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ABSTRACT

Attention mechanism, which is one of the most important algorithms in the deep

Learning community, was initially designed in the natural language processing for enhanc-

ing the feature representation of key sentence fragments over the context. In recent years, the

attention mechanism has been widely adopted in solving computer vision tasks by guiding

deep neural networks (DNNs) to focus on specific image features for better understanding

the semantic information of the image. However, the attention mechanism is not only ca-

pable of helping DNNs understand semantics, but also useful for the feature fusion, visual

cue discovering, and temporal information selection, which are seldom researched. In this

study, we take the classic attention mechanism a step further by proposing the Semantic

Attention Guidance Unit (SAGU) for multi-level feature fusion to tackle the challenging

Biomedical Image Segmentation task. Furthermore, we propose a novel framework that

consists of (1) Semantic Attention Unit (SAU), which is an advanced version of SAGU

for adaptively bringing high-level semantics to mid-level features, (2) Two-level Spatial

Attention Module (TSPAM) for discovering multiple visual cues within the image, and (3)

Temporal Attention Module (TAM) for temporal information selection to solve the Video-

based Person Re-identification task. To validate our newly proposed attention mechanisms,

extensive experiments are conducted on challenging datasets. Our methods obtain compet-

itive performance and outperform state-of-the-art methods. Selective publications are also

presented in the Appendix.
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1. INTRODUCTION

Attention Mechanism (AM), which is firstly introduced for Natual Language Pro-

cessing (NPL) Bahdanau et al. (2014), has now become enormously popular in the computer

vision community as an essential embeddable component of Deep Neural Networks (DNN)

for solving different tasks, such as image classification, semantic segmentation, and video

analysis.

The design intuition of attention mechanism can be explained using the human

optical processing system, which tends to focus on particular parts of the image while

ignoring other irrelevant information in a manner that can assist in the perception Xu et al.

(2015). Similarly, the major role of traditional AM in DNNs is to help the DNN to focus

on the specific features of the input data to learn the semantic meaning for improving the

network performance effectively and efficiently, instead of letting the DNN indiscriminately

learn every available feature.

Despite the notable performance improvements achieved by using AM to assist

DNN in different computer vision tasks, AM is not just limited in helping DNNs learning

semantic information. In this study, we first take the traditional attention mechanism a

step further in Section 2, by introducing the Semantic Attention Guidance Unit (SAGU)

that can exploit the high-level semantic information as soft self-attentions that lead low-

and mid-level features to focus on target areas and highlight the feature activations that are

relevant to the target instance. In Section 2, we embed our SAGU in a newly designed Fully

Convolutional Network that can be combined with an annotation suggestion algorithm to

assemble a deep active learning framework, which can solve the challenging biomedical

image segmentation task with small amount of annotated data for training. In Section 3, we

further introduce our Two-level Spatial and Temporal Attention Network (TSTAN), which

consists of three major components: (1) Semantic Attention Unit, which is an updated



2

version of our SAGU, can capture more flexible and discriminative correlations between

mid- and high-level features; (2) Two-level Spatial Attention Module that can discover

multiple different visual cues within one image; (3) Temporal Attention Module that can

assign multiple temporal attention weights to each frame of the video to represent the

feature importances of the discovered visual cues. The proposed TSTAN is capable of

handling the notorious temporal information inconsistency challenge in video-based person

re-identification. In Section 4, we conclude our newly proposed attention mechanisms in the

two challenging tasks and introduce our future work on improving the accuracy of attention

mechanism.
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2. ATTENTION, SUGGESTION AND ANNOTATION: A DEEP ACTIVE
LEARNING FRAMEWORK FOR BIOMEDICAL IMAGE SEGMENTATION

2.1. RESEARCH BACKGROUND

Automated image segmentation is a cornerstone of many image analysis applica-

tions. Recently, thanks to their representation power and generalization capability, deep

learning models have achieved superior performance in many image segmentation tasks

Liao et al. (2017) Kamnitsas et al. (2017) Oda et al. (2017). However, despite the success,

deep learning based segmentation methods still face a critical hindrance: the difficulty

in acquiring sufficient training data due to the high annotation cost. In biomedical image

segmentation practices, this hindrance can be more challenging for the reason that: (1) Only

domain experts can provide precise annotations for biomedical image segmentation tasks,

which makes crowd-computing quite difficult; (2) Biomedical images from high through-

put experiments contain much more instances than natural scene images, which requires

extensive workforces to provide pixel-level annotations; (3) Due to the dramatic variations

in biomedical images (e,g, different modalities, image settings, shapes and appearances of

the target objects, etc.), deep learning models need a specific set of training data for each

segmentation task to achieve competitive performances, rather than using a general training

dataset to solve all kinds of segmentation tasks. Therefore, given a new segmentation task

with a large unlabeled training dataset, how to select representative data for annotation is

important to achieve competitive performance with less human efforts.

2.1.1. RelatedWorks. To alleviate the burden of manual annotation in biomedical

image segmentation tasks, several attempts have been made in recent years. An array of

weakly supervised segmentation algorithms Papandreou et al. (2015) Xiao et al. (2018)

Hong et al. has been proposed. However, how to select representative data samples for

annotation is overlooked. To address this problem, active learning can be utilized as an
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annotation suggestion process to query informative samples for annotation for the high-

quality performance Settles (2009) Zhang (2011). As shown in Dutt Jain and Grauman

(2016), using active learning, good performance can be achieved using significantly less

training data in natural scene image segmentation. However, this method is based on

the pre-trained region proposal model and pre-trained image descriptor network, which

cannot be easily acquired in the biomedical imaging field due to the large variations in

various biomedical applications. A progressively trained active learning framework is

proposed in Yang et al. (2017). However, the framework only focuses on the uncertainty

and the representativeness of suggested samples in the unlabeled set and ignores the rarity

of suggested samples in the labeled set, which can easily incur serious redundancy in the

labeled set.

2.1.2. Our Proposal and Contribution. To significantly alleviate the burden of

manual labeling, we propose a deep active learning framework combining the deep learn-

ing model with attention mechanism and the active learning algorithm, which iteratively

suggests the most valuable annotation samples to improve the model’s segmentation perfor-

mance progressively. Instead of using pre-trained image descriptor networks that require

extra training efforts, we exploit the deep learning model in the proposed framework to

obtain domain-specific image descriptor and directly generate segmentation. To address the

redundancy issue in the labeled set, we design an active learning algorithm that considers

not only the uncertainty and representativeness of the suggested samples in the unlabeled

set but also the rarity of the suggested samples in the labeled set.

Although the above proposal seems to be straightforward, it is challenging to design

a framework that can perfectly integrate the deep learning model into an active learning

process due to the following challenges: (1) The deep learning model needs to be of good

generalization capability so that it can produce reasonable results when little training data

is available in the active learning process; (2) The deep learning model needs to perform

well when using the entire training set so that it can provide a good upper bound for
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Figure 2.1. The workflow of our deep active learning framework.

the active learning framework; (3) The active learning algorithm should be capable of

making judicious annotation suggestions based on the limited information provided by a

not-well-trained deep learning model in the early training stage.

To overcome these three challenges, we design a deep active learning framework

that consists of two major components, the semantic attention guided Fully Convolutional

Networks (sag-FCN) and the distribution discrepancy based active learning algorithm (dd-

AL) :

• Attention: For the first and second challenges, we carefully design the sag-FCN that

uses semantic attention guidance units (SAGUs) to automatically highlight salient

features of the target content for accurate pixel-wise predictions. In addition, both of

the sag-FCN and the SAGU are built using bottleneck designs to significantly reduce

the number of parameters while maintaining the same number of feature channels

at the end of each residual module. This design ensures the good generality of the

proposed sag-FCN.

• Suggestion and Annotation: For the third challenge, we design the dd-AL that reveals

the final goal of the iterative annotation suggestion process: decreasing the distribu-

tion discrepancy between the labeled set and the unlabeled set (note, in this paper, the

labeled set and unlabeled set refer to the labeled and unlabeled portions of a training

dataset, respectively). If the discrepancy between these two sets are small enough,

which also means their distribution is similar enough, the classifier trained on the
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labeled set can achieve similar performance compared to the classifier trained on the

entire training dataset with all samples annotated. Therefore, besides the uncertainty,

dd-AL also evaluates each unlabeled sample’s effectiveness in decreasing the distri-

bution discrepancy between the labeled set and the unlabeled set after we annotate it,

which is further represented by the representativeness and rarity evaluation metrics.

2.2. METHOD

The workflow of our deep active learning framework is illustrated in Figure 2.1. In

each annotation suggestion stage, we first pass each unlabeled sample through  sag-FCNs

to obtain its averaged feature representation and  segmentation probability maps. Then,

based on the feature representation and segmentation probability maps of each unlabeled

sample, dd-AL selects most valuable unlabeled samples based on their uncertainty to the

sag-FCNs and effectiveness in decreasing the data distribution discrepancy between the

labeled and unlabeled set. Finally, these selected samples will be annotated and sent to

the sag-FCN for the supervised training. We conduct this annotation suggestion process

iteratively until satisfied.

2.2.1. Semantic Attention Guided Fully Convolutional Network. Based on re-

cent advances of deep neural network structures such as residual networks Wang et al.

(2017a) and non-local networks Wang et al. (2018), we propose a semantic attention guided

fully convolutional network that automatically highlights the feature activation related to the

target object using our proposed semantic attention guidance units. In addition, we carefully

design the architecture of the sag-FCN to reduce its parameter space while maintaining the

good generalization capability, suitable for the active learning.

Compared with the original Fully Convolutional Network (FCN, Long et al. (2015)),

the proposed attention guided Fully Convolutional Network (sag-FCN), shown in Figure

2.2, has three significant improvements:



7

Figure 2.2. The architecture of the proposed semantic attention guided fully convolutional
network.

Semantic attention guidance unit: We propose the Semantic Attention Guidance

Unit (SAGU) to fuse the high-level semantic features to low- and mid-level features. SAGU

exploits the high-level semantic information as soft self-attentions that lead low- and mid-

level features to focus on target areas and highlight the feature activations that are relevant

to the target instance. Therefore, SAGUs ensure that the sag-FCN can conduct accurate

segmentation on object instances with high variabilities.

Feature fusion strategy: Compared with the conventional skip-connections that pro-

gressively merge low-level features to the up-sampling process of high-level features Long

et al. (2015), the feature fusion strategy in the sag-FCN considers each layer’s attentive

features (with semantic attention) as an up-sampling “seed”. All “seeds” will be progres-

sively up-sampled to the input image size, and then be concatenated for generating smooth

segmentation results.
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Bottleneck residual modules: In sag-FCN, we replace most convolutional layers

by bottleneck residual modules to significantly reduce the number of parameters while

maintaining the same receptive field size and feature channels at the end of each module.

This design reduces the training cost with less parameters (i.e., suitable for iterative active

learning) and maintains sag-FCN’s generalization capability.

