆ1

CNP
P τ(t)

04ˆ1




(3.22)
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where P τ(t) is torque computed from the solar panel vibrations and CNP is the DCM

rotating the solar panel into the inertial frame, given by,

CBP =





0 cosϕ sinϕ

´1 0 0

0 sinϕ ´ cosϕ




(3.23)

where ϕ is the angle between the axes b̂1 and p̂3. This angle will be computed “on tracks”

to be the angle between nadir and L, the direction to the Sun from the RSO. Finally, the

vector f will be the non-acceleration or torque terms from the equations of motion. For

example, f1(z) is the expression which remains on the right side of Equation 3.20 after

subtracting g1(z, t). Thus, the attitude history can be simulated by numerical integration of

the following nonlinear state-space equation:

ż = A(z) [g(z, t) + f(z)] (3.24)

3.4. Assumed Truth Model

While all of the above is useful for generating a somewhat realistic data set for

generation of simulated measurements, it is unlikely in practice that all dynamical states

will be fully accounted for when collecting data to characterize the vehicle attitude

motion. Hence, there is, in practice, some “truth” model with parameters and states to be

estimated which are assumed to adequately represent the system. This section will review

the fundamental observations for photometric measurements by quickly recapping the

important equations from Section 2.6, and will introduce the fundamental observations of

astrometric measurements. The sections will then conclude by unifying these

measurements with an “assumed true” dynamical and measurement state space model to

be later applied in the filtering algorithm.
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3.4.1 Photometric Measurement Model

This section will concisely summarize the key results in photometric measurement

modeling from Section 2.6. First, by letting c = H ¨ V, the model of bidirectional

reflectance is given by,

F (c, λ) = F (1, λ) + (1´ F (1, λ))(1´ c)5 (3.25)

where F (1, λ) is the experimentally determined or assumed reflectance and normal

incidence at the light wavelength λ. The bidirectional reflectance distribution function is

given by the sum of a specular term and a diffuse term:

ρ = ρs + ρd (3.26)

where,

ρs(L,V) =
a
(ni + 1)(nj + 1)

8π

(Nk ¨H)z
(Nk ¨ V) + (Nk ¨ L)´ (Nk ¨ V)(Nk ¨ L)

F (c, λ) (3.27)

and

ρd(L,V) =
28Rd
23π
(1´ Rs) 1´ 1´ Nk ¨ L

2

5

1´ 1´ Nk ¨ V
2

5

(3.28)

The exponent of Equation 3.27 is,

z =
ni(H ¨ ik)2 + nj(H ¨ jk)2

1´ (H ¨ Nk)2
(3.29)

where ni and nj are spectral lobe shape parameters, Nk is the unit normal vector of facet

k, H is a unit angle bisector to L and V, and each ik and jk form an orthonormal basis with

each Nk which spansR3. Recall that the vector L is a unit vector which points from the

RSO to the Sun, and V is a unit vector which points from the RSO to the viewer. Finally,

these all come together to give the visual magnitude of the object measured from a single
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site:

Mv = ´26.74´ 2.5 log10
nfÿ

k=1

ρ
(L ¨ Nk)(V ¨ Nk)

d2
Ak (3.30)

where Ak is the area of facet k, and d is the distance from the RSO to the observer. The

sum is over the total number of assumed facets on the spacecraft. The parameters ni and

nj of the BRDF will be assumed equal to 75 for the spacecraft body and 550 for the panel.

3.4.2 Astrometric Measurement Model

An additional source of information from a topocentric optical measurement site is the

pointing direction of the observation platform, which can come from the plate-solving

techniques of astrometry. The fundamental astrometric observation equation is of the slant

range from each site,

ρi = r
E
´ ri (3.31)

where r
E
is the distance to the spacecraft LVLH frame E, and ri is the position vector of

site i. Useful to the brightness model, note that the slant range vector ρi and the

RSO-to-viewer direction vector Vi are parallel and point in opposite directions, so that,

Vi = ´
ρi
||ρi||

(3.32)

Denoting the latitude of site i by λi, the slant range vector is, in inertial coordinates,

ρi =





x´ ||ri|| cosΘ cosλi

y ´ ||ri|| sinΘ cosλi

z ´ ||ri|| sinλi




(3.33)

where x, y, and z are the components of the vector,
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r̂
E
= x y z

T

(3.34)

Now, the topocentric right ascension (RA) αi and declination (DEC) δi are given by,

αi = tan´12 (ρ2i , ρ1i ) (3.35a)

δi = sin´1
ρ3i
||ρi||

(3.35b)

where tan´12 (y, x) is the four-quadrant arctangent function.

