49 research outputs found

    Local and global gestalt laws: A neurally based spectral approach

    Get PDF
    A mathematical model of figure-ground articulation is presented, taking into account both local and global gestalt laws. The model is compatible with the functional architecture of the primary visual cortex (V1). Particularly the local gestalt law of good continuity is described by means of suitable connectivity kernels, that are derived from Lie group theory and are neurally implemented in long range connectivity in V1. Different kernels are compatible with the geometric structure of cortical connectivity and they are derived as the fundamental solutions of the Fokker Planck, the Sub-Riemannian Laplacian and the isotropic Laplacian equations. The kernels are used to construct matrices of connectivity among the features present in a visual stimulus. Global gestalt constraints are then introduced in terms of spectral analysis of the connectivity matrix, showing that this processing can be cortically implemented in V1 by mean field neural equations. This analysis performs grouping of local features and individuates perceptual units with the highest saliency. Numerical simulations are performed and results are obtained applying the technique to a number of stimuli.Comment: submitted to Neural Computatio

    Visual Question Answering: A Survey of Methods and Datasets

    Full text link
    Visual Question Answering (VQA) is a challenging task that has received increasing attention from both the computer vision and the natural language processing communities. Given an image and a question in natural language, it requires reasoning over visual elements of the image and general knowledge to infer the correct answer. In the first part of this survey, we examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to connect the visual and textual modalities. In particular, we examine the common approach of combining convolutional and recurrent neural networks to map images and questions to a common feature space. We also discuss memory-augmented and modular architectures that interface with structured knowledge bases. In the second part of this survey, we review the datasets available for training and evaluating VQA systems. The various datatsets contain questions at different levels of complexity, which require different capabilities and types of reasoning. We examine in depth the question/answer pairs from the Visual Genome project, and evaluate the relevance of the structured annotations of images with scene graphs for VQA. Finally, we discuss promising future directions for the field, in particular the connection to structured knowledge bases and the use of natural language processing models.Comment: 25 page

    Good Practice in CNN Feature Transfer

    Full text link
    The objective of this paper is the effective transfer of the Convolutional Neural Network (CNN) feature in image search and classification. Systematically, we study three facts in CNN transfer. 1) We demonstrate the advantage of using images with a properly large size as input to CNN instead of the conventionally resized one. 2) We benchmark the performance of different CNN layers improved by average/max pooling on the feature maps. Our observation suggests that the Conv5 feature yields very competitive accuracy under such pooling step. 3) We find that the simple combination of pooled features extracted across various CNN layers is effective in collecting evidences from both low and high level descriptors. Following these good practices, we are capable of improving the state of the art on a number of benchmarks to a large margin

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed

    LIMBUSTRACK: STABLE EYE-TRACKING IN IMPERFECT LIGHT CONDITIONS

    Get PDF
    We are aware of only one serious effort at development of a cheap, accurate, wearable eye tracker: the open source openEyes project. However, its method of ocular feature detection is such that it is prone to failure in variable lighting conditions. To address this deficiency, we have developed a cheap wearable eye tracker. At the heart of our development are novel techniques that allow operation under variable illumination

    Attention mechanism in deep neural networks for computer vision tasks

    Get PDF
    “Attention mechanism, which is one of the most important algorithms in the deep Learning community, was initially designed in the natural language processing for enhancing the feature representation of key sentence fragments over the context. In recent years, the attention mechanism has been widely adopted in solving computer vision tasks by guiding deep neural networks (DNNs) to focus on specific image features for better understanding the semantic information of the image. However, the attention mechanism is not only capable of helping DNNs understand semantics, but also useful for the feature fusion, visual cue discovering, and temporal information selection, which are seldom researched. In this study, we take the classic attention mechanism a step further by proposing the Semantic Attention Guidance Unit (SAGU) for multi-level feature fusion to tackle the challenging Biomedical Image Segmentation task. Furthermore, we propose a novel framework that consists of (1) Semantic Attention Unit (SAU), which is an advanced version of SAGU for adaptively bringing high-level semantics to mid-level features, (2) Two-level Spatial Attention Module (TSPAM) for discovering multiple visual cues within the image, and (3) Temporal Attention Module (TAM) for temporal information selection to solve the Videobased Person Re-identification task. To validate our newly proposed attention mechanisms, extensive experiments are conducted on challenging datasets. Our methods obtain competitive performance and outperform state-of-the-art methods. Selective publications are also presented in the Appendix”--Abstract, page iii
    corecore