These three improvements of our sag-FCN are essential when combining deep neural

networks and active learning. First, the performance of sag-FCN using all training data

is the upper bound of the performance of our deep active learning framework that uses

only a portion of the training data. By using our SAGUs and feature fusion strategy, the

proposed sag-FCN can achieve state-of-the-art segmentation performance using all training

data, which provides a good upper bound for our framework. Second, at the start of active

learning, since only a few training samples are available, the model that has too many free

parameters will be hard to train. Hence, we use the bottleneck residual blocks to significant

reduce the numnber of parameter without decreasing the number of feature channels, which

allows the sag-FCN to have good generalization capability to produce reasonable results

when very little training data is available.

2.2.2. Distribution Discrepancy Based Active Learning Algorithm. In general,

our distribution discrepancy based active learning algorithm (dd-AL) suggests samples for

annotation based on two criteria: (1) the uncertainty to the segmentation network and (2)

the effectiveness in decreasing the distribution discrepancy between the labeled set and

unlabeled set. Since parallelly evaluating these two criteria of each unlabeled sample is

computational expensive, our dd-AL conducts the annotation suggestion process in two

sequential steps. As shown in Figure 2.1, in the first step, dd-AL selects #2 samples with

the lowest uncertainty scores from the unlabeled set as candidate samples. In the second

step, among these #2 candidate samples, dd-AL selects a subset of them that has the

highest effectiveness in decreasing the distribution discrepancy between the labeled set and

unlabeled set.
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2.2.2.1. Evaluating a sample’s uncertainty. In the first step of dd-AL, to evaluate

the uncertainty of each unlabeled sample, we adopt the bootstrapping strategy that trains  

sag-FCNs, each of which only uses a subset of the suggested data for training in each annota-

tion suggestion stage, and calculates the disagreement among these  models. Specifically,

in each annotation suggestion stage, for each unlabeled sample BD whose spatial dimension

is ℎ×F, we first use  sag-FCNs to generate  segmentation probability maps of BD. Then,

we compute an uncertainty score DBD
:
of the :-th (: ∈ [1,  ]) segmentation probability map

of BD by using the Best-versus-Second-Best (BvSB) strategy Joshi et al. (2012):

DB
D

: =
1

ℎ × F

ℎ×F∑
8=1
(1 −

���?14BC:,8 − ?
B42>=3
:,8

���), (2.1)

where ?14BC
:,8

and ?B42>=3
:,8

denote the probability values of the best class guess and the

second best class guess of the 8-th pixel on BD, respectively, predicted by the :-th sag-FCN.

(1 −
���?14BC:,8

− ?B42>=3
:,8

���) denotes the pixel-wise BvSB score, where a larger score indicates

more uncertainty. In Eq. 2.1, the uncertainty score of an image sample BD is the average of

the BvSB scores of all pixels in this image.

Finally, we compute the uncertainty score of BD by averaging the uncertainty scores

predicted by the  sag-FCNs:

DB
D

5 8=0; =
1
 

 ∑
:=1

DB
D

: . (2.2)

We rank all the unlabeled image samples based on their uncertainty scores and select the

top #2 samples with the highest uncertainty scores as the candidate set (2 for the second

step of dd-AL.

2.2.2.2. Evaluating a sample’s effectiveness in decreasing discrepancy. In the

second step of dd-AL, we intend to annotate a few candidate samples in the candidate set (2

that can help us achieve the smallest distribution discrepancy between the labeled set and

unlabeled set after the annotation, which also means annotating these candidate samples
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can make the distributions of these two sets more similar compared to annotating the other

candidate samples. After several annotation suggestion stages, if the distributions of the

labeled set and unlabeled set are similar enough, the classifier trained on the labeled set can

achieve similar performance compared to the classifier trained on the entire dataset with all

samples annotated.

In each annotation suggestion stage, we define (; as the labeled set with # ; samples

and (D as the unlabeled set with #D samples. We use the 8-th candidate sample B2
8
in

(2, where 8 ∈ [1, #2], as a reference data point to estimate the data distributions of the

unlabeled set (D and the labeled set (; , and compute a distribution discrepancy score 32
8

that represents the distribution discrepancy between (D and (; after annotating B2
8
:

328 =
1

# ; + 1

# ;+1∑
9=1

(8<(B28 , B;9 ) −
1

#D − 1

#D−1∑
9=1

(8<(B28 , BD9 ). (2.3)

In Eq. 2.3, the first term represents the data distribution of the labeled set (;

estimated by B2
8
, where (8<(B2

8
, B;
9
) represents the cosine similarity between B2

8
and the

9-th sample B;
9
in the labeled set (; in the high-dimensional feature space1. The second

term in Eq. 2.3 represents the data distribution of the unlabeled set (D estimated by B2
8
,

where (8<(B2
8
, BD
9
) represents the cosine similarity between B2

8
and the 9-th sample BD

9
of the

unlabeled set (D in the high-dimensional feature space. After we compute the distribution

discrepancy scores for all candidate samples in (2, the candidate sample with the lowest

score can be consider as the most valuable sample for the annotation.

To accelerate the annotation suggestion process, we prefer to suggest multiple sam-

ples for the annotation in each stage instead of suggesting one sample at a time. However,

directly ranking the candidate samples in a descending order based on their distribution

1The encoding part of each sag-FCN can be utilized as a feature extractor. Given an input image to  
sag-FCNs, the average of outputs of Layer 6 in these sag-FCNs can be viewed as a high-dimensional feature
representation of the input image.
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discrepancy scores and suggesting the top ones is inaccurate. Since the distribution dis-

crepancy of the labeled and unlabeled sets is computed based on annotating one sample at

a time.

To address this problem, we propose the idea of super-sample BBD?4A , which is a

<-combination of the candidate set (2 with #2 samples. In total, there are
(#2

<

)
possible

super-samples that can be generated from (2. The feature representation of each super-

sample is the average of the feature representations of the < samples within it. Thus, we

can rewrite the distribution discrepancy score computation in Eq. 2.3 into a super-sample

version as:

3
BD?4A
@ =

1
# ; + <

# ;+<∑
9=1

(8<(BBD?4A@ , B;9 ) −
1

#D − <

#D−<∑
9=1

(8<(BBD?4A@ , BD9 ), (2.4)

where 3BD?4A@ denotes the distribution discrepancy score of the @-th super-sample BBD?4A@ in

the candidate set (2. Then, the super-sample with the lowest distribution discrepancy score

will be suggested, where the < samples within this super-sample will be the final suggested

samples in this annotation suggestion stage. These samples with their annotations will be

used to train the sag-FCNs.

The suggestion is to find super-sample with the lowest distribution discrepancy

score in Eq. 2.4. In other words, dd-AL intends to suggest samples that can minimize the

first term in Eq. 2.4, which is equivalent to minimizing the similarity between suggested

samples and the labeled set (; . Therefore, the proposed dd-AL ensures the high rarity of

suggested samples in the labeled set. Also, in Eq. 2.4, dd-AL intends to suggest samples that

can maximize the second term, which is equivalent to maximizing the similarity between

suggested samples and the unlabeled set (; . Therefore, the proposed dd-AL can also ensure

the high representativeness of suggested samples in the unlabeled set.
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Figure 2.3. Some qualitative results of our framework on GlaS dataset (left) and iSeg dataset
(right, pink: Cerebrospinal Fluid; purple: White Matter; green: Gray Matter) using only
50% training data.

2.3. EXPERIMENT

In this section, we validate the effectiveness of our ag-FCN and our entire deep

active learning framework (ag-FCN + dd-AL) on two challenging datasets.

2.3.1. Dataset. We use the 2015 MICCAI gland segmentation dataset (GlaS, Sir-

inukunwattana et al. (2017)) and the training set of 2017MICCAI infant brain segmentation

dataset (iSeg, Wang et al. (2019)) to evaluate the effectiveness our deep active learning

framework. The GlaS dataset contains 85 training images and 80 testing images (Test A: 60

images; Test B: 20 images.). The training set of iSeg dataset contains T1- and T2-weighted

MR images of 10 infant subjects. We enlarge the training data using data augmentation

techniques, including rotation, flipping, elastic distortion and random cropping.

2.3.2. Implementation Details. We train 3 sag-FCNs ( = 3) for 1600 stages and

1000 stages for the GlaS dataset and iSeg dataset, respectively. For each stage, we select

top 10 uncertain samples in the first step of dd-AL (#2 = 10), and finally suggest one

super-sample that contains 6 samples (< = 6) for annotation in the second step of dd-AL.

At the end of each stage, sag-FCNs will be trained with all available labeled data.

2.3.3. Experiments on GlaS Dataset. We first compared our sag-FCNs using all

training data with state-of-the-art methods. As shown in Table 2.1, our sag-FCNs achieves

very competitive segmentation performances (best in five columns, second best in one

column), which shows the effectiveness of our sag-FCN and attention gate unit in producing
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Table 2.1. Comparisonwith state-of-the-art methods on 2015MICCAIGland Segmentation
challenge dataset.

Method F1 Score ObjectDice ObjectHausdorf
Test A Test B Test A Test B Test A Test B

CUMedNet Chen et al. (2016) 0.912 0.716 0.897 0.781 45.418 160.347
MILD-Net Graham et al. (2019) 0.920 0.820 0.918 0.836 39.390 103.070
FCN-MCS Yang et al. (2017) 0.921 0.855 0.904 0.858 44.736 96.976

Ours (full training data) 0.937 0.866 0.926 0.871 40.812 95.328
FCN-MCS Yang et al. (2017) (50% training data) 0.913 0.832 0.901 0.836 - -

Ours (50% training data) 0.924 0.851 0.912 0.853 43.728 101.873

accurate pixel-wise predictions on biomedical images. To validate our deep active learning

framework (sag-FCNs and dd-AL), we simulate the annotation suggestion process by only

providing the suggested samples and their annotations to the sag-FCNs for training. We

consider the annotation cost as the number of annotated pixels and set the annotation cost

budget as 10%, 30% and 50% of the overall labeled pixels. Our framework is compared

with (1) Random Query: randomly selecting image samples until reaching the budget; (2)

Uncertainty Query: suggesting samples only considering the uncertainty evaluation (the

first step of dd-AL); (3) MCS, a minimum cover set based active learning algorithm that

only considers the uncertainty and representativeness information proposed in Yang et al.

(2017). As shown in Figure 2.4, our framework, which not only considers the suggested

sample’s uncertainty, representativeness and rarity but also progressively decreases the

distribution discrepancy between the unlabeled set and labeled set, is consistently better

than the other three methods. As shown in Table 2.1, our framework can achieve state-of-

the-art performance using only 50% of the training data.

2.3.4. Experiments on iSeg Dataset. We extend the proposed sag-FCN into the

3D version (3D-sag-FCN)2 and test our deep active learning framework (3D-sag-FCN and

dd-AL) on the training set of iSeg dataset using 10-fold cross-validation (9 subjects for

training, 1 subject for testing, repeat 10 times). As shown in Table 2.2, our framework can

achieve competitive performances only using 50% training data.

