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Abstract — We presentseverakermsanddefinitionsrelatedto the local analysisof dynamical
systems. Multiple termsfor one andthe samething that were found in literatureare put to-
getherto providea “dictionary” of termsandto avoid potentialconfusiondue to misleading
definitions. Additionally, soménportantconceptsvhich arenecessaryo analyzea dynamical
systemare briefly discussedinda new procedureto locally analyzea dynamicalsystem’sbe-
haviorneartrajectorypointsis proposed.The papershouldgive computergraphicsspecialists
working on the visualizationof analyticallydefineddynamicalsystemsa setof mathematically
tools for a thorough investigation of the local behavior of such system.
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1. Introduction

Dynamicalsystemsarefound in variousfields of researche.g.,flow field analysis),economy
(e.g., stock marketmodels),physics,medicine,and others[ArPI90]. They are given by an
analyticalspecificationor as sampleddata. Thereare many possiblewaysto analyzesucha
systemge.g.,analyzingits long term behavior. An importantbranchof the analysisof dynami-
cal systems ikocal analysis. For certainapplicationsge.g.,the predictionof a system’sbehav-
lor, it is crucial to know, how initially closstateswill evolvewith respecto eachother. Flow
field analysts,for example,are often interestedin vortices, that may be detectedby local
analysisof the underlyingdynamicalsystem. We thereforeconcentraten the local analysisof
dynamical systems throughout this paper.

Scientistghatareinterestedn dynamicalsystemgandthe local analysisof thesesystems)
are confrontedwith a lot of terms,formulas,and definitions. Non-mathematicianget easily
confusedby studyingsomeof the relevantliteraturein the beginning. Differing termsfor the
sameobjectdo not helpto clearup the situationaswell assubtledifferencesn the interpreta-
tion of mathematicakymbolsdo not simplify the understanding.This wasone of the reasons
to compile relevant terms that occur often in literature and to assembliée¢hentdefinitions.
For example the curvatureof a 3D curve can either be calculatedfrom the Frenétformulas
(see section 3) or by analysing the Jacobian matrix of the dynamical system (see section 5).

On the other hand it is interesting to see how some (local) attribugetynémicalsystem
canberetrievedby ratherdifferentapproaches.This seemdo be especiallyusefulwhensome
of the straight-forward techniquesare not possible due to incomplete or insufficient
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specifications. One exampleis the analysisof dynamicalsystemsthat are given as sampled
data which do not allow the use of straight-forward analytical approaches in most cases.

Beforewe startwith termsanddefinitionsrelevantfor local analysisof dynamicalsystems
we list somehigh-level classificationsof dynamicalsystems(seesection2). Thereafterwe
spanan arc from differential geometryaspectsvhen analysingtrajectoriesof dynamicalsys-
temsto the analysisof lineardynamicalsystemsandits interpretation. In this partof the paper
(seesetions 3, 4, and5) we presentwell known conceptsout concentratego give a unifying
view of various terms andefinitions,which are sometimesisedambiguouslyandinterchange-
ablein literature. Thenwe discussdynamicalsystemanalysisnearspecialsubsetf the topo-
logy of behavior to end up with a new approach to locally analyze points on trajectories.

2. Classifications of Dynamical Systems

Dynamicalsystemsare mainly representetby a statethat evolvesin time. Inputaswell asthe
current state of a dynamicsystemdeterminethe evolutionof the system. Typically anoutput
IS generatedrom the stateof the system[Rina95]. Seefigure 1 for an illustration of this
principle.

A—

input u —3» | state x | —3» outputy

Figure 1: Specification of a dynamical system.

This is the generaldefinition of a dynamicalsystemwheremanydifferent systemdit into the

schemaasillustratedin figure 1. For investigatingdynamicalsystemst is necessaryo specify
some characteristicghat provide a subdivisionwith special classesof dynamical systems.
Specificmethodsareavailablefor someof theseclassesthussucha classificationcanhelp to

simplify the analysis.

An importantcharacteristiof a dynamicalsystemis whetherit is continuous or discrete.
Continuoussystems(often called flows) are given by differential equations(e.g., x = AX)
whereaddiscretedynamicalsystemgoften called maps) are specifiedby differenceequations

(€.9. % =AX, = X, -X,=(A-1)) [Tson92].

Autonomous systemsare characterizedby the fact thatinput and outputare omitted from
the definition [Rina95]. Both examples mentioned above present autonomous systems.