3.4.3 Unified Measurement and Dynamical Model

The states to be estimated in the present thesis will be those which are most common:

the attitude parameters β0, β1, β2, and β3, and the angular velocities of the body ω1, ω2,

and ω3. The estimation state vector is thus given by,

xT = βT ωT (3.36)

The kinematic relationship between the attitude parameters (i.e. quaternions) and the

body-frame angular velocity is given by Equation 2.10, while equations of motion for ω

will come from some assumed form of attitude motion. The propellant mass displacement

states will be treated as unknown or “hidden” dynamics. The measurement vectors at the

North and South sites, ỹn and ỹs respectively, are simply the apparent magnitude

expression in Equation 3.30 with Vi differing for each site, and the azimuth and elevation

at each site. For a geostationary object, V and d will be approximately constant, while L

will depend on the Sun-RSO-Earth phase angle ϕ. By defining w(t) P R7, vn(t) P R3,

and vs(t) P R3 to be zero-mean Gaussian white noise processes with respective

covariances Q, Rn, and Rs:

w(t) „ N (0, Q) and vn,s(t) „ N (0, Rn,s)
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the nonlinear state-space model for system dynamics is, in continuous-time, given by,

ẋ =




1
2
B(β)ω

f(ω, t)



+ w(t) (3.37)

where,

f(ω, t) = ω̇ = I´1 [[Iω]ˆ ω + T(t)] (3.38)

is the kinetic equation relating the attitude motion to some arbitrary time-dependent torque

and I is the inertia matrix of the body of interest, and the measurement model is given by,

ỹ = h(x, t) = Mn(x) αn(x) δn(x) Ms(x) αs(x) δs(x)
T

+




vn(t)

vs(t)



 (3.39)

The model described in this section connects the measured quantities to the dynamical

states x, the first step in the estimation problem. To extend the above to include

polarimetric data, simply add its components to the measurement vector as so:

ỹ = Mn αn δn STn Ms αs δs STs
T

+




vn(t)

vs(t)



 (3.40)

where the noise vectors are now vn,s(t) P R7.

3.5. Sequential Filtering Via Unscented Kalman Filter

When estimating states, there are several available options as previously discussed,

but the unscented Kalman filter (UKF) will be developed and applied to this system. A

Kalman filter fundamentally operates on a predictor-corrector algorithm, relying on the

user’s knowledge of system dynamics and noise from unknown processes. While there

exist alternative methods for nonlinear system state estimation, such as the extended
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Kalman filter, the UKF provides a key benefit of avoiding computation of any Jacobians

or other derivatives. For an overview of derivations and applications of many types of

state estimation techniques, see Crassidis and Junkins (2012). For a detailed derivation of

the standard UKF, see Julier, Uhlmann, and Durrant-Whyte (1995, 2000).

An important thing to note when implementing a UKF with quaternions, the nonlinear

constraint from Equation 2.8 can cause the covariance matrix to become singular.

Additionally, small quaternion rotations are applied multiplicatively, which in turn does

not allow for direct implementation of the UKF structure (Linares, Jah, Crassidis, Leve, &

Kelecy, 2014). The UKF presented in Crassidis and Markley (2003) overcame this issue

by first transforming the quaternions to equivalent generalized Rodriguez parameters

(GRPs) for the local error calculation since they are additive for small changes, then

describing the global attitude with quaternions. This implementation will be reviewed

then modified and applied to this system.

First, the standard discrete-time Kalman state estimate and state covariance update

equations are written as,

x̂+k = x̂´k +Kke
´
k (3.41a)

P+k = P
´
k ´KkPkKTk (3.41b)

where x̂´k and x̂
+
k are respectively the predicted and corrected values of the state at

timestep k, Kk is the Kalman gain matrix, and e´k is the measurement error or

“innovations process” given by,

e´k ” ỹk ´ ŷ´k = ỹk ´ h(x̂´k , k) (3.42)

In this equation, ỹk represents the true measured value at timestep k, while ŷ´k represents

the predicted measurement at timestep k based on the measurement model h, which is
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generally a function of the predicted value of the state and the current timestep. The

covariance of e´k is denoted P eek , and is used to compute Kk as,

Kk = P
xy
k (P

ee
k )
´1 (3.43)

where P xyk is the cross-correlation matrix between x̂´k and ŷ
´
k .