2To extend the sag-FCN shown in Fig. 2.2 into a 3D version, we replace all 2D operations with 3D
operations (e.g., replacing 2D convolutions with 3D convolutions, etc.).
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Figure 2.4. Comparison using limited training data of GlaS dataset.

2.4. SUMMARY

To significantly alleviate the burden of manual labeling in the biomedical image

segmentation task, in this work, we propose a deep active learning framework that consists

of: (1) a semantic attention guided fully convolutional network (sag-FCN) that achieves

state-of-the-art segmentation performances when using the full training data and (2) a

distribution discrepancy based active learning algorithm that progressively suggests valuable

samples to train the sag-FCNs. Our proposed framework can achieve state-of-the-art

segmentation performance by only using 50% of the annotated training data.

2.5. RETHINKING

Similar to the existing attention mechanisms, the proposed Semantic Attention

Guidance Unit (SAGU) is also a high-level feature dominant algorithm, where the semantic

guidance process in SAGU is passive and indiscriminate in the low- or mid-level feature’s

perspective. Although the SAGU can effectively improve the performance of deep neural

networks in biomedical image segmentation tasks, we still have an unanswered research

question: do different low- or mid-level features need the same semantic attention as their

guidance?
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Table 2.2. Comparison with state-of-the-art methods on iSeg training set.

Method DICE
White Matter Gray Matter Cerebrospinal Fluid

3D-Unet Çiçek et al. (2017) 0.896 0.907 0.944
3D-DenseNet Bui et al. (2017) 0.913 0.916 0.947

Ours (full training data) 0.927 0.921 0.959
Ours (50% training data) 0.909 0.912 0.951

In the biomedical image analysis, in which the high-level semantics of the image

is always straightforward and clear, it is intuitive and effective to capture the high-level

semantics and indiscriminately distribute them to all low- or mid-level features for semantic

attention guidance. However, in natural images, the high-level semantics are always sophis-

ticated. The semantic attention guidance for natural images might need to consider more

flexible and discriminative correlations between high-level semantics and low/mid-level

features. Moreover, in the natural image sequence, the high-level semantics of each frame

is not only sophisticated but also highly correlated to other frames. Due to this reason,

capturing high-level semantics over the entire image sequence remains a challenging task

to existing attention mechanisms.

Motivated by the above research question and its challenging extension in natural

image sequences, we try to propose an attention framework to solve it in a challenging

computer vision task, the video-based person re-identification, in Section 2.
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3. ZOOM IN AND OUT: TWO-LEVEL SPATIAL AND TEMPORAL ATTENTION
NETWORK FOR VIDEO-BASED PERSON RE-IDENTIFICATION

3.1. RESEARCH BACKGROUND

Person re-identification (re-id), which is firstly researched in the image domain to

match images of the same individual across multiple non-overlapping cameras, remains

a challenging task due to the dramatic variations of the human appearance and pose,

background distraction, and occlusion. Also, in real world scenarios, the candidates to

be matched are typically collected by pedestrian detectors that might generate imprecise

person bounding boxes, leading to the misalignment challenge in the re-id task Gong et al.

(2013).

As an improvement of the image-based re-id task, the video-based person re-id task,

which matches video sequences of the same individual, provides more information relevant

to a person’s appearance, gait, and motion over time. Benefited from the advances of

Convolutional Neural Networks (CNNs), recent video-based re-id works tend to use CNNs

to obtain high-level features from each frame of the video sequence and then merge them by

concatenation or feature embedding Liu et al. (2017); Zeng et al. (2018). Meanwhile, some

work tries to apply recurrent neural networks with the extracted CNN features to capture

the long-range temporal dependencies McLaughlin et al. (2016b); Xu et al. (2017).

3.1.1. Challenges and Motivations. Although video-based re-id has more visual

characteristics to describe a person, unfortunately it not only inherits all aforementioned

challenges in the image domain but also extends them to the temporal domain as the temporal

information inconsistency challenge (i.e., the dramatic variations of human appearance and

shape, the misalignment of person detection boxes, and the occlusion, causing a person’s
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.

Figure 3.1. To overcome the temporal information inconsistency challenge, we propose a
novel framework that consists of three main components: SAU, TSPAM and TAM.

body parts inconsistently visible in the video sequence). Despite the recent advance in

video-based re-id, this temporal inconsistency challenge is still not well solved in two

aspects:

(1) Most of the state-of-the-art methods rely on the high-level features extracted

from the last convolutional layer of CNN. Given an input image, CNN first collects fine

local details (low-level features), then progressively associates these details into a general

understanding (high-level features) of the entire image. During this process, a lot of regional

information in the mid-level is pooled to allowCNN to have a good generalization capability

of accomplishing vision tasks based on the image’s semantic information. However, the

global semantic information of the whole human body captured by high-level features is

not sufficient to perform the person re-id task in which the regional body parts may be

discriminative to identify persons, especially during occlusions. In the meantime, the

mid-level regional feature is blind to the global semantic information, and there is no clue

on which mid-level features are most relevant to human body. Therefore, the motivated
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research question is: from the feature maps extracted fromCNN, how can we exploit both the

high-level semantic information and the mid-level regional information related to human

body parts for the video-based person re-id task?

(2) In real world videos, the target person may be frequently occluded from the

camera, thus his/her whole body may be visible only in a portion of the video and some

frames may contain only a few body parts. Moreover, due to the misaligned bounding boxes

from person detectors, some frames may contain a small portion of the target person but a

large portion of another person (e.g., Figure 3.1). Videos that contain these “problematic”

frames will result in inferior re-id performances. Existing methods tend to address this issue

by assigning a weight to each frame to represent the feature importance of the frame in the

video. For instance, those “problematic” frames will be considered as less or not important

and assigned very low scores (or zero scores). However, within these “problematic” frames,

the remaining visible body parts of the target person may contain strong cues from different

viewpoints for the re-id task, which are ignored by these methods. Therefore, the motivated

research question is: given a video that contains frames with occlusions and misalignments,

how can we extract image features with the attention paid to the visible whole body or body

parts for the video-based re-id task?

3.1.2. Our Proposal and Contribution. Motivated by these two research ques-

tions, we propose a novel end-to-end video-based person re-id framework (Figure 3.1)

which consists of the following key components:

• A Semantic Attention Unit (SAU) that extracts mid-level features from CNN to

describe body parts. By selectively bringing high-level semantics to the mid-level

features, SAU suppresses the mid-level features unrelated to the re-id task.

• A Two-level Spatial Attention Module (TSPAM) that applies  zoom-in attentions

on the mid-level features of each frame to capture discriminative body parts, and one

zoom-out attention on the high-level feature of each frame to capture the whole visible
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body. Within the TSPAM, we introduce a constrained diversity regularization, which

ensures multiple zoom-in attentions do not repeatedly discover the same body part

and all  body parts are associated with the target person.

• A Temporal Attention Module (TAM) that assigns  + 1 temporal attention weights

to each frame to represent the feature importances of the  body parts and the whole

body. All feature vectors from individual frames are aggregated into an overall feature

representation that contains all spatiotempral information of the target person in the

input video for the re-id task.

3.2. RELATEDWORK

As an extension of image-based person re-identification (re-id), video-based re-id

is intuitively closer to the practical scenario as video streams are continuously captured

by surveillance cameras Xu et al. (2017). However, due to the temporal information

inconsistency challenge, video-based re-id is still a difficult unsolved task.

3.2.1. Deep Learning for Video-based Re-id. Video-based re-id recently has

achieved notable progresses by using deep learning models. For example, Liu et al. (2017)

and Zeng et al. (2018) design deep neural networks for fusing frame-wise features into one

overall feature representation of the person in a video. To better capture the long-range

temporal dependencies, McLaughlin et al. (2016a) and Yan et al. (2016) exploit recurrent

convolutional networks to encode significant temporal features of the video and compute the

feature similarity of video pairs. These methods utilize deep neural networks as high-level

feature extractors without applying attention mechanisms.

3.2.2. Attention Models for Video-based Re-id. Attention mechanism, which

learns attention masks to highlight important features, has been widely used in re-id tasks

in recent years Fu et al. (2019); Li et al. (2018b). Song et al. (2018) apply a separately

trained image segmentation model to provide a mask of the human body, enforcing the
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Figure 3.2. The workflow of our video-based person re-id framework.

spatial attention to focus on significant body parts within the mask. Li et al. (2018a)

propose a deep attention architecture to highlight different body parts over time. Liu et al.

(2019) propose a stacked non-local network to capture characteristic spatial and temporal

features of the target person’s whole body. Hu et al. (2018) introduce squeeze and excitation

networks, putting attentions on different feature channels. Most of these attention models

generate attention maps from the high-level features extracted from CNN. Different from

these methods, our network employs spatial and temporal attention on top of both the mid-

and high-level feature maps to learn a latent feature vector that represents the comprehensive

information of the person and emphasizes discriminative regional information of the body

parts.

3.3. METHOD

The workflow of our framework is illustrated in Figure 3.2. For each frame of an

input video, we first design a Semantic Attention Unit (SAU, Figure 3.3) to extract mid-

level features from the intermediate convolutional layer of CNN, and high-level features

from the last convolutional layer of CNN. Then, we design a Two-level Spatial Attention

Module (TSPAM, Figure 3.4) that applies  zoom-in attentions to extract image feature

vectors that represent  discriminative body parts from the mid-level feature map, and

applies one zoom-out attention to extract one image feature vector that represents the whole

body from the high-level feature map. Meanwhile, we introduce a constrained diversity

regularization to encourage the zoom-in attentions to not only focus on different body parts
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Figure 3.3. The computational graph of the Semantic Attention Unit.

but also be highly related to the zoom-out attention. Thirdly, for each body part (and the

whole body), we design a Temporal Attention Module (TAM, Figure 3.5) to pool its image

feature vectors from individual frames across the duration of the video to generate a feature

representation that represents the body parts and whole body in the entire video. The

learned feature vectors of all body parts and the whole body will be aggregated and sent to

a fully connected layer that represents the final encoding of the target person in the input

video. A batch-hard triplet loss and a cross entropy loss are combined with the constrained

diversity regularization to train the whole network in an end-to-end fashion.

3.3.1. Semantic Attention Unit. Instead of blindly pooling mid-level feature maps

to obtain the regional information, our method employs a Semantic Attention Unit (SAU,

Figure 3.3) to extract mid-level features that are discriminative and related to the target

person.

We adopt the ResNet50 CNN architecture Wang et al. (2017b) for extracting image

features from each frame of the video. The CNN starts with a convolutional layer (conv1),

followed by four residual blocks (res2, res3, res4 and res5). We exploit the output of res2,

res3 or res4 as mid-level features1 and the output of res5 as high-level features.

1The sensitivity study on which residual block’s output is extracted as the mid-level feature is in the
Experiment section.
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Given a frame � of the video + to the CNN, let M ∈ R2×ℎF and SA0F ∈ R2S×ℎSFS

denote the mid- and high-level feature maps of �, respectively, where 2 and 2( denote the

number of feature channels, and ℎF and ℎ(F( are the vectorized spatial dimensions. We

first apply the up-sampling operation followed by a 1 × 1 convolution on SA0F to obtain

S ∈ R2×ℎF that has the same dimension as M.