An important criterion for the analysisof a dynamical systemis whetherit is time-
dependent or not [Lane93][Lane94]. For time-dependerdynamicalsystemghe functionthat
specifiesx (continuouscase)or X ,, (discretecase)dependson the time itself whereasfor

time-independensystemsthis function doesnot changeover time. Both examplesabove
specify a time-independent systemAifis assumed to be constant over time.
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Whena dynamicalsystemis to be analysedhe fact whetherit is linear or not is very impor-
tant. Lineardynamicalsystemsaresimpleto analyseasopposedo non-linearsystemswhich
typically do haveintricate dynamicalbehavior[Tson92]. Often linearization is usedto get
insights into these complex non-linear dynamical systems.

Using linearization,anotherclassificationof dynamicalsystemsis crucial for separating
simplecasedrom more complexones. Hyperbolic dynamicalsystemscanbe analysedoy lin-
earizationefficiently, whereashon-hyperbolic systemsmay causemajor troublesin combina-
tion with linearization[AbSh92] [GILe91]. Hyperbolic systemsare structurally stable,i.e.,
theyarethe generalkcase. Non-hyperbolicsystemsaredifficult to investigatepccurrarelyand
can be consideredhe transitionalphasebetweentwo hyperbolic systemsof different naure
[Rina95].

3. Differential Geometry and Terms

The solutionof a continuousdynamicalsystemis atrajectory T (t) asdefinedby equation(1)

[KeMa92] [PoWi94]. Any point on the trajectoryis given by its parametet and an initial

state x of the system. Parametet can be interpretedas the time passedsincethe system
evolvedfrom x. Note,that (1) is a recursivedefinition that cannotbe expressedxplicitly in

most cases.

T, (0 = x+ [W(T, () du (1)

Differential geometryincludesthe analysisof curvesand surfacesn higherdimensions. The
constructiorof a local coordinatesystem(Frenét-Framehelpsto getinsightinto local charac-
teristicsof a spacecurve,e.g.,curvatureandtorsion [Beac91][HaMa94]. Local analysisof

trajectoriesrequiresa good working knowledgeof variousterms of differential geometry.
They are shortly discussed in the following.

Given aparameterizedurve C(t) in three-spaca reparameterizatiors possiblesuchthat

the curve’s new parameters is equalto the arc length of curve C in the parameteiinter-
val[0,s). In respect to these distinct parameters derivations of €iare written differently:

C=dc/dt, C =d*C/dt?, andC = d°C/dt® (2)
C' =dC/ds, C" =d*C/ds?, andC™ = d°C/ds’® (3)

By the use of these derivations a local coordinate system (Frenét-Frame) can ba buitat
point by the curve’s tangent vector t. =C', its principal normal n.=C"/|C"|, and its
binormal b, =t. xn.. Thesethreevectorsspananorthonormalbasisat a curvepoint. Note,
thatn. andb. are ambiguous when the curve is locally equal to a straight line.
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By building the Frenét-Framat a curvepoint the curvaturek andthetorsiont of curveC at
this point can be derived in a straight-forward way from the orthonormal basis [Beac91]:

te 0 -k 0)(t,.
ne|=|K 0 -t|lln.| O k=
b 0O t©t 0)\b

d
ds

dte
ds

_ |dbe
ds

(4)

, T

Curvaturek andtorsiont of curve C canbedescribedn othertermsaswell. For example,
the curvatureof a curve canbe written as1/r, whenr is the radiusof the osculatingcircle
[BrSe80].As athird possibility K canbe derivedby the following procedure: Assuminga to
be the angle enclosedby the curve’s tangentand the line running through C(s) and some
slightly ahead point on the curve C(s+As), the curvature K can be calculated as
K= llSrPO a/As.

Torsion can be similarly derivedby a differential quotient. Assumingf3 to be the angle
enclosed by a line throudl(s) andC(s+ As) and the rectifyinglane(spannedy t. andb.),
the torsiont can be calculated as= limOB/As [BrSe80].

4. Dynamical Systemsasa Babylon of Terms

This sectiondiscussesomeof the often usedtermsin combinationwith dynamicalsystem
analysis. Most of termswill be well-knownto the reader put often severaldiffering termsare
usedin literatureto denotethe sameconceptor object. To avoid possibleconfusionabout
these many sometimes interchangeable terms a clarifying survey is appropriate.