To propagate the state, a number of “sigma points” are calculated from the 2n columns

of the following matrix:

Σ =
a
(n+ λ)P+k ´

a
(n+ λ)P+k (3.44)

where the square root of a matrixM is defined to be the matrix Z such thatM = ZZT ,

and λ = α2(n+ κ)´ n is a scaling parameter. A popular approach for computing the

matrix square root is by using a Cholesky decomposition, but this can lead to divergence

issues and occasionally a non-positive semi-definite covariance matrix (Daid, Busvelle, &

Aidene, 2021). For this reason, the principal matrix square root will be used since it

generally yields better results.

Let σi be the ith column of Σ, and define the corresponding sigma point χi as,

χi = x̂+k + σi (3.45)

The divergence from the standard UKF structure necessarily begins here, since this “error

distribution” is computed additively. To allow for this, define the GRP sigma point as,

χδpi =




δpi

ω̂k + δωi



 (3.46)

where δpi is a small error GRP and δp0 = 0. Next, let the covariance matrix be interpreted

as the covariance of the error GRP rather than the covariance of the quaternion estimate.
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The sigma points are then calculated not for quaternions but for GRPs:

χδp+i =




0

ω̂+k



+ σδpi (3.47)

Next, transform the error GRP to error quaternions using the following relationship:

δβ =




δq0

δq



 (3.48)

where,

δq0 =
´a||δp||2 + f

a
f 2 + (1 ´ a2)||δp||2

f2 + ||δp||2 (3.49)

and

δq = f´1(a+ q0)δp (3.50)

where a P [0, 1] and f are parameters of the GRP. When a = 0 and f = 1, this equation

give the Gibbs vector, and when a = f = 1 it gives the standard vector of modified

Rodrigues parameters. It is common in this type of attitude filtering to let f = 2(a+ 1) so

that ||δp|| = δθ for small attitude errors. Of note, in the simulations for this thesis, a = 1

and thus f = 4. Now, the the error quaternions are used to compute a distribution of

global sigma point quaternions:

χβ+i =




β̂+k
Â
δβi

ω̂+k + δωi



 (3.51)

where
Â

denotes Hamilton multiplication, defined for quaternions as,
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β3 = β2
â
β1 =





a1a2 ´ b1b2 ´ c1c2 ´ d1d2

a1b2 + b1a2 + c1d2 ´ d1c2

a1c2 ´ b1d2 + c1a2 + d1b2

a1d2 + b1c2 ´ c1b2 + d1a2





(3.52)

for β1 = [a1 b1 c1 d1]T and β2 = [a2 b2 c2 d2]T . This operation is equivalent to rotation by

β2 of an object with an orientation described by β1. Equivalently, the quaternion β3

describes the orientation obtained by rotating from the inertial frame first by β1 and then

by β2. The global quaternion sigma points are then propagated using the dynamical model

of the system from Equations 3.37 and 3.38:

χβ´i,k+1 from ẋ =




1
2
B(β)ω

f(ω, t)



 with I.C. χβ+i,k (3.53)

From the resultant distribution of predicted quaternion sigma points χβ´i,k+1, a new

distribution of error quaternions is calculated as,

δβ´i,k+1 = β
´
i,k+1

â
β´0,k+1

´1 (3.54)

where (˚)´1 in this case indicates the complex conjugate. Now the predicted error GRPs

are computed as,

δp´i,k+1 = f
δq´i,k+1
a+ δq´0,k+1

(3.55)

and finally, the predicted mean and covariance of the error GRP sigma points are given by,

x̂´k+1 =
2nÿ

i=0

wiχ
δp´
i,k+1 (3.56)
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and

P´k+1 = Q+
2nÿ

i=0

χδp´i,k+1 ´ x̂´k+1 (3.57)

where the weights wi are given by,

w0 =
λ

n+ λ
(3.58a)

wi =
1

2(n+ λ)
(3.58b)

and Q is the dynamical process noise. To compute the innovations covariance P eek+1, the

cross-correlation matrix P xyk+1, and subsequently the Kalman gain Kk+1, the same process

from Equations 3.44 through 3.51 is then applied with the predicted state and covariance

to find a new distribution of sigma points χβ´i,k+1. These are then used to figure a

measurement distribution from Equation 3.39:

γ´i,k+1 = h(χβ´i,k+1) (3.59)

The predicted measurement is then given by,

ŷk+1 =
2nÿ

i=0

wiγ
´
i,k+1 (3.60)

and the innovations covariance is,

P eek+1 = R +
2nÿ

i=0

γ´i,k+1 ´ ŷk+1 γ´i,k+1 ´ ŷk+1
T (3.61)

where R is the measurement process noise. In the dual-site case it is given by,

R = diag Rn Rs (3.62)
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The cross-correlation matrix is then given by,