Then, SAU uses the high-level feature S to guide the extraction of mid-level features

with semantic meanings. Two attention weight matrices W(() ∈ R2×ℎF and B(() ∈ R2×ℎF

are learned to compute a semantic attention score matrix �(() , which indicates the feature

importance of different image regions in S to represent the semantic meaning:

�(() = W(() ◦ S + B(() , where �(() ∈ R2×ℎF, (3.1)

where ◦ is the element-wise product. The semantic attention scorematrix�(() is normalized

by applying softmax operation in every row, generating �(()
B> 5 C<0G

.

Now, we apply the high-level semantic attention weights �(()
B> 5 C<0G

to the mid-level

feature maps M:

G(() = M�(()
B> 5 C<0G

>, where G( ∈ R2×2 . (3.2)

G(() can be considered as a mid-level feature collection weighted by the semantic informa-

tion from S.

Instead of indiscriminately distributing the entire collection G(() to all regions in

the mid-level feature map M, we further propose to investigate the discriminativeness of

each region in M. Specifically, we first learn attention weight matrices W(") ∈ R2×ℎF and

B(") ∈ R2×ℎF, and compute a spatial attention score matrix�(") that indicates the feature

importance for representing regional information from different spatial regions in M:

�(") = W(") ◦M + B(") , where �(") ∈ R2×ℎF . (3.3)
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The spatial attention score matrix �(") is passed through a softmax layer to get the region

discriminativenessweights�(")
B> 5 C<0G

∈ [0, 1]2×ℎF. Next, we apply�(")
B> 5 C<0G

to the semantic-

weighted mid-level feature G(():

G((") = G(()�(")
B> 5 C<0G

, (3.4)

where G(" ∈ R2×ℎF is the mid-level feature representation that contains not only the

global semantic information of the target object from S but also the discriminative regional

information from M.

Finally, in addition to the above multiplicative attention, we can have one more step

of additive attention as:

Z = G((") +M (3.5)

where Z ∈ R2×ℎF is the output of SAU as the final mid-level feature representation of the

frame �.

Note, in SAU, the implementation of Eq. 3.2 can be further explained by the

Semantic Attention Guidance Unit (SAGU) proposed in the sag-FCN in Section 2 for

guiding mid-level features with high-level semantic attentions. However, after obtaining

the semantically guided feature collection G(() in Eq. 3.2, the SAU takes SAGU a step

further by introducing Eq. 3.4 that selectively distributesG(() toM. This mechanism allows

SAU to capture more flexible and discriminative correlations between mid- and high-level

features than SAGU that indiscriminately distributes high-level semantics to all regions in

M2.

3.3.2. Two-level Spatial Attention Module. We design a Two-level Spatial At-

tention Module (TSPAM, Figure 3.4) to discover different salient body parts (zoom-in

attentions) from the mid-level feature and highlight the whole body (zoom-out attention)

from the high-level feature.

2Wecarry out experiments to compare the SAUandSAGU in theMoreAnalysis onDiversity Regularization
and Semantic Attention Unit section of the Experiment section.
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Figure 3.4. The computational graph of the Two-level Spatial Attention Module on an
arbitrary frame =.

Given a video + that contains # frames, by using a pre-trained CNN and our

proposed SAU, we encode each frame �= into a mid-level feature representation Z= ∈ R2×ℎF

and a high-level feature representation S= ∈ R2×ℎF, where = ∈ [1, #] denotes the frame

number in video + . In the following we design zoom-in attentions and zoom-out attention

to extract image features of discriminative body parts and the whole human body from Z=

and S=, respectively.

3.3.3. Zoom-in Attentions. To compute the zoom-in attentions of �=, we use  

spatial attention models to capture the significant body parts of the target person from the

mid-level featureZ=. For the :-th attention model, where : ∈ [1,  ], we first learn attention

weight vectorsw(/=)
:,=
∈ R2×1 and b(/=)

:,=
∈ RℎF×1, and compute a spatial attention score vector

qqq(/=) , which indicates the feature importance for representing a body part from different

spatial regions on Zn:

qqq(/=) = (Z=)>w(/=)
:,=
+ b(/=)

:,=
, where qqq(/=) ∈ RℎF×1. (3.6)

Then, we pass the spatial attention score vector qqq(/=) through a softmax layer to get the

:-th zoom-in attention, a8=
:,=
∈ [0, 1]ℎF×1, which localizes a body part of the target person.

Thus, for each frame �= in the video + , we obtain  zoom-in attentions ensembled in a

matrix A8=
= = [a8=1,=, ..., a

8=
 ,=
] ∈ RℎF× . Finally, all the body part features in frame n, Z=, are
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weighted by their corresponding attentions:

F8== = Z=A8=
= , (3.7)

where F8== = [f8=1,=, ..., f
8=
 ,=
] ∈ R2× and f8=

:,=
represents the image feature vector of the body

part discovered by the :-th zoom-in attention a8=
:,=
.

3.3.4. Zoom-out Attention. To compute the zoom-out attention, we use one spatial

attention model to capture the entire visible human body from the high-level feature S=.

We learn attention weight vectors w((=)= ∈ R2×1 and b((=)= ∈ RℎF×1, and compute a spatial

attention score vector qqq((=) , which indicates the feature importance for representing the

whole body from different spatial regions on S=:

qqq((=) = (S=)>w((=)= + b((=)= ,where qqq((=) ∈ RℎF×1. (3.8)

Then, we pass the spatial attention score vector qqq((=) through a softmax layer to get the

zoom-out attention, a>DC= ∈ [0, 1]ℎF×1, which localizes the whole body of the target person.

Finally, we denote f>DC= as a feature vector that represents the whole body captured by

zoom-out attention a>DC= in frame �=. The f>DC= is computed by

f>DC= = Z=a>DC= . (3.9)

By applying the TSPAM on frame �=, all significant body parts discovered by zoom-

in attentions and the whole body with visible regions discovered by zoom-out attention are

concatenated as a feature representation:

F= = [F8== , f>DC= ] = [f8=1,=, ..., f
8=
 ,=, f

>DC
= ], F= ∈ R2×( +1) . (3.10)
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3.3.5. Constrained Diversity Regularization. Without any constraints, zoom-in

attentionsmay easily discover the same significant body part in the same frame. It is natural

to apply diversity regularization terms to diversify these zoom-in attentions to different

body parts, so it is robust to occlusion Li et al. (2018a); Lin et al. (2017). However, we

also need to ensure these body parts are highly related to the target person other than some

other persons who either occlude the target person or appear at the background. Therefore,

we design a penalty term, the constrained diversity regularization ('46238E4A), to ensure the

uniqueness of each zoom-in attention as well as the correlation between zoom-in attentions

and the zoom-out attention within the frame �=:

'46238E4A =

 ∑
:=1

1
√

2




√a8=
:,=
−

√
a>DC=





2
−

 ∑
:1=1

 ∑
:2=:1+1

1
√

2




√a8=
:1,=
−

√
a8=
:2,=





2
. (3.11)

In Eq. 3.11, the first term, which computes the sum of the Hellinger distance Beran (1977)

between each zoom-in attention and the zoom-out attention, intends to be minimized to

ensure that all zoom-in attentions (body parts) are associated with the zoom-out attention

(the target person). The second term in Eq. 3.11, which computes the sum of the Hellinger

distance between every two zoom-in attentions in �8== , intends to be maximized to ensure

the dissimilarity between every two zoom-in attentions is large.

3.3.6. Temporal Attention Module. After extracting image feature vectors that

either represent individual body parts or the whole body from individual frames of the

video, we need to consider how to combine these feature vectors to generate an overall

feature representation for the target person over the entire input video.

Due to the temporal information inconsistency, the feature importance of each frame

is different. Within the video, the frames with severe occlusions or misalignment problems

may be less important than the other frames with a clear representation of the whole human

body for the re-id task. Thus, it is intuitive to use the temporal attention to assign a

weight to each frame to represent its feature importance in the entire video. Furthermore,
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Figure 3.5. The computational graph of the Temporal Attention Module (TAM).

using a single weight to represent the feature importance of all body parts in each frame

is inadequately robust3, since those frames with serious occlusions may also contain some

clear representations of a few body parts. Therefore, for each body part (or the whole body)

in the video, our proposed Temporal Attention Module (TAM) assigns per-frame attention

scores to represent its feature importance in different frames of the video.

Recall that in Eq. 3.10, the image feature of frame �= in the video + is repre-

sented by F= = [f8=1,=, ..., f
8=
 ,=
, f>DC= ] ∈ R2×( +1) . For simplicity, we rewrite F= as F= =

[f1,=, ..., f( +1),=] ∈ R2×( +1) , where f( +1),= = f>DC= . By combining image features from #

frames in the video, we can define the video representation V as

V = [F1, ...,F# ], (3.12)

where V ∈ R2×( +1)×# . After shifting the dimension, we can rewrite V as:

V = [v1, ..., v( +1)], (3.13)

where V ∈ R2×#×( +1) , and v: ∈ R2×# , : ∈ [1,  +1], represents the feature representation

of a body part (or the whole body), detected by the TSPAM in the entire video.

3We carry out experiments to compare assigning single per-frame weight and multiple per-frame weights
in the Analysis on Temporal Attention Module section of the Experiment section.
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To apply temporal attention to the :-th element v: in V, we learn attention weight

vectors w(E: ) ∈ R2×1 and b(E: ) ∈ R#×1, and compute a temporal attention score vector t: ,

indicating the importance of v: in different frames:

t: = (v: )>w(E: ) + b(E: ) , where t: ∈ R#×1. (3.14)

Then, the temporal attention score vector t: is passed through a softmax layer to get

t:,B> 5 C<0G . Finally, we compute the attentive feature v′
:
by

v′: = v: t:,B> 5 C<0G , where v′: ∈ R
2×1. (3.15)

Now, the input video can be represented by V′ = [v′1, ..., v
′
( +1)] ∈ R

2×( +1) , where v′
:
is a

2 × 1 feature vector that represents one specific body part (or the whole body if : =  + 1)

over the entire video.

As the contributions of different body parts (or the whole body) may be different for

the re-id task, inspired by the SENet Hu et al. (2018), we propose to apply a “Squeeze and

Excitation” operation on V′ to recalibrate each v′
:
in V′, according to the contribution of the

:-th body part (the whole body if : =  + 1) to the re-id task. Specifically, we introduce

a statistic u = [D1, ..., D( +1)] ∈ R1×( +1) , whose :-th element D: is a scalar generated by

squeezing v′
:
:

D: =
1
2

2∑
9=1

v′9 ,: . (3.16)

Then we pass u through a linear transformation followed by a sigmoid activation:

ū = f(w(D) ◦ u), (3.17)

where w(D) ∈ R1×( +1) is the learnable parameter, f denotes the sigmoid function, and

ū = [D̄1, ..., D̄( +1)] ∈ R1×( +1) is the excitation operator that represents the contribution

importance of each body part (or the whole body) in the video for the re-id task. Finally,



29

we recalibrate the :-th element E′
:
in + ′ by

v′′: = D̄:v
′
: , where v′′: ∈ R

2×1. (3.18)

After the “Squeeze and Excitation” operation, the input video can be represented by a final

attentive feature representation, V′′ = [v′′1 , ..., v
′′
( +1)] ∈ R

2×( +1) , which will be flattened

and fed into a fully-connected layer that represents the overall feature encoding of the input

video on a person. The aggregated feature vector after the fully-connected layer is embedded

into 512-dimensions.