We start with operator[], which is often usedto define other importanttermsfor the
analysis of dynamical systems. It builds up a vector of the partial derivativespérendand
is definedas shownin equdion (5) [BrSe80]. If ’s operandf(x) is a scalarfunction, then
0f (x) is called thegradient of f [BrSe80]. IfJ’s operandv(x) is avectorfunction,then v
is theJacobian matrix J = dv/ox of v(x) [LeWi93].

.
0= (i 9 ] , gradf (x) =0f (x), J = 0Ov(X) = dv/ox 5)
ox, 0X,
An oftenused(scalar)termis the divergence of a flow divv(x). It canbewritten as [0W(X)
or as the tracé@r of v’s Jacobiarilv [BrSe80]:
divv(x) = 00(x) =Tr(0Ov) = z (ov/0x),, (6)
The divergencéasicallydescribeghe local amountof outgoingor incomingflow at a specific

location of the dynamicalsystem. It is O, if the amountof incoming flow is equalto the
amount of the outgoing flow.
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Anotherimportanttermfor the local analysisof dynamicalsystemss the rotation vectorof a
flow: rotv(x) [ScVo91] [PaWa94]. This attribute a flow is often namedvorticity insteadof
rotationand abbreviatedoy w [Hans93]. As a third term sometimescur| is usedinsteadof
rotation [Hans93]. The vorticity/rotation/curl of a flow is defined as follows:

w = rotv(x) = curlv(x) = O x v(x) (7)

Vectorrotv(x) describes the rotation axis and its length the rotation velocity, whgiten at
statex. Note, that some references define the vorticity slightly differeatagl/2) [fotv(X).

A scalartermrelatedto the vorticity asdefinedaboveis the stream vorticity Q [Hans93]
[ScVo91]. It is the cosinusof the angleenclosedby the vorticity vectorandthe flow vector
v(Xx). This term characterizeshe type of rotationin the system. If Q is 1, the flow rotates
aroundthe flow vector,whereasa value of O implies, that either thereis no vorticity or the
flow rotates in a plane which also contains the direction of the flow.

0= vIdo :vEdev)
MOwl MO x V]

Justslightly differentfrom the abovedefinition is the specificationof helicity [LeWi93]. Fur-
thermore thénelicity density H, as given in the literature is just the same as he[leibyVa9a3].

A valueof 0 meansexactlythe sameasno streamvorticity, but helicity increasegproportional
to the length oto andv. Itis defined by:

Hy = Q¥ ol = vido = vI{O xv) 9)

Anothertermin correlationwith therotationof aflow is its circulation I'. [Lajo94]. Thecir-

culation of a flow can be used to determine if it is possible to use a potential funsteadof
thevectorfunction v for analysispurposes:If the circulation[ . of aflow is O for anyclosed

curve C, thena potentialfunction f existssuchthat gradf(x) =v(x). In sucha caseit is
ofteneaser to use f insteadof v. Additionally (LIC: T = 0) impliesthatthereis no rotation
at all in the vector field. By using Stoke’s equatidnscan be expressed as follows:

(8)

M= §v(x) ds= J rotv(x) dA (10)

A the surface (of an arbitrary volume) containfdg

5. Interpretingthe Matrix of an Autonomousand Linear System

As we alreadystatedin section2, linear dynamicalsystemsare especiallysimple to analyze.
Sincewe needthis procedureor the restof our paper,we briefly discusssomedifferent ap-
proaches of analyzing the matrix of a linear and autonomous dynamical syAt¢fisen92].
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5.1. Eigenvalues and Eigenvectors

Continuousdynamicalsystems(x = A[x) aswell as discretesystems(x,,, = AX,) that are

autonomous and linear can be entirely analyzed by investigatinggtine A andits character-
istics. Onepossibilityis to computeA’s eigenvalues\; andits eigenvectorse from equations

(11) and (12), respectively [Rina95] [Tson92].

det(A-A,0)=0 (11)
Al =), (& (12)

The interpretationof the eigenvalues\, — they canbe eitherreal or complex— is different
for continuous and discretiynamicalsystemspecause continuoussystemis specifiedby the
change othe currentstate whereasa discretedynamicalsystemis specifiedby giving the next
state of the system.