P xyk+1 =
2nÿ

i=0

χδp´i,k+1 ´ x̂δp´k+1 γ´i,k+1 ´ ŷk+1
T (3.63)

Finally, the Kalman gain is,

Kk+1 = P
xy
k+1 P

ee
k+1 (3.64)

and the updated error GRP estimate is given by,

x̂δp+k+1 =




0

ω̂´k+1



+Kk+1(ỹk+1 ´ ŷk+1) (3.65)

which is then transformed back into a global quaternion representation using Equations

3.48 through 3.51, giving an updated state estimate x̂β+k+1. From here, the entire process is

repeated for the duration of the measurement data set.

3.5.1 Filter Tuning

An important step in filtering is to tune the input parameters, being the weights wi in

both the propagation and update stages, as well as the process noise matrices Q and R, and

the initial state estimate covariance P0. To start, the method for getting a reasonable

estimate of the state process noise matrix will come down to estimating the matrix given

by,

Q =




σ2grpI3ˆ3 03ˆ3

03ˆ3 σ2ωI3ˆ3



 (3.66)

where the σ2 values are the variance of the process noise for each state. The approach for

estimating these was to first compute ẋ using Equation 3.37 given some “worst-case

scenario” conditions. The resulting quaternion component was then converted to an error
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GRP vector. Then, the noise covariances were set to,

σgrp = ẋδp ∆t (3.67)

σω = ẋω ∆t (3.68)

Thus, the resulting Q is,

Q =




(8ˆ 10´10)I3ˆ3 03ˆ3

03ˆ3 (2.8ˆ 10´20)I3ˆ3



 (3.69)

Right out of the box, the above matrix yields a decent starting point for further tuning if

necessary. The measurement noise covariance matrix R is much more straight-forward to

estimate, since the variance of each of the measurement data sets can be directly estimated

from detrended data. For example, the variance of visual magnitude is taken to be,

σ2mv = var Mv(t)´ M̃v(t) (3.70)

where M̃v(t) is a polynomial best-fit for the data set. To account for synodic effects, a

second-degree polynomial detrend was chosen for computation of M̃v(t).

3.6. Simulation

Now that the foundations of the experiment have been thoroughly laid out, this section

will describe the several test cases for the simulated data sets. First, the spacecraft attitude

motion is simulated using Equation 3.24 for a 3-hour window beginning at 02:12:07.455

UTC on 2020-05-20. This (oddly specific) time was chosen to correspond with a set of

collected data. The initial attitude was chosen such that b̂2 points along ´n̂3 and b̂1 points

toward nadir. The rotational motion of the solar panel was chosen to be “on tracks” such

that for every timestep its surface normal is given by,
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Npanel =
L´ L ¨ p̂1
||L´ L ¨ p̂1||

(3.71)

where L is the unit vector pointing from the RSO to the Sun and p̂1 = ´b̂2 is panel axis of

rotation.

After the attitude was simulated, measurement data sets are simulated at 0.2 second

intervals for both sites. Measurement noise was given standard deviations of 0.01 for angle

data, 0.18 for brightness data, and 1ˆ 10´4 for each of the Stokes vector components.

Finally, the simulated measurement data was input to the UKF for estimation of the

simulated states. In total, there are eight different cases for implementation in the filter,

both for single-site and for dual-site. In every single-site case, the North site at ERAU was

chosen. To be concise, the cases are summarized below:

• Angles and noisy photometric data only

• Angles and clean photometric data only

• Angles, noisy photometric data, and stokes vector

• Angles, clean photometric data, and stokes vector

The initial error was chosen such that roll, pitch, and yaw were 5 degrees from truth. This

is consistent with the initial conditions from Linares, Jah, Crassidis, and Nebelecky

(2014). The purpose in testing with clean photometric data is twofold. First, it is

important to know that the filter will converge when the noise is minimal. Additionally,

better performance of cleaner data can serve as a justification for investment in better (but

likely more expensive) instrumentation.