3.3.7. Final Loss Function. We design the following loss to train our complete

network (ResNet50-SAU-TSPAM-TAM) in an end-to-end fusion:

!>BB 5 8=0; = !>BBℎ0A3_CA8?;4C + !>BB2A>BB_4=CA>?H + _'46238E4A , (3.19)

where _ is a hyperparameter to control the influence of the regularization term '46238E4A

introduced in Eq. 3.11.

For the batch-hard triplet loss Hermans et al. (2017), we form a mini-batch by

randomly sampling 48 identities, each of which has 6 randomly sampled video clips. For

the cross-entropy loss, we pass the overall feature encoding of each video in a mini-batch

through a 48-way fully-connected layer followed by a softmax layer.

3.4. EXPERIMENT

In this section, we validate the effectiveness of our framework in solving the temporal

information inconsistency challenge on three challenging datasets.

3.4.1. Datasets and Evaluation Metrics. The proposed approach is evaluated on

three challenging video-based person re-identification datasets: PRID2011 Hirzer et al.

(2011), iLIDS-VIDWang et al. (2014), and MARS Zheng et al. (2016). PRID2011 consists
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of person videos of 200 identities captured by 2 cameras. iLIDS-VID consists of 600

videos of 300 identities captured by 2 cameras. MARS is the largest video-based person

re-identification benchmark that consists of 20,715 videos of 1,261 identities generated by

person-detectors. Each identity is captured by at least 2 cameras (up to 6 cameras).

We conduct experiments on PRID2011 and iLIDS-VID following the evaluation

protocol from Wang et al. (2014) and report rank-1 accuracy. For the experiments on

MARS, we follow the evaluation protocol provided by MARS and report rank-1 accuracy

and mean average precision (mAP).

3.4.2. Implementation Details. Since the original person videos are of various-

length, we divide each video into non-overlapping video clips, each of which contains 10

consecutive frames for re-id (# = 10). Each frame of the video clip is resized to 256× 128.

We augment the occlusion in the video data using Cut-out DeVries and Taylor (2017) with

a 32 × 32 black region that randomly applies to the video frames. We train the proposed

framework in an end-to-end fusion. 10% video clips are sampled from the training set

as the validation set and the rest are for training the network. The network is updated

using batched Stochastic Gradient Descent with an initial learning rate set to 0.05 which is

dropped every 30 epochs by multiplying a decay rate 0.5 for 120 epochs.

3.4.3. Component Analysis. We conduct analytic experiments to investigate the

effectiveness of each component of our framework. The experiment results are listed in

Table 3.1.

3.4.3.1. Analysis on Semantic AttentionUnit. Baseline corresponds to ResNet50.

Baseline-raw-mid-high corresponds to the ResNet50 that concatenates the raw mid-level

and high-level features as the final feature representation of each frame in the input video.

Baseline-SAU corresponds to the ResNet50 with SAU embedded for bringing high-level

semantics to mid-level features. These three models are trained with hard mining triplet

loss and cross entropy loss. As shown in Table 3.1, Baseline-raw-mid-high outperforms

Baseline due to the supplemental regional information introduced by mid-level features.



31

Compared with Baseline-raw-mid-high, Baseline-SAU improves the rank-1 accuracy by

1.8% on average, which shows that SAU is effective at suppressing irrelevant features and

benefiting the re-id task.

3.4.3.2. Analysis on Two-level Spatial Attention Module. Spattn-out uses the

output of res5 in ResNet50 as the high-level feature from which the zoom-out attention

captures the whole human body. Spattn-in uses the output of res4 in ResNet50 with SAU

embedded as the mid-level feature from which zoom-in attentions capture  discriminative

body parts). Spattn-in&out has the same network architecture as Spattn-in and uses both  

zoom-in attentions and the zoom-out attention. Spattn-in&out+Reg uses the complete Two-

level Spatial AttentionModule (TSPAM)which has the same network architecture as Spattn-

in&out but with the constrained diversity regularization. For these four networks, image

features extracted from individual frames are averaged over all frames without temporal

attention and then sent to the last FC layer for the network training. From Table 3.1, Spattn-

in&out+Reg obtains the best performance among these four networks. By discovering

discriminative body partswithminimal overlaps frommid-level features aswell as efficiently

associating all body parts to the target person, the TSPAM is useful for the video-based

re-id task.

3.4.3.3. Analysis on Temporal Attention Module. Spattn-in&out+Reg+single

corresponds to the network using the complete TSPAM and temporal attention to assign a

single temporal attention weight to each frame. Spattn-in&out+Reg+multi corresponds to

the network using the complete TSPAM and temporal attention to assign multiple temporal

attention weights to multiple body parts and the whole body in each frame without the

“Squeeze and Excitation” operation. Spattn-in&out+Reg+TAM corresponds to our com-

plete framework, which obtains the best results on three datasets in Table 3.1. This shows

the effectiveness of the TAM in solving the temporal information inconsistency challenge

in the video-based re-id.
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Table 3.1. Component analysis on our approach on three datasets: PRID2011, iLIDS-VID
and MARS.

PRID2011 iLIDS-VID MARS
Baseline 83.0% 61.2% 74.5%
Baseline-raw-mid-high 84.8% 64.9% 76.1%
Baseline-SAU 86.2% 67.8% 77.2%
Spattn-out 86.9% 69.3% 78.8%
Spattn-in 87.8% 71.2% 79.3%
Spattn-in&out 90.1% 72.9% 82.7%
Spattn-in&out+Reg 92.6% 75.7% 84.6%
Spattn-in&out+Reg+single 94.3% 78.3% 86.1%
Spattn-in&out+Reg+multi 96.8% 81.6% 87.9%
Spattn-in&out+Reg+TAM (Ours) 97.3% 83.1% 90.2%
Ours-w/-Reg-term2 96.3% 82.0% 89.1%
Ours-w/o-SAU 95.5% 81.0% 87.1%
Ours-w/o-SAU-w/-SAGU 96.8% 82.5% 88.6%

3.4.3.4. More analysis on Diversity Regularization and Semantic Attention

Unit. Ours-w/-Reg-term2 corresponds to our framework that only uses the second term of

the proposed constrained diversity regularization in Eq. 3.11, which used to be introduced

in Li et al. (2018a); Lin et al. (2017). Our framework outperforms Ours-w/-Reg-term2,

which shows the importance of forcing different body parts (zoom-in attentions) to associate

with the target person’s whole body (zoom-out attention) other than blindly diversifying

body parts without any constraint. Ours-w/o-SAU corresponds to our framework without

SAU. Ours-w/o-SAU-w/-SAGU corresponds to our framework that replaces SAU with the

Semantic Attention Guidance Unit proposed in Section 2 for using the high-level feature

to guide the mid-level feature. Our framework outperforms Ours-w/o-SAU and Ours-w/o-

SAU-w/-SAGU, which shows that the proposed SAU is effective at guiding discriminative

mid-level features with high-level semantics to benefit the video-based re-id task.
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Table 3.2. Analyzing the block of ResNet50 from which we extract mid-level features and
the parameter  (the number of zoom-in attentions), on the validation dataset.

PRID2011 iLIDS-VID MARS
res2 95.5% 81.4% 83.2%
res3 96.2% 81.7% 87.7%
res4 97.3% 83.1% 90.2%
K = 1 95.3% 77.0% 86.2%
K = 3 96.0% 77.4% 87.3%
K = 5 97.3% 83.1% 90.2%
K = 7 96.9% 82.6% 89.7%

3.4.3.5. Analysis on different mid-level features. We also study the effect of

changing the block of ResNet50 which we extract mid-level features from. The experiment

results are listed in the upper part of Table 3.2. From the results, we can see that the

features extracted from res4 result in better performances than the features obtained from

other layers. We believe that the lower-level information (e.g., outputs of res2 or res3) is

based on a small Effective Receptive Field (ERF) that overemphasizes the local details and

lacks not only the semantics of the entire image but also regional component understanding

of the human body. Compared with the outputs of other layers, the output from res4 has

a reasonable ERF that can capture salient body parts, which can be used as the regional

information for the re-id task.

3.4.3.6. Analysis on the quantity of zoom-in attentions. The effect of varying the

number  of zoom-in attentions is also studied. As shown in the lower part of Table 3.2, we

can see the re-id performances are increasing when  is increased from 1 to 5. However,

the performances slightly drop when  is increased from 5 to 7. In the re-id task, the target

person only has a few general regions that contribute to the re-identification algorithms
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Table 3.3. Comparison with the state-of-the-art methods on three challenging datasets.

PRID2011 iLIDS-VID MARS
RFA-Net Yan et al. (2016) 58.2% 49.3% -
RNN McLaughlin et al. (2016a) 70.0% 58.0% -
MARS Zheng et al. (2016) 77.3% 53.0% 68.3% (49.3%)
ASTPN Xu et al. (2017) 62.0% 77.0% -
AMOC+EpicFlow Liu et al. (2017) 83.7% 68.7% 68.3% (52.9%)
PAM Khan and Bremond (2017) 92.5% 80.1% -
MSML Xiao et al. (2017) - - 84.2% (74.6%)
DR+ST Li et al. (2018a) 93.2% 80.2% 82.5% (65.8%)
XQDA Zeng et al. (2018) 95.7% 80.5% 86.4% (79.3%)
STA Fu et al. (2019) - - 86.3% (80.8%)
VRSTC4 Hou et al. (2019) - 83.4% 88.5% (82.3%)
AFDTA� Zhao et al. (2019) 93.9% 86.3% 87.0% (78.2%)
Ours 97.3% 83.1% 90.2% (82.2%)

(e.g., head, arms, legs, etc.). Distributing the visual attention on too many regions will

distract the network from focusing on major component changes of the target person, which

leads to inferior performance. So, we use  = 5 in our experiments.

3.4.4. Comparison with the State-of-the-art Models. We report the performance

comparison between our approach and other state-of-the-art methods on three widely-

used video re-id datasets in Table 3.3. Our framework improves the best reported re-

id performances on PRID2011 and MARS by 1.6% and 1.7% in the rank-1 accuracy,

respectively. On iLIDS-VID, our framework obtains slightly lower performances than

VRSTC Hou et al. (2019) and AFDTA Zhao et al. (2019), however, which require extra

synthetic human body part datasets (marked with 4 in Table 3.3) and extra labels of

human appearance attributes (marked with� in Table 3.3) besides person IDs, respectively.