Continuous Case Discrete Case
Convergence Re\, <0 A [<1 (13)
Divergence Re\, >0 A [>1 (14)
Rotation ImA,, #0 ImA,, #0 (15)

Convergencedivergenceandrotationareto be interpretedrelatively to the origin of the co-
ordinatesystem. Note, thata fix-point of a continuousdynamicalsystemis called hyperbolic,
if its eigenvalues do not lay on the imaginary alkeX; # 0). Fix-pointsof discretedynamical

systems are hyperbolic,[¥, | # 1 for all eigenvalues.

5.2. Decomposing Matrix A

Anotherpossibility of analyzingmatrix A of a linearandautonomousystemis by decompos
ing it into a symmetric matriA” and an asymmetric matrik” as follows [LeWi93]:

A =(A+AT) /2, A =(A-AT) /2 (16)

The elements oA" andA™ can be interpreted rather straight-forward [ScVo91]:

dx [ ] [ ]
A =|+ d, | and(d +d, +d,)=divv(x) (17)
[ ] [ ] d

z

The elements oA™ marked with ® * built up the shear strain portion of this linear system.

0O -r, r r

z y X

A ==|r 0 -r |, andfr, |=rotv(x) (18)

Z X |7

-r, r 0 r

y X z
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5.3.Analyzing the Matrix in a Local Coordinate System (Frenét-Frame)

A third possibility of linear systemanalysisis especiallyuseful while investigatinga flow’s
JacobianJ. It canbe transformednto the local Frenét-frameat somepoint of a trajectory
(J - J°). Thenthe elementsof J°? asgivenin the following equationallow a detailed
characterization of the underlying flow [LaWi93]:

Jlocal -

t (19)

O O Q)

Elementsof matrix J thatare markedwith ‘a’, *S’, or ‘C’ specify changeof the flow that
areparallelto v(x). Theelementmarkedwith ‘a’ givesthe acceleratiorof the flow, whereas
the elementamarkedwith ‘S’ give the shearstrainat this stateof the system. Elementsthat
are marked withC’ give the curvature of the flow.

Remainingelementsof matrix J, that are markedwith either‘d’ aloneor ‘d’ and‘t’,
specify the changesof the flow that are perpendicularto v(x). Splitting the bottom-right
2% 2-matrix into a symmetricand an asymmetricone gives the divergence(by the elements

marked with d°) and the torsion (by the elements marked with of the flow.

6. Dynamical System Analysis near Fix-Points or Cycles

Linear systems by themselVeavea rathersimpledynamicalbehavior. Thereasonwhy linear
systemanalysigs soimportant,is that non-linearsystemsare often analyzedoy local lineariza-
tion [Tson92]. This is especiallyeasynearfix-points, sincethe long-termbehaviortrivially

coincides with the local behavior at these points.

6.1.Dynamical System Analysis near a Fix-Point

Analysingthe system’sbehaviomearits fix-points canhelpto understandhe evolutionof any

stateof the system. Assumingthe systemis non-linearand hyperbolic, linearizationcan be

usedto determinethe behaviornearfix-points completely. Continuousand discretesystems
can be treated rather similar [Rina95]:

The Continuous Case The Discrete Case

Vector Field Definition X = dx/dt = v(x) Xop = V(X)) (20)
Fix-Point Definition X=v(X)=0 X = V(X) (21)
Rewriting X (X,) X=X+A X, =X+A, (22)
Using Taylor Expansion X=V'(X)[A X = X+V'(X)A, (23)
Linearized System A=V (X) D A, =V(X)A, (24)

To keepthe analysissimple,we assumehe systemto be autonomousand time-independent
(see(20) for the definitions). Assumingthe existenceof at leastonefix-point (see(21) for the
definitions)any stateof the dynamicalsystemnearfix-point X canberewrittenwith respecto
X (see(22)). With this reformulationthe dynamicalsystemcon be approximatecy a Taylor
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expansiorasshownin (23). v'(X) denoteghe Jacobiarmatrix of v(x) evaluatedat X. Using
(22) again,theleft sideof the Taylor expansiorin (23) canberewritten. This operationyields
the linearizedsystemdor small perturbationsaroundfix-point X (see(24)). Theselinear sys-
tems can now be analyzed as discussed in section 5.