3.7. Detection of Vibrational Modes

Vibrational mode detection was approached from the non-model-based approach

given by the fractional Fourier transform (FrFT). The process of figuring the correct

transform order was to firt compute the Wigner-Ville distribution function for a
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parametrically detrended signal. This is to say, the WVDF for the signal given by,

x0(tn´1 + δt) = x(tn´1 + δt)´ x̃(tn´1 + δt) (3.72)

where δt P [0, ∆t] such that ∆t = tn ´ tn´1 @ n = 1, 2, ..., fstmax/k, with k being a

window tuning parameter. x̃(tn´1 + δt) is the best fit line of the data on the interval

t P [tn´1, tn]. Of note with this, an additional frequency of f̃ = 1/∆t may be introduced

to the signal x0(t) which is not necessarily present in x(t). Next, the highest-amplitude

portion was identified, and its slope in the time-frequency domain was calculated to find

an appropriate rotation angle α0. After this, the FrFT algorithm was applied for α = α0 to

maximize the signal power density at the corresponding frequency f = f0, and again for

α = α0 + π/4 to evenly distribute the energy across both time and frequency domains.

3.8. Experimental Setup

The electro-optical system (EOS) was an 11” Celestron Rowe-Ackerman-Schmidt

Astrograph (RASA) with an equatorial mount, equipped with a ZWO ASI-1600MM/Cool

monochrome CMOS detector. The right-ascension and declination of GOES-16 (NORAD

41866) was found according to its publicly available TLEs, and the integration time was

set to 200 milliseconds. Because this object is geostationary, tracking was achieved by

simply pointing at it and shutting off the telescope mount power.
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4. Simulation Results

This section first presents the results of simulating the attitude motion from Equation

3.24 and the measurement data from Equations 3.30, 3.35, and 2.73, then shows the

results of each filter case as described at the end of the previous chapter. While the

spring-mass approximation to propellant slosh realistically only holds true under the

small-amplitude assumption, the masses were placed at the tank edges for the sake of a

“worst-case scenario” test of fluid-gas free-surface motion.

4.1. Model Validation

First to be shown are two-minute simulations of the slosh mass positions and torque

from the solar panel, τsp. These are shown in Figures 4.1 and 4.2, respectively. Of note,

the motion of the fuel and oxidizer masses in both directions is cleanly sinusoidal, and as

such the fundamental frequency is easily verifiable. On the other hand, τsp appears chaotic

in its behavior since there is not any clear periodicity.
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Figure 4.1 Two minutes of simulated slosh mass position data.

It is unclear that even the expected fundamental frequency of 0.25 Hz is present in

Figure 4.2, so the angular velocity history for this same simulation is shown in Figure 4.3.
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Figure 4.2 Two minutes of simulated solar panel torque data.

As an additional source of confidence that the attitude motion is primarily confined to the

nominal direction, the quaternion history is shown in Figure 4.4.
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Figure 4.3 Two minutes of simulated angular velocity data.
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Figure 4.4 Two minutes of simulated quaternion data.

Finally, to test the long-term stability of the simulation, the attitude motion was

simulated for six hours. The resulting quaternion history is shown in Figure 4.5, in which

it is clearly not numerically unstable and is exhibiting expected
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Figure 4.5 Six hours of simulated quaternion data.
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4.2. Imaging and Light Curve Simulation

With the dynamical model behaving satisfactorily, the next step was to verify that the

observation geometry is correct. The way this was accomplished was to create a projected

image of the RSO model onto an imaging plane centered on the observer. The result of

this is shown in Figure 4.6.

Figure 4.6 Projection of GOES 16 wire frame onto image plane.
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Figure 4.7 Comparison of visual magnitude prediction to collected data.
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Next, a simulated set of visual magnitude data was compared to a set of collected data.

This allowed for the specular and diffuse reflectance parameters to be tuned until the data

trends were in agreement with one another. This is shown in Figure 4.7.

4.3. Simultaneous Light Curves and Angle Measurements

The next step in confirming that the models are behaving reasonably is to consider

how the northern measurements might compare to the southern measurements. For

brightness, one would expect the southern measurement of visual magnitude to take a

lower value (i.e. a higher brightness), since the southern site is physically closer to GOES

16. The right-ascension should be approximately the same for both sites if they are at the

same longitude, but the declination should be higher for the southern site since GOES 16

will appear higher in the sky. A clean measurement set for both of these is shown in

Figure 4.8, and it is clearly in agreement with the above intuition.
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Figure 4.8 Simulated clean measurements of Mv and ∆Mv (top) and RA/DEC (bottom)
from North and South sites.
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5. Results

This chapter is split into two sections. The first section provides an overview of the

results for detection of vibrational modes using the FrFT algorithm. What is important to

note here is that two of the three frequencies become local maximums for certain rotation

kernels. The second section provides an overview of the filter results, showing that there

is a slight improvement by the addition of a second site and that there is a great

improvement by the addition of polarimetric data.