Another state-of-the-art, DR+ST Li et al. (2018a), which also proposes a spatial and

temporal attention network that is pretrained on extra image-based person re-id datasets to

discover different body parts from high-level features for the re-id task. Compared with

these methods, our framework is trained in an end-to-end fashion without requiring extra



35

Figure 3.6. Qualitative results of our proposed network.

image-based datasets, labels, or pretraining steps, and it can highlight the target person’s

whole human body from the high-level feature and capture his/her different discriminative

body parts from the mid-level feature over time, which is effective for solving the temporal

information inconsistency challenge in the video-based re-id task. Some qualitative results

of our framework are shown in Figure 3.6.
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3.5. SUMMARY

Motivated by the unanswered research question of Section 2 and its challenging

extension in natural image sequences, we propose a novel attention framework to handle

this challenge in the video-based person re-identification task. In this work, we design a

SemanticAttentionUnit to extract discriminativemid-level featureswith selective high-level

object semantic information to describe body parts, a Two-level Spatial Attention Module

and a Temporal Attention Module to learn an overall semantic feature representation of the

target person in a video, which represents different body parts and the whole visible body

using mid- and high-level features, respectively, over the duration of the entire video. The

proposed method is extensively evaluated on three challenging video-based person re-id

datasets and shows competitive performance on the video-based re-id task.

3.6. FUTUREWORK

Although the proposed attention framework (SAU-TSPAM-TAM) is effective in

extracting all useful semantic information of the target person in the video for the challenging

video-based person re-identification task, we notice that our newly proposed attention

mechanisms are not directly supervised. For instance, in our TSPAM, all the spatial

attention models for discovering the whole visible human body and his/her body parts are

supervised by the final loss function (shown in Eq. 3.19) for the re-identification task,

instead of a loss function that assesses the performance of discovering the human body and

body parts. Current best strategy to address this issue is to pre-train an attribute classification

model by using extra appearance attribute labels to supervise the spatial attention models

Lin et al. (2019); Su et al. (2016). However, the main drawback of this strategy is that the

extra attribute labels are expensive, error prone, and highly subjective to different labelers.

For instance, in Lin et al. (2019), the proposed attribute clasification model requires 27

hand-annotated attributes (e.g., gender, upper-body length, clothe colors, etc.) on over
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500,000 person images for training to perform accurate atttribute classication. The second

best strategy is to collect human viusal attentions on the image to guide the attention model

to focus specific image regions for different computer vision tasks Linsley et al. (2018).

However, this strategy is also requring expensive annotation efforts. For instance, in Linsley

et al. (2018), the author collects over 400,000 attention heatmaps on 196,499 unique images

from 1,235 labelers. Therefore, the motivated research question is: how to supervise the

attention model without requiring extra annotations? We will try to address this challenge

by introducing mutual learning to multiple correlated attention models in the future work.
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4. CONCLUSION

Traditional attention mechanism has been widely used in the computer vision com-

munity for helping Deep Neural Networks to learn semantic meanings of the input data for

different computer vision tasks. In this study, we take the traditional attention mechanism a

step further by proposing four attention models that can be embedded into different DNNs

to conduct semantic attention guided feature fusion, correlative multi-level feature fusion,

multiple visual cues discovering, and temporal information selection, respectively. Specif-

ically, in Section 2, we propose a deep active learning framework that consists of: (1) a

semantic attention guided fully convolutional network (sag-FCN) embedded with multiple

Semantic Guidance Attention Units, which can automatically highlight salient features of

the target content for accurate pixel-wise predictions and (2) a distribution discrepancy

based active learning algorithm that progressively suggests valuable samples to train the

sag-FCNs.

In Section 3, we propose a novel attention framework to handle this challenge in

the video-based person re-identification task. In this work, we design a Semantic Attention

Unit to extract discriminative mid-level features with selective high-level object semantic

information to describe body parts, a Two-level Spatial Attention Module, and a Temporal

Attention Module to learn an overall semantic feature representation of the target person in

a video, which represents different body parts and the whole visible body using mid- and

high-level features, respectively, throughout the entire video.

In closing, we conclude that the major obstacle of the development of attention

mechanism (AM): AM is normally supervised by a loss function for a specific task instead of

being supervised by a loss function that assesses the accuracy of AM, which might produce

inaccurate attention maps and finally cause inferior performances. Existing solutions to

this challenge always require a large amount of extra untransferable annotations, which is
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impractical for extended research or real-world applications. In future work, we will address

this challenge by introducing mutual learning to multiple correlated attention models to

obtain accurate attention maps without requiring extra annotated data.



APPENDIX A.

EARLY DROUGHT PLANT STRESS DETECTIONWITH BI-DIRECTIONAL

LONG-TERMMEMORY NETWORKS
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1. INTRODUCTION

On a global basis, drought, in conjunction with high temperature and radiation,

poses the most important environmental constraint to plant survival and to crop productivity

Boyer (1982). Agriculture is the major victim of drought in many regions of the world.

Because the usable water supply in the world is limiting, the future food demand for rapidly

increasing population pressures will be further aggravating the effects of drought Somerville

and Briscoe (2001), which calls for attention to advance research to improve the breeding

strategies of drought tolerant plants and early drought stress detection approaches.
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2. RELATEDWORK

The mechanism of drought tolerance in plants has been discussed at the molecular

level Hasegawa et al. (2000). There are three main mechanisms in drought plants which

reduce the crop yield: (i) reduced canopy absorption of photosynthetically active radia-

tion, (ii) decreased radiation-use efficiency, and (iii) reduced harvest index Earl and Davis

(2003). However, the reproducibility of drought stress treatments to these mechanisms

is cumbersome, which has hindered both traditional breeding efforts and modern genetic

approaches in the improvement of drought tolerance of crop plants Xiong et al. (2006).

In addition, the mechanistic basis underlying drought tolerance is complex as it is mainly

contributed by related traits that are mostly determined by polygenic inheritance Römer

et al. (2012). In recent years, by measuring the structural and functional status of plants,

phenomic approaches may overcome the limited predictability. However, the lack of high

throughput phenomic data has been labeled as the “phenomic bottleneck” Richards et al.

(2010).

In the past years, as imaging systems and image analysis techniques are developing,

hyperspectral cameras have been widely used in plant science research, such as monitoring

the growing condition of crops. In hyperspectral imaging, the measured radiative properties

of plant leaves or canopies can be used to determine structural and physiological traits of

vegetationMalenovskỳ et al. (2009); Ustin andGamon (2010), for instance, a low reflectivity

in the visible part of the spectrum can be used to characterize the spectral reflectance as

a strong absorption by photosynthetic pigments, whereas a high reflectivity in the near

infrared is produced by a high scattering of light by the mesophyll tissues of the leaf. In

addition, the reflectivity in the shortwave infrared part of the spectrum is determined by the

water, protein, cellulose, and lignin content of plant tissues Rascher et al. (2010). However,

the spectral reflectance is a combination of multiple physiological traits. Despite several
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laboratory studies that have shown a relationship between the amount of water in the leaf

and the reflectance intensity in the short infrared part of the spectrum, the determination

of the water content presents some difficulties, due to the large reflectance variation among

leaves with the same water status. The most challenging issue in estimating the water

content using the spectral reflectance information is the decoupling of the contributions of

water content and other physiological traits.

Remote sensing has been successfully used in the precision agriculture for providing

the timely crop condition information during growing seasons. In the optical region, the

vegetation indices (VIs) have been used to detect crop conditions, such as the water content

and the nitrogen status. Most approaches are aiming at quantifying plant traits by calculating

VIs that quantify specific plant structural changes Fiorani et al. (2012). Although VIs have

been widely used to detect multiple crop growing stresses in the advanced stage, such as

the leaf nitrogen and the chlorophyll content Haboudane et al. (2008); Tilling et al. (2007),

the crop biomass Thenkabail et al. (2000) and the vegetation moisture content Yilmaz et al.

(2008), the use of VIs for the early drought stress detection is still challenging, because

different crop stresses have similar VI computations in the early stage Römer et al. (2012).

Furthermore, the high cost of the hyperspectral camera system and its further maintenance is

limiting the development of drought stress detection approaches based on the hyperspectral

image analysis for the consumer applications.

2.1. MOTIVATION AND CONTRIBUTION

From the computer vision perspective, the image analysis based drought stress

detection can be defined as the classification of images containing drought plants or not.

Most previous approaches aimed to extract specific handcrafted features (e.g., spectral

reflectivity and vegetation indices (VIs)) from hyperspectral images to recognize plants

under the drought condition. The main problem of these methods is the feature selection.

Spectral reflectivity, VIs and other indices, which have been widely used as features in the
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previous studies Malenovskỳ et al. (2009); Römer et al. (2012), are pixelwise calculations

of pixel intensities in the individual hyperspectral image. In other words, they are all

pixel- wise features that represent crop growing conditions at one time instant. However,

as the plant is growing, the drought stress condition should be a continuous procedure

with a unique time-series variation pattern, which can be well represented by temporal

features. Thus, compared to the individual image, a time-series image sequence containing

the temporal information will be a better representation of the plant grow ing condition for

the early drought stress detection task.

Several previous studies have shown a relationship between the leaf water stress and

the spectral reflectance variation in the visible region Danson et al. (1992); Hunt Jr and

Rock (1989). This investigation indicates that the RGB image is able to be used for the early

drought stress detection task. In other words, considering the temporal features, the early

drought stress detection problem can be formulated as the classification of time-series RGB

image sequences containing drought plants or not. Compared to previous approaches using

hyperspectral images, the methods based on RGB image analysis are more cost-effective

for the consumer applications.

In recent years, long short-termmemory (LSTM) networks have been widely used in

different real world classification tasks, such as action recognition Baccouche et al. (2011);

Liu et al. (2016), event detection Feng et al. (2018); Parascandolo et al. (2016) and natural

language processing Wang and Jiang (2015); Wen et al. (2015). As an effective method

to uncover the hidden temporal relation in time-lapse data and classify the sequential data,

LSTM is suitable for our task of early drought stress detection.

In this study we proposed a Bidirectional Long Short-Term Memory (BLSTM)

model to solve the problem of early drought plant stress detection on RGB images. First, we

extract the time-series image patch sequences that contain the temporal variation information

of the plant as patch sequences. Secondly, a pre-trained Convolutional Neural Network

model is used for extracting discriminative features from each image in the patch sequences.
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Finally, the patch sequence, in the form of a sequence of feature vectors, will be input to

the BLSTM for the binary classification. Two independently collected datasets are used to

validate the performance of our proposed method.

Themain contributions of this work are: (i) the application of BLSTM toRGB image

sequences for early drought plant stress detection for the first time, (ii) the investigation of

the earliest moment that we can detect the plant drought stress condition from RGB images,

and (iii) the proposal of an efficient RGB image data collection strategy that can use less

time and manpower for the purpose of accurate early drought plant stress detection.

