38,866 research outputs found

    Self-Organizing Maps For Knowledge Discovery From Corporate Databases To Develop Risk Based Prioritization For Stagnation ďťż

    Get PDF
    Stagnation or low turnover of water within water distribution systems may result in water quality issues, even for relatively short durations of stagnation / low turnover if other factors such as deteriorated aging pipe infrastructure are present. As leakage management strategies, including the creation of smaller pressure management zones, are implemented increasingly more dead ends are being created within networks and hence potentially there is an increasing risk to water quality due to stagnation / low turnover. This paper presents results of applying data driven tools to the large corporate databases maintained by UK water companies. These databases include multiple information sources such as asset data, regulatory water quality sampling, customer complaints etc. A range of techniques exist for exploring the interrelationships between various types of variables, with a number of studies successfully using Artificial Neural Networks (ANNs) to probe complex data sets. Self Organising Maps (SOMs), are a class of unsupervised ANN that perform dimensionality reduction of the feature space to yield topologically ordered maps, have been used successfully for similar problems to that posed here. Notably for this application, SOM are trained without classes attached in an unsupervised fashion. Training combines competitive learning (learning the position of a data cloud) and co-operative learning (self-organising of neighbourhoods). Specifically, in this application SOMs performed multidimensional data analysis of a case study area (covering a town for an eight year period). The visual output of the SOM analysis provides a rapid and intuitive means of examining covariance between variables and exploring hypotheses for increased understanding. For example, water age (time from system entry, from hydraulic modelling) in combination with high pipe specific residence time and old cast iron pipe were found to be strong explanatory variables. This derived understanding could ultimately be captured in a tool providing risk based prioritisation scores

    Self-Organising Map Approach to Individual Profiles: Age, Sex and Culture in Internet Dating

    Get PDF
    A marked feature of recent developments in the networked society has been the growth in the number of people making use of Internet dating services. These services involve the accumulation of large amounts of personal information which individuals utilise to find others and potentially arrange offline meetings. The consequent data represent a challenge to conventional analysis, for example, the service that provided the data used in this paper had approximately 5,000 users all of whom completed an extensive questionnaire resulting in some 300 parameters. This creates an opportunity to apply innovative analytical techniques that may provide new sociological insights into complex data. In this paper we utilise the self-organising map (SOM), an unsupervised neural network methodology, to explore Internet dating data. The resulting visual maps are used to demonstrate the ability of SOMs to reveal interrelated parameters. The SOM process led to the emergence of correlations that were obscured in the original data and pointed to the role of what we call \'cultural age\' in the profiles and partnership preferences of the individuals. Our results suggest that the SOM approach offers a well established methodology that can be easily applied to complex sociological data sets. The SOM outcomes are discussed in relation to other research about identifying others and forming relationships in a network society.Self-Organising Map; Neural Network; Complex Data; Internet Dating; Age; Sex; Culture; Relationship; Visualisation

    Self-Organising Networks for Classification: developing Applications to Science Analysis for Astroparticle Physics

    Full text link
    Physics analysis in astroparticle experiments requires the capability of recognizing new phenomena; in order to establish what is new, it is important to develop tools for automatic classification, able to compare the final result with data from different detectors. A typical example is the problem of Gamma Ray Burst detection, classification, and possible association to known sources: for this task physicists will need in the next years tools to associate data from optical databases, from satellite experiments (EGRET, GLAST), and from Cherenkov telescopes (MAGIC, HESS, CANGAROO, VERITAS)

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Managing the noisy glaucomatous test data by self organising maps

    Get PDF
    One of the main difficulties in obtaining reliable data from patients in glaucomatous tests is the measurement noise caused by the learning effect, inattention, failure of fixation, fatigue, etc. Using Kohonen's self-organising feature maps, we have developed a computational method to distinguish between the noise and true measurement. This method has been shown to provide a satisfactory way of locating and rejecting noise in the test data, an improvement over conventional statistical method

    Multilevel kohonen network learning for clustering problems

    Get PDF
    Clustering is the procedure of recognising classes of patterns that occur in the environment and assigning each pattern to its relevant class. Unlike classical statistical methods, self-organising map (SOM) does not require any prior knowledge about the statistical distribution of the patterns in the environment. In this study, an alternative classification of self-organising neural networks, known as multilevel learning, was proposed to solve the task of pattern separation. The performance of standard SOM and multilevel SOM were evaluated with different distance or dissimilarity measures in retrieving similarity between patterns. The purpose of this analysis was to evaluate the quality of map produced by SOM learning using different distance measures in representing a given dataset. Based on the results obtained from both SOM methods, predictions can be made for the unknown samples. The results showed that multilevel SOM learning gives better classification rate for small and medium scale datasets, but not for large scale dataset

    Interactive retrieval of video using pre-computed shot-shot similarities

    Get PDF
    A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision

    Pixel Features for Self-organizing Map Based Detection of Foreground Objects in Dynamic Environments

    Get PDF
    Among current foreground detection algorithms for video sequences, methods based on self-organizing maps are obtaining a greater relevance. In this work we propose a probabilistic self-organising map based model, which uses a uniform distribution to represent the foreground. A suitable set of characteristic pixel features is chosen to train the probabilistic model. Our approach has been compared to some competing methods on a test set of benchmark videos, with favorable results.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech
    • …
    corecore