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Abstract. Among current foreground detection algorithms for video se-
quences, methods based on self-organizing maps are obtaining a greater
relevance. In this work we propose a probabilistic self-organising map
based model, which uses a uniform distribution to represent the fore-
ground. A suitable set of characteristic pixel features is chosen to train
the probabilistic model. Our approach has been compared to some com-
peting methods on a test set of benchmark videos, with favorable results.
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1 Introduction

Foreground object detection is a key problem in the design of computer vi-
sion systems. Algorithms to solve this problem must handle many difficulties
which arise in real life videos. These inconveniences include illumination changes,
shadow appearances in the foreground because of object lighting in the back-
ground or repetitive motions of background objects from the scene (waves of the
sea, branches of the trees), among many others.

There are several approaches in the literature to model the background of
a video sequence, employing different techniques like mixtures of Gaussians or
probabilistic neural networks. In this paper we present a model based on prob-
abilistic self-organising maps, with a suitable choice of characteristic pixel fea-
tures.

The rest of the paper is structured as follows. The methodology from our
proposal is described in Section 2. The experimental results are shown in Section
3. Finally we present our conclusions in Section 4.
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2 Methodology

Our foreground detection system first computes the values of D features of each
pixel of an incoming frame of size NumRows×NumCols pixels. The set of suit-
able features that we have considered is presented in [3]. After that, the feature
vector t ∈ RD at pixel position x ∈ {1, ..., NumRows} × {1, ..., NumCols} is
provided as the input sample to a learning algorithm to adapt the parameters
of a probabilistic mixture distribution with two mixture components (Back for
the background and Fore for the foreground):

px (t) = πBack,xpx (t | Back) + πFore,xpx (t | Fore) (1)

The foreground values of the feature vector are modeled by the uniform
distribution over the space of all possible feature vectors, so that any incoming
foreground object can be represented equally well:

px (t | Fore) = U (t) (2)

U (t) =

{
1/V ol (S) iff t ∈ S
0 iff t /∈ S

(3)

where S is the support of the uniform pdf and V ol (S) is the D-dimensional
volume of S. The distribution of the background values of the feature vector is
represented by means of a probabilistic self-organizing map:

px (t | Back) =
1

H

H∑
i=1

px (t | i) (4)

where H is the number of mixture components (units) of the self-organizing map,
and the prior probabilities or mixing proportions are assumed to be equal. More
details about the learning algorithm for the above defined mixture are given in
[2].

The Bayesian probability that the observed sample (feature vector value) t
is foreground is given by

RFore,x (t) =
πFore,xpx (t | Fore)

πBack,xpx (t | Back) + πFore,xpx (t | Fore)
(5)

However, RFore,x (t) is prone to noise due to isolated pixels that change their
features randomly. The Pearson correlations ρx,y allow us to obtain a noise-
reduced version of RFore,x (t) by combining it with the information from the
8-neighbours y of x:

R̃Fore,x (t) = trunc

1

9

∑
y∈Neigh(x)

ρx,yRFore,y (t)

 (6)

where Neigh (x) contains the pixel x and its 8-neighbours y.



Table 1. Summary of the main model characteristics for each compared method.

Name Model characteristics

WrenGA One Gaussian distribution
GrimsonGMM K Gaussian distributions
MaddalenaSOBS Artificial neural networks

FSOM Uniform distribution and probabilistic
self-organizing map

3 Experimental results

In this section we present the foreground detection performance of our method
and a comparison with other algorithms of the state-of-art. Software and hard-
ware used in our experiments are shown in Subsection 3.1. We detail the tested
sequences in Subsection 3.2. The set of parameters by each method are specified
in Subsection 3.3. Finally the qualitative and quantitative results are reported
in Subsection 3.4.

3.1 Methods

Our method called FFSOM is based on the object detection method FSOM [2],
which was previously developed by our research group and it is included in the
comparisons. The code of this method can be downloaded for free4.

The FFSOM and FSOM methods have been implemented in Matlab, using
MEX files written in C++ for those quite time-demanding parts.

Additionally we have selected some reference methods of the literature. The
first we used is the algorithm we note as WrenGA [7], which is the oldest and
it features a single Gaussian. Other Gaussians approach method is the one we
name GrimsonGMM [5], that uses two Mixture of Gaussians. Finally we have
chosen an artificial neural networks approach method noted MaddalenaSOBS
[4]. The main characteristics of all selected methods are shown in Table 1.

The implementation of these tested methods have been taken from the BGS
libray version 1.3.0, which is accessible from its website5.

Since our FFSOM and FSOM methods include a post-processing and the
MaddalenaSOBS method has an implicit post-processing, we have added post-
processing to all the other methods so as to make the comparisons as fair as
possible.

The experiments reported in this paper have been carried out on a 64-bit
Personal Computer with an eight-core Intel i7 3.60 GHz CPU, 32 GB RAM and
standard hardware. The implementation of our method does not use any GPU
resources, so it does not require any specific graphics hardware.

4 http://www.lcc.uma.es/%7Eezeqlr/fsom/fsom.html
5 https://github.com/andrewssobral/bgslibrary



Table 2. Considered parameter values for the competing methods, forming the set of
experimental configurations.