The rest of this paper is organized as follows: in the next section, we introduce

the methodology of our proposed method including data acquisition, data preparation,

the proposed BLSTM model, and the proposal of an efficient RGB image data collection

strategy; Next, we discuss the data collection guidance and validate our method on two

RGB image datasets followed by our paper’s conclusions.
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3. METHODOLOGY

In this section, we first introduce the two plant image datasets tested in this work;

then, illustrate the pipeline of our proposed method, including the data preparation step and

the BLSTMmodel. Finally, we introduce the RGB image collection strategy for the drought

plant stress detection.

3.1. DATA ACQUISITION

Two independently collected RGB image datasets of crop plants are utilized in this

work. The LemnaTecDD Dataset is collected from the LemnaTec platform Virlet et al.

(2017) at the Donald Danforth Plant Science Center. In the LemnaTec platform, plants

are automatically transported by conveyers through a series of imaging cabinets to capture

images from two sides, as well as, from the above. To collect this dataset, 10 replicates of 27

nested association mapping1 (NAM) lines of maize are planted in a randomized complete

block design with four different watering regimes (25% FC2 , 50% FC , 75% FC and 100%

FC ). Starting at the 15th day after planting (DAP), plants are imaged daily for ten days

(15th to 24th DAP ) (image samples are shown in Figure A3.1). The image resolution is

2, 454 × 2, 056 pixels. The experiment is repeated four times. Therefore, there are 1,080

(10×27×4) plants involved in this dataset. Each plant has three image sequences (two side

view sequences and one top view sequence), each of which is considered as an independent

plant sample. In this work, those image sequences containing plants with 25% FC , 75%

FC or 50% FC watering regimes will be considered as the drought samples, and image

sequences containing plants with 100% FC watering regimes will be the control samples.

1Nested Association Mapping (nam) is a technique designed for identifying and dissecting the genetic
architecture of complex traits in corn Yu et al. (2008).

2FC, field capacity, is the amount of soil moisture or water content held in the soil after excess water has
drained away and the rate of downward movement has decreased Israelsen and West (1922).
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Figure A3.1. Image samples in the LemnaTecDD Dataset.

TheMSTCivil Dataset is collected in the greenhouse of the Civil, Architectural, and

Environmental Engineering Department in Missouri University of Science and Technology.

In this dataset, there are three kinds of crops: drought tolerant maize, drought-susceptible

maize, and sorghum. For each kind of crop, 16 replicates are planted, where 8 replicates

are grown under the drought stress condition and the other 8 replicates are under the control

condition. In the greenhouse, there are four RGB cameras installed on the ceiling to collect

image data from the top (image samples are shown in Figure A3.2). Camera 1 and Camera

2 are for the drought groups. Camera 3 and Camera 4 are for the control groups. The image

resolution is 1280 × 1040 pixels. Starting from the first day of planting, the four cameras

image the plants hourly from 6 a.m. to 5 p.m. (12 hours) every day for 30 days. For all the

images collected by a certain camera, those images captured at the same time instant will be

grouped into an image sequence. For example, for all the images collected by Camera 1 in
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Figure A3.2. Image samples in the MSTCivil Dataset.

Figure A3.3. The illustration of the data preparation process on the LemnaTecDD Dataset.
The same data preparation process is also applied on the MSTCivil Dataset.

30 days, those images taken at 6 a.m. will be grouped into an image sequence that contains

30 time-lapse images. Therefore, in the MSTCivil Dataset, there are 48 (four cameras,

hourly over 12 hours) image sequences, each of which contains 30 images over 30 days.

3.2. DATA PREPARATION

The data preparation process, as illustrated in Figure A3.3, includes two steps

(extracting patch sequences from the image sequence and extracting feature descriptions

from the images), which aims to transform the image data of plants into a form that is

suitable for our proposed BLSTM model for the final classification for drought and non-

drought plants.
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Figure A3.4. The architecture of the VGG-16 CNNmodel Simonyan and Zisserman (2014)

3.2.1. Patch Sequence Extraction. Given a plant sample in the form of a time-

lapse image sequence that contains  time-lapse images, we first downsize the images to

324 × 324 pixels. Then, a 3D sliding window is applied on the downsized image sequence

(dimension: 324 × 324 × 3 3) to crop image patch sequences that contain a part of the

plant. The size of the 3D sliding window is set as 224 × 224 × 3 with the stride size of

10 pixels. After the patch sequence extraction step, we obtain time-lapse patch sequences,

each of which can be considered as a patch sequence for the classification.

In this study, instead of focusing on the entire plant, we are more interested in the

temporal variation pattern in the patch sequence that only contains a part of the plant.

Whereas the entire plant is able to provide the morphological information that helps de-

tecting the drought plant, in practical cases, it is hard to obtain images taken by UAVs4

containing the entire plant structure without any occlusion from a densely planted crop field.

3In the downsized image sequence, there are : RGB images, each of which can be represented by a
324 × 324 × 3 matrix. Thus, the downsized image sequence can be represented as a 324 × 324 × 3 matrix,
where each RGB image has three channels.

4UAV, unmanned aerial vehicle, commonly known as a drone, is an aircraft without a human pilot aboard.
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Therefore, we decided to ignore the morphological information by using patch sequences.

This strategy enables our proposed method to be applicable and robust in detecting the

drought plant stress condition in challenging datasets, such as the MSTCivil Dataset.

3.2.2. Feature Extraction. After we obtain the patch sequences, instead of using

handcrafted features, we use Convolutional Neural Networks (CNN) to extract discrimina-

tive features from each image in the patch sequence. In the previous works, handcrafted

features have been widely used for representing crop stress conditions Rascher et al. (2010);

Yilmaz et al. (2008). However, due to the complex physiological effects of the drought

stress condition, handcrafted features, which are mostly focusing on specific characteristics,

might discard significant amounts of the underlying conceptual information. The difference

between any handcrafted features versus features learned by CNN is that multi-layered

learning models, such as CNN, not only are able to explore low-level features from lower

layers, but also can yield conceptual abstractions from higher layers. Hence, CNN is suitable

for our feature extraction task.

In this work, the pre-trained CNN model, VGG-16 Simonyan and Zisserman (2014)

(shown in Figure A3.4), is adopted for the feature extraction. Based on the VGG-16 model

with weights pre-trained on ImageNet Deng et al. (2009), we first proceed to fine-tune the

model for the drought plant classification task, and then we use the fine- tuned model as a

feature extractor for our feature extraction task on the image patch sequences.

Fine-tuning a deep learning network is a procedure based on the concept of transfer

learning Bengio (2012); Donahue et al. (2014). We first initialize the VGG-16 model using

the weights learned from the ImageNet dataset. Then, we truncate the last layer of the

model, which is a softmax layer that targets at 1,000 classes of the ImageNet dataset, and

replace it with a new softmax layer that targets at two classes (the drought condition and the

control condition). The new softmax layer is trained using the backpropagation algorithm

with our plant image data, which are the image patches in the patch sequences (the image

patch will inherit the label from the patch sequence it belongs to). In order to transfer the
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Figure A3.5. An example of recurrent neural network.

knowledge learned from the broad domain (ImageNet dataset) into our specific domain, we

freeze the weights for the first ten layers so that they remain intact throughout the fine-tuning

process. To fine-tune themodel, weminimize the cross entropy function using the stochastic

gradient descent algorithm with an initial learning rate of 10−4 , which is smaller than the

learning rate for training the model from scratch. Finally, we use the fine-tuned model

to extract spatial features from the image in the patch sequence. Each image in the patch

sequence will be fed to the fine-tuned model as the input, which is passed through a stack

of convolutional layers and three fully connected layers. The activation before the last fully

connected layer will be considered as the extracted feature vector of the input. Thus, after

the feature extraction step, the patch sequence will be represented by a sequence of feature

vectors for the classification, where each image in the patch sequence will be represented

by a 1 × 4096 feature vector in the feature vector sequence.
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3.3. BIDIRECTIONALLONG-SHORTTERMMEMORYRECURRENTNEURAL
NETWORK

Recurrent Neural Network (RNN) is a layered neural network that uses its cyclic

connection to learn temporal dependencies in the sequential data. The structure of a

simple RNN is shown in Figure A3.5. Compared to feed-forward layered neural networks,

for instance the multilayer perceptron SUTER (1990) that can only learn static pattern

mappings, RNN can propagate prior time information forward to the current time for

learning the context information in a sequence of feature vectors. In other words, the hidden

layer of an RNN serves as a memory function.

An RNN can be described mathematically as follows. Suppose there is a sequence

of feature vectors denoted as GC , C ∈ [1, )]. In the RNN , the hidden layer output vector ℎC

and the output layer HC are calculated as follows:

ℎC = 5 (,1GC +,AGC−1 + 11) (A3.1)

HC = 6(,2ℎC + 12) (A3.2)

where, 9 and 1 9 represent the input weight matrix and bias vector of the 9 Cℎ hidden layer,

respectively, and ,A is denoted as a recurrent weight matrix; 5 and 6 represent activation

functions of the hidden layer and output layer, respectively.

The traditional RNN, especially trained with gradient descent, has a significant

problem called the vanishing gradient Hochreiter (1998). This problem causes traditional

RNN to forget information after just a few steps. Long short-term memory (LSTM), a

special kind of architecture RNN that remembers information for long periods of time, is

designed to overcome the vanishing gradient problem Gers et al. (1999). In LSTM, the

hidden cells of the traditional RNN are replaced by memory blocks. Therefore, LSTM is

capable to find and exploit long range dependencies in the sequential data. Normally, each

LSTM memory block consists of a memory cell and three gates: the input gate, the output
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Figure A3.6. The structure of the LSTM block.

gate and the forget gate. These gates control the information flow in the LSTM block. As

shown in Figure A3.6, the forget gate can reset the cell variable by forgetting the stored

input 2C , while the input and output gates are in charge of reading input from GC and writing

output to ℎC , respectively:

2C = 5C ⊗ 2C−1 + 8C ⊗ C0=ℎ(,G2GC +,ℎ2ℎC−1 + 12) (A3.3)

ℎC = >C ⊗ C0=ℎ(2C) (A3.4)
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Figure A3.7. The architecture of the proposed BLSTM model that takes the time-lapse
feature vector sequence as the input for the final classification. Each time-lapse feature
vector sequence is representing a patch sequence.

where ⊗ denotes element-wise multiplication and tanh is the hyperbolic tangent function

that is also applied in an element-wise manner. 8C , >C and 5C are representing the output of

the input gate, output gate and forget gate, respectively, while 12 is a bias term and , is

the weight matrix. Since each LSTM memory block is an independent unit, the activation

vectors 8C , >C , 5C and 2C are all of same size as ℎC . Note, each gate is only dependent on the

cell within the same memory block.

