9,414 research outputs found

    Efficient Autonomous Navigation for Planetary Rovers with Limited Resources

    Get PDF
    Rovers operating on Mars are in need of more and more autonomous features to ful ll their challenging mission requirements. However, the inherent constraints of space systems make the implementation of complex algorithms an expensive and difficult task. In this paper we propose a control architecture for autonomous navigation. Efficient implementations of autonomous features are built on top of the current ExoMars navigation method, enhancing the safety and traversing capabilities of the rover. These features allow the rover to detect and avoid hazards and perform long traverses by following a roughly safe path planned by operators on ground. The control architecture implementing the proposed navigation mode has been tested during a field test campaign on a planetary analogue terrain. The experiments evaluated the proposed approach, autonomously completing two long traverses while avoiding hazards. The approach only relies on the optical Localization Cameras stereobench, a sensor that is found in all rovers launched so far, and potentially allows for computationally inexpensive long-range autonomous navigation in terrains of medium difficulty

    The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Full text link
    (ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.Comment: 28 pages, 12 figures, accepted for publication in the International Journal of Astrobiolog

    Recognition of landslides in lunar impact craters

    Get PDF
    Landslides have been observed on several planets and minor bodies of the solar System, including the Moon. Notwithstanding different types of slope failures have been studied on the Moon, a detailed lunar landslide inventory is still pending. Undoubtedly, such will be in a benefit for future geological and morphological studies, as well in hazard, risk and suscept- ibility assessments. A preliminary survey of lunar landslides in impact craters has been done using visual inspection on images and digital elevation model (DEM) (Brunetti et al. 2015) but this method suffers from subjective interpretation. A new methodology based on polynomial interpolation of crater cross-sections extracted from global lunar DEMs is presented in this paper. Because of their properties, Chebyshev polynomials were already exploited for para- metric classification of different crater morphologies (Mahanti et al., 2014). Here, their use has been extended to the discrimination of slumps in simple impact craters. Two criteria for recognition have provided the best results: one based on fixing an empirical absolute thresholding and a second based on statistical adaptive thresholding. The application of both criteria to a data set made up of 204 lunar craters’ cross-sections has demonstrated that the former criterion provides the best recognition

    Space photography and the exploration of Mars

    Get PDF
    A general exposition of the scientific potentialities and analytic framework of space photography is presented using the photography of Mars from flybys and orbiters as the principal example. Space photography is treated here as a communication process in which planetary scene information is communicated to the eye-brain receiver of earth-based interpreters. The salient parameters of this process are: (1) total information returned, (2) surface resolution, and (3) a priori knowledge regarding the planetary surface observed

    Planet Four: Terrains - Discovery of Araneiforms Outside of the South Polar Layered Deposits

    Full text link
    We present the results of a systematic mapping of seasonally sculpted terrains on the South Polar region of Mars with the Planet Four: Terrains (P4T) online citizen science project. P4T enlists members of the general public to visually identify features in the publicly released Mars Reconnaissance Orbiter CTX images. In particular, P4T volunteers are asked to identify: 1) araneiforms (including features with a central pit and radiating channels known as 'spiders'); 2) erosional depressions, troughs, mesas, ridges, and quasi-circular pits characteristic of the South Polar Residual Cap (SPRC) which we collectively refer to as 'Swiss cheese terrain', and 3) craters. In this work we present the distributions of our high confidence classic spider araneiforms and Swiss cheese terrain identifications. We find no locations within our high confidence spider sample that also have confident Swiss cheese terrain identifications. Previously spiders were reported as being confined to the South Polar Layered Deposits (SPLD). Our work has provided the first identification of spiders at locations outside of the SPLD, confirmed with high resolution HiRISE imaging. We find araneiforms on the Amazonian and Hesperian polar units and the Early Noachian highland units, with 75% of the identified araneiform locations in our high confidence sample residing on the SPLD. With our current coverage, we cannot confirm whether these are the only geologic units conducive to araneiform formation on the Martian South Polar region. Our results are consistent with the current CO2 jet formation scenario with the process exploiting weaknesses in the surface below the seasonal CO2 ice sheet to carve araneiform channels into the regolith over many seasons. These new regions serve as additional probes of the conditions required for channel creation in the CO2 jet process. (Abridged)Comment: accepted to Icarus - Supplemental data files are available at https://www.zooniverse.org/projects/mschwamb/planet-four-terrains/about/results - Icarus print version available at http://www.sciencedirect.com/science/article/pii/S001910351730055

    Planetary exploration: Space in the seventies

    Get PDF
    • …
    corecore