35,997 research outputs found

    Interoceptive inference, emotion, and the embodied self

    Get PDF
    The concept of the brain as a prediction machine has enjoyed a resurgence in the context of the Bayesian brain and predictive coding approaches within cognitive science. To date, this perspective has been applied primarily to exteroceptive perception (e.g., vision, audition), and action. Here, I describe a predictive, inferential perspective on interoception: ‘interoceptive inference’ conceives of subjective feeling states (emotions) as arising from actively-inferred generative (predictive) models of the causes of interoceptive afferents. The model generalizes ‘appraisal’ theories that view emotions as emerging from cognitive evaluations of physiological changes, and it sheds new light on the neurocognitive mechanisms that underlie the experience of body ownership and conscious selfhood in health and in neuropsychiatric illness

    Take another little piece of my heart: a note on bridging cognition and emotions

    Get PDF
    Science urges philosophy to be more empirical and philosophy urges science to be more reflective. This markedly occurred along the “discovery of the artificial” (CORDESCHI 2002): in the early days of Cybernetics and Artificial Intelligence (AI) researchers aimed at making machines more cognizant while setting up a framework to better understand human intelligence. By and large, those genuine goals still hold today, whereas AI has become more concerned with specific aspects of intelligence, such as (machine) learning, reasoning, vision, and action. As a matter of fact, the field suffers from a chasm between two formerly integrated aspects. One is the engineering endeavour involving the development of tools, e.g., autonomous systems for driving cars as well as software for semantic information retrieval. The other is the philosophical debate that tries to answer questions concerning the nature of intelligence. Bridging these two levels can indeed be crucial in developing a deeper understanding of minds. An opportunity might be offered by the cogent theme of emotions. Traditionally, computer science, psychological and philosophical research have been compelled to investigate mental processes that do not involve mood, emotions and feelings, in spite of Simon’s early caveat (SIMON 1967) that a general theory of cognition must incorporate the influences of emotion. Given recent neurobiological findings and technological advances, the time is ripe to seriously weigh this promising, albeit controversial, opportunity

    The cybernetic Bayesian brain: from interoceptive inference to sensorimotor contingencies

    Get PDF
    Is there a single principle by which neural operations can account for perception, cognition, action, and even consciousness? A strong candidate is now taking shape in the form of “predictive processing”. On this theory, brains engage in predictive inference on the causes of sensory inputs by continuous minimization of prediction errors or informational “free energy”. Predictive processing can account, supposedly, not only for perception, but also for action and for the essential contribution of the body and environment in structuring sensorimotor interactions. In this paper I draw together some recent developments within predictive processing that involve predictive modelling of internal physiological states (interoceptive inference), and integration with “enactive” and “embodied” approaches to cognitive science (predictive perception of sensorimotor contingencies). The upshot is a development of predictive processing that originates, not in Helmholtzian perception-as-inference, but rather in 20th-century cybernetic principles that emphasized homeostasis and predictive control. This way of thinking leads to (i) a new view of emotion as active interoceptive inference; (ii) a common predictive framework linking experiences of body ownership, emotion, and exteroceptive perception; (iii) distinct interpretations of active inference as involving disruptive and disambiguatory—not just confirmatory—actions to test perceptual hypotheses; (iv) a neurocognitive operationalization of the “mastery of sensorimotor contingencies” (where sensorimotor contingencies reflect the rules governing sensory changes produced by various actions); and (v) an account of the sense of subjective reality of perceptual contents (“perceptual presence”) in terms of the extent to which predictive models encode potential sensorimotor relations (this being “counterfactual richness”). This is rich and varied territory, and surveying its landmarks emphasizes the need for experimental tests of its key contributions

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    The typical developmental trajectory of social and executive functions in late adolescence and early adulthood.

    Get PDF
    Executive functions and social cognition develop through childhood into adolescence/early adulthood and are important for adaptive goal-oriented behaviour (Apperly, Samson & Humphreys, 2009; Blakemore & Choudhury, 2006). These functions are attributed to frontal networks known to undergo protracted maturation into early adulthood (Barker, Andrade, Morton, Romanowski & Bowles, 2010; Lebel, Walker, Leemans, Phillips & Beaulieu, 2008) although social cognition functions are also associated with widely distributed networks. Previously, non-linear development has been reported around puberty on an emotion match to sample task (McGivern, Andersen, Byrd, Mutter & Reilly, 2002) and for IQ in mid adolescence (Ramsden et al., 2011). However, there are currently little data on the typical development of social and executive functions in late adolescence and early adulthood. In a cross sectional design, 98 participants completed tests of social cognition and executive function, Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), Positive and Negative Affect Scale (Watson, Clark & Tellegan, 1988), Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983) and measures of pubertal development and demographics at age 17, 18 and 19. Non-linear age differences for letter fluency and concept formation executive functions were found, with a trough in functional ability in 18 year olds compared to other groups. There were no age group differences on social cognition measures. Gender accounted for differences on one scale of concept formation, one dynamic social interaction scale and two empathy scales. The clinical, developmental and educational implications of these findings are discussed
    corecore