76 research outputs found

    Evaluating methods for controlling depth perception in stereoscopic cinematography.

    Get PDF
    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games

    Un flou adaptatif en fonction du point de focalisation pour réduire la fatigue visuelle en vision stéréoscopique

    No full text
    National audienceDepuis quelques années, de plus en plus de contenus stéréoscopiques sont disponibles au grand public. Si l'impression de relief est remarquable, il n'en reste pas moins que la vision artificielle stéréoscopique demeure fatigante. Une cause de cette fatigue est le conflit accommodation convergence. Dans cet article, nous proposons d'ajouter un flou dans la vision périphérique (le point de focalisation étant déterminé avec un eye-tracking) pour limiter ce conflit et donc limiter la fatigue visuelle

    Stereopsis assessment at multiple distances with an iPad application

    Full text link
    [EN] We present a new application for iPad for screening stereopsis at multiple distances that allows testing up to ten levels of stereoacuity at each distance. Our approach is based on a random dot stereogram viewable with anaglyph spectacles. Sixty-five subjects with no ocular diseases, wearing their habitual correction were measured at 3 m and 0.5 m. Results were compared with a standard stereoscopic test (TNO). We found not statistically significant differences between both tests, but our method achieved higher reproducibility. Applications in visual screening programs and to design and use of 3D displays, are suggested. (C) 2017 Elsevier B.V. All rights reserved.This work was supported by the Ministerio de Economia y Competitividad and FEDER (Grant DPI2015-71256-R) and by the Generalitat Valenciana (Grant PROMETEOII-2014-072), Spain. D. Montagud acknowledges financial support from Universitat Politecnica de Valencia (PAID-01-16)Rodríguez-Vallejo, M.; Ferrando, V.; Montagud-Martínez, D.; Monsoriu Serra, JA.; Furlan, WD. (2017). Stereopsis assessment at multiple distances with an iPad application. Displays. 50:35-40. https://doi.org/10.1016/j.displa.2017.09.001S35405

    Quality of experience model for 3DTV

    Get PDF
    International audienceModern stereoscopic 3DTV brings new QoE (quality of experience) to viewers, which not only enhances the 3D sensation due to the added binocular depth, but may also induce new problems such as visual discomfort. Subjective quality assessment is the conventional method to assess the QoE. However, the conventional perceived image quality concept is not enough to reveal the advantages and the drawbacks of stereoscopic images in 3DTV. Higher-level concepts such as visual experience were proposed to represent the overall visual QoE for stereoscopic images. In this paper, both the higher-level concept quality indicator, i.e. visual experience and the basic level concepts quality indicators including image quality, depth quantity, and visual comfort are defined. We aim to explore 3D QoE by constructing the visual experience as a weight sum of image quality, depth quantity and visual comfort. Two experiments in which depth quantity and image quality are varied respectively are designed to validate this model. In the first experiment, the stimuli consist of three natural scenes and for each scene, there are four levels of perceived depth variation in terms of depth of focus: 0, 0.1, 0.2 and 0.3 diopters. In the second experiment, five levels of JPEG 2000 compression ratio, 0, 50, 100, 175 and 250 are used to represent the image quality variation. Subjective quality assessments based on the SAMVIQ method are used in both experiments to evaluate the subject's opinion in basic level quality indicators as well as the higher-level indicator. Statistical analysis of result reveals how the perceived depth and image quality variation affect different perceptual scales as well as the relationship between different quality aspects

    Live delivery of neurosurgical operating theater experience in virtual reality

    Get PDF
    A system for assisting in microneurosurgical training and for delivering interactive mixed reality surgical experience live was developed and experimented in hospital premises. An interactive experience from the neurosurgical operating theater was presented together with associated medical content on virtual reality eyewear of remote users. Details of the stereoscopic 360-degree capture, surgery imaging equipment, signal delivery, and display systems are presented, and the presence experience and the visual quality questionnaire results are discussed. The users reported positive scores on the questionnaire on topics related to the user experience achieved in the trial.Peer reviewe

    Designing and validation a visual fatigue questionnaire for video display terminals operators

    Get PDF
    Background: Along with the rapid growth of technology its related tools such as computer, monitors and video display terminals (VDTs) grow as well. Based on the studies, the most common complaint reported is of the VDT users. Methods: This study attempts to design a proper tool to assess the visual fatigue of the VDT users. First draft of the questionnaire was prepared after a thorough study on the books, papers and similar questionnaires. The validity and reliability of the questionnaire was confirmed using the content validity index (CVI) beside that of the Cronbach's Coefficient Alpha. Then, a cross-sectional study was carried out on 248 of the VDT users in different professions. A theoretical model with four categories of symptoms of visual fatigue was derived from the previous studies and questionnaires. Having used the AMOS16 software, the construct validity of the questionnaire was evaluated using the confirmatory factor analysis. The correlation co-efficiency of the internal domains was calculated using the SPSS 11.5 software. To assess the quality check index and determining the visual fatigue levels, visual fatigue of the VDT users was measured by the questionnaire and visual fatigue meter (VFM) device. Cut-off points were identified by receiver operating characteristic curves. Results: CVI and reliability co-efficiency were both equal to 0.75. Model fit indices including root mean of squared error approximation, goodness of fit index and adjusted goodness of fit index were obtained 0.026, 0.96 and 0.92 respectfully. The correlation between the results measured with the questionnaire and VFM-90.1 device was-0.87. Cut-off points of the questionnaire were 0.65, 2.36 and 3.88. The confirmed questionnaire consists of four main areas: Eye strain (4 questions), visual impairment (5 questions) and the surface impairment of the eye (3 questions) and the out of eye problems (3 questions). Conclusions: The visual fatigue questionnaire contains 15 questions and has a very remarkable validity and reliability. Usingthis questionnaire and its findings, one will be able to identify, assess and finally prevent the effective factors of VDT users' visual fatigue

    Using traditional glass plate holograms to study visual perception of future digital holographic displays

    Get PDF
    We study observers looking at a 3D scene captured in a traditional glass plate hologram using eye-tracking. We compare this with stereoscopic and 2D images. Our results can guide development of future digital holographic displays

    Position Paper On Use Of Stereoscopy To Support Science Learning: Ten Years Of Research

    Get PDF
    Stereoscopys potential as a tool for science education has been largely eclipsed by its popularity as an entertainment platform and marketing gimmick. Dozens of empirical papers have been published in the last decade about the impact of stereoscopy on learning. As a result, a corpus of research now points to a coherent message about how, when, and where stereoscopy can be most effective in supporting science education. This position paper synthesizes that research with examples from three studies recently completed and published by the authors of this paper. Results of the synthesis point towards generally limited successful uses of stereoscopic media in science education with a pocket of potentially beneficial applications. Our position is that stereoscopy should be used only where its unique properties can accommodate specific requirements of understanding topics and tasks namely visualizations where the spatial sense of depth is germane to conveying core ideas and cognitive load is high. Stereoscopys impact on learning is also related to the spatial ability of the viewer. More research is needed on the effect of novelty, long-term learning and possible learning differences between the various methods of implementing stereoscopy
    • …
    corecore