5.1. Identification of Vibrational Modes

First, the ordinary fast Fourier transform of the signal is shown in Figure 5.1. The

primary frequencies expected are those due to the solar panel oscillations and due to the

propellant slosh. The expected frequencies are summarized in Table 5.1. Clearly, these

frequencies are all “lost in the noise” and no additional information may be discerned

from the data by using FFT.
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Figure 5.1 Ordinary fast Fourier transform.
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Table 5.1

List of frequencies expected to have peaks in the spectrum.

Source Frequency Unit
Solar Panel 0.250 Hz
Fuel 8.711 mHz
Oxidizer 79.37 mHz

Next, the Wigner-Ville energy distribution function for the DOLP measured from the

north site is shown in Figure 5.2. The energy peak follows a clear linear trend in the

time-frequency domain, so it may be assumed that this contains a significant driver of the

signal. The angle by which the WVDF should be rotated in the t´ f plane can be directly

calculated from two points on the peak. The resulting fractional Fourier transform from

this is shown in Figure 5.3.

What is remarkable about this seemingly noisy plot is that the absolute maximum over

the domain between 0 and 300 mHz occurs at 79.18 mHz. This coincides extremely

closely to the expected frequency of the oxidizer, with a percent error of 2.4%. Next, the

rotation by an additional π/4 radians results in the power distribution shown in Figure 5.4.
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Figure 5.2Wigner-Ville Distribution Function for the first 30 minutes of DOLP.
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Again, there is an interesting occurrence in that the absolute maximum over the

frequency domain occurs at 249.5 mHz, since this coincides with the fundamental

frequency of the solar panel vibrations. In this case, the percent error is 2%. While it is

surprising that the frequency of the fuel does not show up in either case, this could easily

be due to its extremely low velocity relative to the body.
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Figure 5.3 Fractional Fourier transform with kernel to maximize signal.
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5.2. Filtering

This section presents the results from the unscented Kalman filter for each of the eight

test cases described in Chapter 3. First will be the results for a filter implementation which

considers only photometric and astrometric data, of which the single-site noisy case may

serve as a baseline for performance. Next to be presented are the implementations which

include polarimetric data. There will be four plots for each case. These are, in order, the

error and covariance of the principal rotation angle Φ, the quaternion estimates compared

to truth, the error quaternion, and the error of the body-frame angular velocity

components.

5.2.1 Photometric and Astrometric Data

As promised, first consider Figures 5.5–5.8, which show filter performance for noisy

single-site photometric and angle measurements with no polarimetric consideration.

These will serve as the baseline of performance.

0 0.5 1 1.5 2 2.5 3

Hours Elapsed Since Epoch

10
-1

10
0

10
1

Figure 5.5 Error and covariance of angle with noisy single-site photometric data.
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Figure 5.6 Quaternion history with noisy single-site photometric data.
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Figure 5.7 Error quaternion history with noisy single-site photometric data.
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Figure 5.8 Error in angular velocity with noisy single-site photometric data.

Next is the result for the dual-site case with noisy photometric data, shown in Figures

5.9–5.12. Note here that there is higher sensitivity to the measurements, and changes

occur more rapidly.

0 0.5 1 1.5 2 2.5 3

Hours Elapsed Since Epoch

10
0

10
1

Figure 5.9 Error and covariance of angle with noisy dual-site photometric data.
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Figure 5.10 Quaternion history with noisy dual-site photometric data.
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Figure 5.11 Error quaternion history with noisy dual-site photometric data.
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Figure 5.12 Error in angular velocity with noisy dual-site photometric data.

Next, for the sake of comparison to the perfect cases with no noise to consider the

benefits to better instruments, Figures 5.13–5.16 and Figures 5.17–5.20 respectively show

the single and dual-site filter performance with the absence of noise.
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Figure 5.13 Error and covariance of angle with clean single-site photometric data.
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Figure 5.14 Quaternion history with clean single-site photometric data.
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Figure 5.15 Error quaternion history with clean single-site photometric data.
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Figure 5.16 Error in angular velocity with clean single-site photometric data.
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Figure 5.17 Error and covariance of angle with clean dual-site photometric data.
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Figure 5.18 Quaternion history with clean dual-site photometric data.
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Figure 5.19 Error quaternion history with clean dual-site photometric data.
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Figure 5.20 Error in angular velocity with clean dual-site photometric data.