Method Parameters

FFSOM Features, F = {[1 19 20]}
Step size, α = {0.01}
Number of neurons, N = {12}

FSOM Step size, α = {0.01}
Number of neurons, N = {12}

GrimsonGMM Threshold, T = {12}
Learning rate, α = {0.0025}
Number of Gaussians in the mixture model, K = {3}

MaddalenaSOBS Sensitivity, s1 = {75}
Training sensitivity, s0 = {245}
Learning rate, α1 = {75}
Training step, N = {100}

WrenGA Threshold, T = {12}
Learning rate, α = {0.005}

3.2 Sequences

A set of videos have been selected from the 2014 dataset of the ChangeDe-
tection.net website6. The sequences have been chosen are two videos from the
Baseline category and other two from the Low Framerate category. The first
one contains simple videos and the other one is composed by sequences with low
frame rate. The video Office presents a room and a person who appears, he stays
with low movements and then he goes out (360x240 pixels and 2050 frames), and
PETS2006 shows a train station with people moving on in (720x576 pixels and
1200 frames). This two videos are from the Baseline category. On the other hand,
the two sequences selected from the Low Framerate category are TramCrossroad,
a crossroad with cars driving for different ways (640x350 pixels and 900 frames);
and Turnpike (320x240 pixels and 1500 frames), a highway with cars moving
from left to right and vice versa.

3.3 Parameter selection

We have defined a set of fixed values for the parameters of the methods to make
the comparisons. The tuned values of each method are selected from the author’s
recommendations and they are shown in Table 2.

6 http://changedetection.net/



Fig. 1. Qualitative results for some benchmark scenes. From left to right: frame 1638
from Office (a), frame 956 from PETS2006 (b), frame 420 from TramCrossroad (c) and
frame 958 from Turnpike (d) respectively. The first and second rows correspond to the
original video frame and the ground truth. The remaining rows are the results given
by the compared methods.

(a) (b) (c) (d)

Frame

GT

FFSOM

FSOM

GrimsonGMM

MaddalenaSOBS

3.4 Results

On the one hand, from a qualitative point of view, in most cases the produced
results by all compared methods are very similar, as it can be shown in Figure
1.

On the other hand there are other scenes from the tested sequences for all
the methods whose segmented images are obtained with noise and this promotes
worst quantitative results. Furthermore there are other presented problems like
camouflage (pixels from foreground and background are very similar) or sudden
lighting changes in the scene.

The goodness of a method and the comparison with others can be evaluated
with different quantitative performance measures. One of them we have selected
is the called spatial accuracy, which it has been used for the comparisons in other



Table 3. Accuracy results (higher is better). Each column corresponds to a video and
the rows indicate the methods. Each cell shows the mean and standard deviation of
the accuracy over all tested configurations. Best results are highlighted in bold.

Method Office PETS2006 TramCrossroad Turnpike

FFSOM 0.569±0.148 0.679±0.077 0.073±0.133 0.317±0.321
FSOM 0.535±0.147 0.658±0.082 0.071±0.129 0.298±0.302

GrimsonGMM 0.285±0.141 0.501±0.157 0.069±0.124 0.293±0.297
MaddalenaSOBS 0.701±0.118 0.638±0.086 0.053±0.101 0.299±0.302

WrenGA 0.350±0.154 0.448±0.154 0.067±0.122 0.262±0.267

papers[1, 6], and it is defined as follows:

AC =
card (A ∩ B)

card (A ∪B)
(7)

where ’card’ stands for the number of elements of a set, A is the set of all pixels
which belong to the foreground, and B is the set of all pixels which are classified
as foreground by the analyzed method.

Furthermore, the F-measure is also employed, which is a proportion of the
precision (PR) and recall (RC) metrics and it is defined as follows:

F −measure = 2 ∗ PR ∗RC
PR+RC

(8)

The average accuracy with its standard deviation for the best configuration
for each sequence are shown in Table 3. Furthermore some different results are
presented in Figures 2, 3 and 4.

FFSOM presents the best performance of all tested methods in three of the
four analyzed videos. In addition, FFSOM obtained better results than FSOM.

Other significant aspect is the low accuracy presented in the TramCrossroad
sequence by all methods. This is motivated because the ground truth of the
different images from the video are not complete as we can see in Figure 1, row
GT, column (c).

4 Conclusions

We have proposed a new method for the background modeling and foreground
object detection using a set of pixel features different from the standard RGB
values. The method has been compared with other state-of-art algorithms em-
ploying several benchmark videos. The reported results are satisfactory, with our
method achieving the best performance in the majority of the tests.
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Fig. 2. Accuracy versus F-measure, False positives versus False negatives, and Precision
versus Recall for each method. First column shows the Office sequence and the second
column corresponds to the PETS2006 video.
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Fig. 3. Accuracy versus F-measure, False positives versus False negatives, and Precision
versus Recall for each method. First column shows the TramCrossroad sequence and
the second column corresponds to the Turnpike video.
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Fig. 4. Accuracy and F-measure for each method in each video. Please note that the
values of each method are connected between them with lines to appreciate which
method is better in each video, but this does not mean that the videos are related.


