4 research outputs found

    IPCP: Immersive Parallel Coordinates Plots for Engineering Design Processes

    Get PDF
    Computational engineering design methods and tools are common practice in modern industry. Such approaches are integral in enabling designers to efficiently explore larger and more complex design spaces. However, at the same time, computational engineering design methods tend to dramatically increase the number of candidate solutions that decision-makers must interpret in order to make appropriate choices within a set of solutions. Since all candidate solutions can be represented in digital form together with their assessment criteria, evaluated according to some sort of simulation model, a natural way to explore and understand the complexities of the design problem is to visualize their multidimensional nature. The task now involves the discovery of patterns and trends within the multidimensional design space. In this work, we aim to enhance the design decision-making process by embedding visual analytics into an immersive virtual reality environment. To this end, we present a system called IPCP: immersive parallel coordinates plots. IPCP combines the well-established parallel coordinates visualization technique for high-dimensional data with immersive virtual reality. We propose this approach in order to exploit and discover efficient means to use new technology within a conventional decision-making process. The aim is to provide benefits by enhancing visualizations of 3D geometry and other physical quantities with scientific information. We present the design of this system, which allows the representation and exploration of multidimensional scientific datasets. A qualitative evaluation with two surrogate expert users, knowledgeable in multidimensional data analysis, demonstrate that the system can be used successfully to detect both known and previously unknown patterns in a real-world test dataset, producing an early indicative validation of its suitability for decision support in engineering design processes.Cambridge European and Trinity Hall; Engineering and Physical Sciences Research Council (EPSRC-1788814

    Virtual reality-based parallel coordinates plots enhanced with explainable ai and data-science analytics for decision-making processes

    Get PDF
    We present a refinement of the Immersive Parallel Coordinates Plots (IPCP) system for Virtual Reality (VR). The evolved system provides data-science analytics built around a well-known method for visualization of multidimensional datasets in VR. The data-science analytics enhancements consist of importance analysis and a number of clustering algorithms including a novel SuMC (Subspace Memory Clustering) solution. These analytical methods were applied to both the main visualizations and supporting cross-dimensional scatter plots. They automate part of the analytical work that in the previous version of IPCP had to be done by an expert. We test the refined system with two sample datasets that represent the optimum solutions of two different multi-objective optimization studies in turbomachinery. The first one describes 54 data items with 29 dimensions (DS1), and the second 166 data items with 39 dimensions (DS2). We include the details of these methods as well as the reasoning behind selecting some methods over others.</jats:p

    Local analysis of dynamical systems — concepts and interpretation

    Get PDF
    We present several terms and definitions related to the local analysis of dynamical systems. Multiple terms for one and the same thing that were found in literature are put together to provide a “dictionary” of terms and to avoid potential confusion due to misleading definitions. Additionally, some important concepts which are necessary to analyze a dynamical system are briefly discussed and a new procedure to locally analyze a dynamical system’s behavior near trajectory points is proposed. The paper should give computer graphics specialists working on the visualization of analytically defined dynamical systems a set of mathematically tools for a thorough investigation of the local behavior of such system
    corecore