Both single-site and dual-site measurements perform similarly in this case, though the

dual-site case shows a steeper slope in the first 15 minutes of the angle error. There is no

clear benefit in either case aside from the higher sensitivity of the dual-site filter. After

fully processing the three hour window of data for the noisy single-site case, the principal

rotation angle error was around 2˝. In the dual-site case, the steady-state error is

marginally improved–hovering around 1.8˝–and the convergence begins sooner than for

single-site.
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5.2.2 Addition of Polarimetric Data

Next to be considered is the filter performance in the presence of polarimetric data. In

the same fashion as in the previous section, first to be considered is that for single-site

with noisy photometric data.
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Figure 5.21 Error and covariance of angle with noisy single-site photometric data and in-
cluding polarimetric measurements.

Figure 5.22 Quaternion history with noisy single-site photometric data and including po-
larimetric measurements.
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Figure 5.23 Error quaternion history with noisy single-site photometric data and including
polarimetric measurements.
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Figure 5.24 Error in angular velocity with noisy single-site photometric data and including
polarimetric measurements.

It is immediately obvious that there is a significant improvement over all cases which

had no polarimetric consideration. Next, consider the dual-site case, in Figures 5.25–5.28.
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Figure 5.25Error and covariance of angle with noisy dual-site photometric data and includ-
ing polarimetric measurements.

Figure 5.26Quaternion history with noisy dual-site photometric data and including polari-
metric measurements.
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Figure 5.27 Error quaternion history with noisy dual-site photometric data and including
polarimetric measurements.
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Figure 5.28 Error in angular velocity with noisy dual-site photometric data and including
polarimetric measurements.

As in the prior cases, the dual-site error converges much more quickly, but once again

the overall performance appears to be only marginally better than for the single-site case.

The estimates of angular velocity were still divergent from truth.
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Finally, the single and dual-site polarimetric cases which contain pristine photometric

data are presented in Figures 5.29–5.32 and Figures 5.33–5.36, respectively.
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Figure 5.29 Error and covariance of angle with single-site clean photometric data and in-
cluding polarimetric measurements.
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Figure 5.30 single-site error quaternion history with clean photometric data and including
polarimetric measurements.
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Figure 5.31 single-site error quaternion history with clean photometric data and including
polarimetric measurements.
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Figure 5.32 single-site error in angular velocity with clean photometric data and including
polarimetric measurements.
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Figure 5.33Error and covariance of angle with clean dual-site photometric data and includ-
ing polarimetric measurements.
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Figure 5.34 Quaternion history with clean dual-site photometric data and including polari-
metric measurements.
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Figure 5.35 Error quaternion history with clean dual-site photometric data and including
polarimetric measurements.
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Figure 5.36 Error in angular velocity with clean dual-site photometric data and including
polarimetric measurements.

Importantly, it is clear when comparing this section to the previous section that the

addition of polarimetric data greatly improves the performance of the filter in both

single-site and dual-site cases. The stark performance increase, even in the presence of

significant photometric noise, suggests that for attitude estimation the benefit to the
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addition of a polarimeter is much more clear than that of the addition of a second

observation site. The dual-site polarimetric cases do in fact perform better than their

single-site counterparts, but again only by a small amount overall with a significantly

faster initial convergence speed.
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6. Conclusion

This chapter will highlight the key results from the simulations of Chapter 4 and the

vibrational mode detection and filtering results of Chapter 5. Following this, a number of

suggestions for future research will be provided, concerning the measurement geometry

and techniques, methods of filtering and analysis, as well as for the complex dynamical

modeling.

6.1. Overall Performance

First, the BRDF model was easily made to match real collected data for GOES-16.

While the dynamical simulation results of Chapter 4 are not backed by experimental data,

the long-term numerical stability of the solution and the appearance of expected slosh and

solar panel vibration frequencies instills confidence from an intuitive viewpoint that the

derived equations of motion are accurate representations of a dynamical system under the

given assumptions.

For detecting these vibrational modes, the Fractional Fourier Transform does show

itself as a potentially valuable tool, since it is able to detect two of the three fundamental

frequencies present in the attitude motion by using only the degree of linear polarization

with a relatively large amount of noise assumed. With further noise reduction and/or

longer data sets, it may be possible to detect the vibrational modes with a higher degree of

certainty and subsequently associate them with their corresponding internal processes.

Subsequently, inferences may be made regarding the appropriate dynamical process noise

for the early stages in tuning the filter.

