45,015 research outputs found

    3D pain drawings and seating pressure maps: Relationships and challenges

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 IEEEMobility impaired people constitute a significant portion of the adult population, which often experience back pain at some point during their lifetime. Such pain is usually characterized by severe implications reflected on both their personal lives, as well as on a country's health and economic systems. The traditional 2-D representations of the human body often used can be limited in their ability to efficiently visualize such pain for diagnosis purposes. Yet, patients have been shown to prefer such drawings. However, considering that pain is a feeling or emotion that is subjective in nature, the pain drawings could be consequently regarded as a subjective means of communicating such pain. As a result, the study described in this paper proposes an alternative, which encompasses a 3-D pain visualization solution, developed in a previous work of ours. This alternative is complemented with the upcoming technique of pressure mapping for more objectivity in the pain data collection. The results of this study have shown that the proposed approach is a promising solution for the purpose intended, and it could generally prove to be a significant complementary method in the area of medical practice for the mobility impaired community

    Recording of time-varying back-pain data: A wireless solution

    Get PDF
    Chronic back pain is a debilitating experience for a considerable proportion of the adult population, with a significant impact on countries’ economies and health systems. While there has been increasing anecdotal evidence to support the fact that for certain categories of patients (such as wheelchair users), the back pain experienced is dynamically varying with time, there is a relative scarcity of data to support and document this observation, with consequential impact upon such patients’ treatment and care. Part of the reason behind this state of affairs is the relative difficulty in gathering pain measurements at precisely defined moments in time. In this paper,we describe a wireless-enabled solution that collects both questionnaire and diagrammatic, visual-based data, via a pain drawing, which overcomes such limitations, enabling seamless data collection and its upload to a hospital server using existing wireless fidelity technology. Results show that it is generally perceived to be an easy-to-use and convenient solution to the challenges of anywhere/anytime data collection

    2D vs. 3D pain visualization: User preferences in a spinal cord injury cohort

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 Springer VerlagResearch on pain experienced after Spinal Cord Injury (SCI) has revealed that not only are there several types of pain present in the same individual with this kind of trauma, but also that people who suffer such an injury can describe the characteristics of the same type of pain in different ways. Making it possible, therefore, to more precisely describe pain experience could prove to be vital for an increased quality of life. Accordingly, fifteen individuals with pain after SCI were asked to describe their pain experience using a 3 Dimensional (3D) model of the human body that could be used as an aid in communicating their pain. The results of this study suggest that the consensus of the participants approved the ability of the 3D model to more accurately describe their pain, an encouraging outcome towards the use of 3D technology in support of post SCI pain rehabilitation

    An interactive 3-D application for pain management: Results from a pilot study in spinal cord injury rehabilitation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElevierResearch on pain following spinal cord injury (SCI) has revealed that patients not only experience several types of pain that could prove to be challenging to address, but also that each individual can interpret such pain in different subjective ways. In this paper we introduce a 3-D system for facilitating the efficient management of pain, and thus, supporting clinicians in overcoming the aforementioned challenges. This system was evaluated by a cohort of 15 SCI patients in a pilot study that took place between July and October 2010. Participants reported their experiences of using the 3-D system in an adapted version of the System Usability Scale (SUS) questionnaire. Statistically significant results were obtained with regards to the usability and efficiency of the 3-D system, with the majority of the patients finding it particularly useful to report their pain. Our findings suggest that the 3-D system can be an efficient tool in the efforts to better manage the pain experience of SCI patients

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research
    corecore