6.2. Dynamical System Analysisnear a Cycle

Cyclesare anotherimportantclassof characteristicsubsetsvithin continuousdynamicalsys-
tems. A cyclas given,whenthe systenreturnsto a previousstate. The systembehaviomear
sucha cycle canbe analyzedby usinga PoincaréMap. Sucha mapis a discretedynamical
system¢thatis producedrom a continuousdynamicalsystemandthatis of a lower dimension
thanthe original system. A PoincaréMap is specifiedby the cross-sectiorof a surfaceper-
pendicular to the cycle (usually a plane) anichgectorynearthe cycle. The PoincaréMapis a
discretedynamicalsystemwith at leastonefix-point X, i.e., X is the cross-sectiomf the cycle
andthe surface. Thusthe PoincaréMap canbe analysedas shownin the sectionbeforeand
the results are then used for interpreting the system’s behavior nearby the cycle [Rina95].

7. Dynamical System Analysisnear a Trajectory

In the following we proposeanotherapproacho analyzea dynamicalsystem’sbehavior. It is
somewhasimilar to the methodpresentedn section5.3 [LeWi93], asthe dynamicalsystemis
also transformedinto the Frenét-Framed of a point on the trajectory. Contraryto their
approachwe usethe analysisby eigenvaluesand eigenvectorgo interpretthis trangormed
Jacobian matrix. Expressing a dynamical systenv(x) in terms of® one gets

U= (92l ovol2g)(u) = V(u) (25)
U R a state of the system in terms®f

g2l ... transformation from the global coordinate system fto

12g............. transformation fronfP into the global coordinate system.

Nearthe point of interestp (representeth the global coordinatesystem)a stateof the system
canbewrittenasu=0+A in termsof the local coordinatesystem. Note, that p represented
in terms of® is 0. Using a Taylor expansion &fu) up to first-order terms, we get

.~ - - v -
u:v(u):v(O+A)=v(O)+g— (A=Al +V'(0)A (26)
u u=0
() unit-vector in terms ofP collinear to the axis corresponding to the trajectory’s
tangent.
A, length ofv( ).

Transformingthe very left sideof (26) by usingu =0+ A we geta linearizedsystemfor small
perturbations op (in terms of®), becaus&l0/dt = V(0) = A [@,.

A=¥(0)[A (27)
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The elementof A canbe separatednto a scalar®A anda vector ®A thatis of onedimen-
sionlessthanA. ®A is assumedo be 0, sinceperturbationsof p thatarenot perpendicular
to thetrajectory’stangentmakeno senseat all — a stateof the systenmthatis representedsa
perturbation of p with a component ®A#0 can be more accurately expressedas

a (perpendicularperturbationof anotherpoint on exactlythe sametrajectory. Thus A does
not dependon the first row of matrix v'(0). The remaining elementsof V’'s Jacobian

DecomposingA similarto A yieldsa partparallelto the trajectory’stangent(scalar®A)
and a part perpendicular g (sub-vectof*-A):

WA = (1,2___)J| 127
0 (28)

A can be analyzedas alreadyshown for continuoussystemsat the neighbourhoodof fix-
points. But we mustbe carefulwith the interpretationof this analysis,becauselll the results
hold for the investigated poing only. For example, if the analysis of matAxrevealghatthe
sydem’s evolution is convergent (fix-point is an attractor) the only thing that can be dzadl is
nearbytrajectoriesare locally attractedby the trajectoryat the specific location chosen. To
detectconvergentdivergent,or saddleregionsof a trajectoryit mustbe shownthatthe struc-
tural characteristics of matrik are persistent for a certain region of the trajectdiyis might
be not simple analytically, but can be done approximately by numerical simulation..

8. Conclusion

This papercompilesimportanttermsand definitions that are useful for analyzinganalytically
defineddynamicalsystems. Widely varying termsand denotationsare sometimesusedin lit-
erdure to describe importasbnceptf dynamicalsystems. Thusa clarifying surveyof these
sometimes interchangeable terms and definitions is given.

After presentinga classificationof dynamicalsystemstools of differential geometryare
discussedvith respecto the analysisof trajectoriesof dynamicalsystems. The descriptionof
terms defining flow characteristics of dynamical systems (e.g., divergetagon)is followed
by discussing linearization techniques for dynamical systems.

Togetherwith aninvestigationof flow behaviorcloseto a fix-point and cyclesa concept
for the local analysisof a dynamicalsystemcloseto an arbitrarytrajectoryis presented.This
approachbasicallyinvestigategperturbationsrthogonalto the chosentrajectoryby determin-
ing eigenvalueandeigenvector®f a matrix which is closelyrelatedto the Jacobiarmatrix of
the dynamical system but with lower dimension.
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