For the purpose of attitude filtering, it is evident that there is some benefit to the

addition of a second site for observations and there is a clear benefit to the addition of a

four-state polarimeter. Adding both is of course preferable, but the biggest benefit comes

from the addition of the polarimetric data. Across all simulations, the dual site cases

proved to be more sensitive to measurements. Additionally, the cases with polarimetric
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data included performed significantly better than those without. There are a few

conclusions to be made from these observations.

First is that dual-site data collection when separated by only about a degree or so of

latitude is worth investigating further. If the seismology is not necessarily of interest,

longer integration times and greater spacing between measurements may be desirable,

since this allows for higher signal-to-noise ratio in visual magnitude and longer

integration time of the dynamical model between timesteps in the filter propagation stage.

This could in turn reduce the effects of floating-point error, which may or may not have

played a role in the convergence times. One must approach this carefully, of course, since

integration times which are too long may cause unwanted uncertainty with astrometric

measurements due to streaking effects.

Of note, the only states which reliably coverged were the attitude states. The angular

velocities diverged in every test case. This is not unsurprising, however, since the

collected measurements depend only on the observation geometry and spacecraft attitude,

which would mean the largest effect of the correction step in the UKF will be on the

attitude estimate, regardless of what happens to the angular velocity estimates.

The better performance of the filter with polarimetric measurements can likely be

attributed to the addition of four unique states which will have very different values from

one another for any given orientation of the RSO. The performance of the filter with noisy

photometric and polarimetric data was comparable to the performance of the filter with

perfect photometric data and excluding polarimetric data. This is to say that the

performance can be made comparable to that from perfect photometric measurements by

adding a somewhat-decent polarimeter–without requiring extremely precise photometric

measurements. A cost assessment would be a useful addition to this, since the polarimeter

will provide another clear benefit of only requiring the weather to be clear in a single

location while still yielding excellent results. However, polarimeters are notoriously
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complicated to design and implement, and because they are usually custom-built to meet

the needs of any particular task, they can also become a significant expense.

6.2. Recommendations for Further Investigation

When there are tens or hundreds of dials to be manually tuned, as there were here, it

seems inevitable that there will always be some combination of inputs which is better than

another. For this reason, it is natural to believe that the performance of the filters

presented may be improved upon by spending more time tuning the input parameters to

the dynamical propagation stage, the covariances, the process noise, and the sigma

weights at each of the stages. Alternatively, an adaptive filtering technique could

potentially be applied to avoid manual tuning altogether. There may also be some merit in

the use of a higher order filter, which could help with the convergence of the angular

velocity estimates.

There is also merit in investigating whether a larger separation between observers

produces better results, since the single degree of separation may not be sufficient for a

significant benefit. The marginal-at-best improvements of the filter performance with the

second site may be due in part to this. Additionally, it may be beneficial to extend the

observation window, since a longer time frame may allow for the angular velocity

estimates to converge once the attitude error is sufficiently reduced.

Related less so to attitude filtering and more so to attitude dynamical modeling, there

should be more work into studying the effects of different models for solar panel

vibration. Because the Euler-Bernoulli beam is confined to a single dimension, it fails to

capture any potential lateral or twisting effects which may or may not have a noticeable

effect when coupled to the greater body motion. Additionally, the assumption was made

for the sake of development that the solar panel consists of a single plate. This did allow

for some approximations to be made, but there should be future investigation of the effects

of this assumption on the body dynamics. Furthermore, a more thorough study of the

body-panel coupling effects should be performed with consideration for bending,
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stretching, and twisting in all directions in order to better quantify the significance of these

effects and whether some or all of them can be neglected.

For making educated inferences about the shape, materials, origin, mission, and other

activities of a vehicle, non-model-based approaches are often preferred since they require

minimal assumptions. The discrete Fourier transform is likely insufficient for detecting

small oscillations due to stationkeeping maneuvers or other relatively impulsive sources

of seismic activity, but wavelet analysis of light curves may allow for better resolution of

changes in modes over time due to the nature of the time-frequency dependence of

spectrograms (Dianetti & Crassidis, 2018). This could be an excellent source of

information for early characterization prior to model development. Additionally, a more

rigorous approach to the fractional Fourier transform may be valuable since it was only

given superficial treatment in this thesis. This could include the use of more signal types, a

range of signal noise characteristics, or different combinations of pre- and post-processing.
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APPENDIX A - CODE FOR COMPUTATION AND EVALUATION OF

EQUATIONS OF MOTION

The code used to find the equations of attitude motion for the high-fidelity simulation

is presented below. There is some required manual manipulation of the outputs from the

first script, but this can be done using Notepad, or something similar.
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