To solve the early drought plant stress detection task, in addition to using LSTM

memory blocks to remember information for a long period of time, we adopt the bidirectional

mechanism from the bidirectional RNN (BRNN) Schuster and Paliwal (1997) to design

a bidirectional LSTM (BLSTM) model for processing the input sequential data in both

temporal directions. The motivation of bringing the bidirectional mechanism to our scheme

is to enable our proposed model to have a better understanding of the unique variation

pattern of drought plants. Because the water content variation of the plant in the early

stage is subtle to be recognized, especially for those plants with the mild drought stress,
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such as the plants with 50% FC or 75% FC watering regimes in the LemnaTecDD Dataset.

Compared with the LSTM model that can only process input data in one direction, the

proposed BLSTM model, which can process input data in forward direction and backward

direction respectively, is capable of exploring the full context information of the water

content variation for identifying subtle differences between drought plants and normal

plants.

The proposed BLSTM model is depicted in Figure A3.7. In the input-layer, each

hidden layer has  LSTM blocks, each of which takes a feature vector in the feature vector

sequence as the input. In LSTM blocks, gates are activated using the standard sigmoid

function, (1 + 4˘G)˘1 , and the block input as well as the block output is squashed with

the hyperbolic tangent function (tanh). After presenting an input sequence entirely to the

BLSTM , the result can be read at the output-layer. The time-lapse feature vector sequence,

which is the representation of a patch sequence, will be classified as either the drought

condition or the control condition.

To train the BLSTMmodel, feature vector sequences extracted from patch sequences

containing drought plants are considered as positive samples (the drought condition), while

feature vector sequences extracted from patch sequences containing control plants are

negative samples (the control condition). Both of these two kinds of samples will be fed

to the model. The proposed BLSTM model is built using Python on the Keras Chollet

(2015) toolkit with a Tensorflow backend. The weights of the network are initialized from

a # (0.0, .05) distribution, while we add 1 to the forget gate bias of LSTMs at initialization.

The network is trained with an RMSprop optimizer, where the learning rate is 10˘3 with the

decay rate as 10˘6 . The applied dropout probability in our network is 0.5. We train the

model for 50 epochs and use early stopping based on the validation performance.
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3.4. OPTIMAL DATA COLLECTION STRATEGY

In addition to the BLSTM model for the drought plant stress detection, we first

propose the Optimal Data Collection Strategy (ODCS) that can use less information to

accurately detect the plant drought stress from RGB images as early as possible. The

image data collection for the drought stress detection task is expensive, especially in crop

fields. In order to acquire detailed variation information of the growing plants, we have

to collect the image data from the first few days after planting as frequently as possible,

which is inefficient. To eliminate this issue, we propose the ODCS that aims to use as less

image data as possible in a time period that is informative for the early drought plant stress

detection task.

To find the ODCS , we design different data sampling strategies on the plant image

dataset to simulate different data collection strategies. However, it is unpractical to try all

possible sampling strategies, which will be a huge number of experiments testing the pro-

posed method using different combinations of the images in the time-lapse patch sequence.

Therefore, we select 15 representative data sampling strategies which can cover most of the

time periods in the time-lapse patch sequence.

We intuitively design the sequence lengths of the data sampling strategies as 10

images, 15 images, and 20 images. The data sampling strategy is named as (<�?!@, which

means the original time-lapse patch sequence is sampled with time interval < from the ?Cℎ

(First) image to the @Cℎ (Last) image in the sequence. For instance, the (1�11!30 strategy,

which samples the original time-lapse patch sequence from the 11Cℎ image to the 30Cℎ image

with time interval 1, is simulating the data collection strategy that collects plant image data

every other day from the 11Cℎ day to the 30Cℎ day after planting. If the (1�11!30 strategy

can achieve competitive classification result on the early drought plant stress detection task,

then, instead of collecting data every day for 30 days, we can use a lower data collection

frequency by imaging the plant every other day during 20 days to save the manpower and
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the time. Note, in a data sampling strategy (<�?!@ , if the time interval < = 0, we will

select the consecutive image patches from the ?Cℎ image to the @Cℎ image in the original

time-lapse patch sequence. These 15 sampling strategies are summarized in Table A4.1.

The proposed BLSTM model will be tested by using the sampled data sequences

generated by different strategies. Correspondingly, in order to take input data in different

lengths, the layout of the proposed BLSTM architecture will be adjusted by varying the

number of LSTM blocks. The classification performances of these strategies will be

compared and discussed to find the ODCS.
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4. EXPERIMENTS

The main goals of this work are: (i) the application of the proposed BLSTM model

to RGB images for the early drought plant stress detection task, (ii) the investigation of the

earliest moment that we can accurately detect the drought plant stress condition from RGB

images, and (iii) the proposal of an efficient RGB image data collection strategy that can

reduce the amount of time and manpower and guarantee the accuracy of early drought plant

stress detection at the same time.

To validate the first goal, the proposed BLSTMmodel is compared with the bidirec-

tional RNN ( BRNN ) model, the LSTM model, and the CNN model. For the second and

third goals, we design different data sampling strategies and compare their classification

performances to find the Optimal Data Collection Strategy (ODCS).

In this section, we first describe evaluation metrics. Then, we compare different

sampling strategies to find the ODCS. Finally, we validate the effectiveness of our proposed

method on the LemnaTecDD Dataset and the MSTCivil Dataset, respectively.

4.1. EVALUATION METRICS

We adopt the leave-one-out policy in the experiment. In each dataset, the image data

will be evenly separated into four subsets, where three subsets are used for training and the

last one is for testing. We perform the leave-one-out experiment four times with each subset

as the testing set alternatively. Then, the average performance on the four experiments in

terms of precision, recall and F-score is utilized as the evaluation metrics.

In the experiments, we evaluate both the patch sequence classification and the

image sequence classification. The patch sequence classification is the BLSTM model’s

prediction on the input patch sequence. In the data preparation step, by applying the

3D sliding window (dimension: 224 × 224 × 3 ) on the image sequence (dimension:
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Table A4.1. The description of the 15 data sampling strategies. The data sampling strategy
is named as (<�?!@ , which means that the data sequence is sampled with time interval m
from the ?Cℎ (First) image to the @Cℎ (Last) image in the sequence.

Sequence Length Name Description

10 images

(0�1!10 Sampled with time interval 0 from 1BC image to 10Cℎ image.
(0�11!20 Sampled with time interval 0 from 11Cℎ image to 20Cℎ image.
(0�21!30 Sampled with time interval 0 from 21BC image to 30Cℎ image.
(1�1!20 Sampled with time interval 1 from 1BC image to 20Cℎ image.
(1�6!25 Sampled with time interval 1 from 6Cℎ image to 25Cℎ image.
(1�11!30 Sampled with time interval 1 from 11Cℎ image to 30Cℎ image.
(2�1!30 Sampled with time interval 2 from 1BC image to 30Cℎ image.

15 images

(0�1!15 Sampled with time interval 0 from 1BC image to 15Cℎ image.
(0�11!25 Sampled with time interval 0 from 11Cℎ image to 25Cℎ image.
(0�16!30 Sampled with time interval 0 from 16Cℎ image to 30Cℎ image.
(1�1!30 Sampled with time interval 1 from 1BC image to 30Cℎ image.

20 images
(0�1!20 Sampled with time interval 0 from 1BC image to 20Cℎ image.
(0�6!25 Sampled with time interval 0 from 6Cℎ image to 25Cℎ image.
(0�11!30 Sampled with time interval 0 from 11Cℎ image to 30Cℎ image.

30 images (0�1!30 Sampled with time interval 0 from 1BC image to 30Cℎ image.

324 × 324 × 3 ) with the stride size of 10 pixels, the image sequence is decomposed into

100 patch sequences. Therefore, the image sequence classification is voted by its 100

decomposed patch sequences. For instance, if more than half of these patch sequences are

classified as the drought condition, then the image sequence will be classified as the drought

condition.

One of the comparison methods, the CNN method, takes the individual patch as

the input and performs patch-wise classification rather than sequence-wise classification.

Therefore, to evaluate the patch sequence classification of the CNN method, the patch

sequence is voted by its image patches in the sequence. For instance, given a patch

sequence, if more than half of its image patches are classified as the drought condition by

the CNN method, then it will be classified as the drought condition. Similarly, we define

the image sequence classification for the CNN method.
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Table A4.2. The classification results of the 15 data sampling strategies. The data sampling
strategy is named as (<�?!@ , which means that the data sequence is sampled with time
interval m from the ?Cℎ (First) image to the @Cℎ (Last) image in the sequence.

Sequence length Name Patch sequence classification Image sequence classification
Precision Recall F-score Precision Recall F-score

10 images

(0�1!10 56.7% 54.1% 55.4% 55.3% 53.0% 54.1%
(0�11!20 57.1% 57.7% 57.5% 56.7% 53.9% 55.3%
(0�21!30 72.7% 72.1% 72.4% 69.4% 69.9% 69.5%
(1�1!20 57.6% 58.0% 57.8% 54.3% 54.7% 54.5%
(1�6!25 68.9% 69.0% 68.9% 60.2% 62.1% 61.1%
(1�11!30 71.0% 70.7% 70.9% 68.2% 68.7% 68.5%
(2�1!30 65.0% 64.1% 64.5% 64.2% 62.2% 63.2%

15 images

(0�1!15 57.1% 54.8% 55.9% 56.0% 54.1% 55.0%
(0�11!25 68.0% 66.2% 67.1% 65.9% 64.4% 65.1%
(0�16!30 73.4% 71.6% 72.5% 71.1% 70.3% 70.7%
(1�1!30 70.8% 71.4% 71.1% 69.2% 70.6% 69.9%

20 images
(0�1!20 68.8% 67.0% 67.9% 63.2% 62.8% 63.0%
(0�6!25 70.7% 71.0% 70.8% 66.1% 67.3% 66.7%
(0�11!30 74.1% 75.2% 74.6% 73.0% 71.1% 2.0%

30 images (0�1!30 74.5% 76.8% 75.6% 74.6% 72.4% 68.8%

4.2. EXPERIMENTS ONOPTIMAL DATA COLLECTION STRATEGIES (ODCS)

Compared to the LemnaTecDD Dataset that only collects plant image data daily

during ten days, the MSTCivil Dataset, which collects image data daily during 30 days, is

more suitable for the experiments of finding the ODCS. Therefore, by using the 15 selected

data sampling strategies, the proposed BLSTM model is tested on the MSTCivil Dataset.

The classification performance of these strategies are presented in Table A4.2.

According to the classification results shown in Table A4.2, there are three main

observations:

• Unsurprisingly, the (0�1!30 strategy that uses all the image data in 30 days out-

performs all the other 14 strategies, because the temporal variation in the long time

period can provide more detailed information to find the unique pattern of the drought

stress condition;
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Table A4.3. The proposed BLSTM model is validated on LemnaTecDD Dataset by com-
paring to the BRNN model, the LSTM model and the CNN model.

Method Patch sequence classification Image sequence classification
Precision Recall F-score Precision Recall F-score

BLSTM 80.3% 77.3% 78.8% 78.7% 75.4% 77.0%
BRNN 76.1% 77.4% 76.7% 75.2% 73.7% 74.4%
LSTM 72.1% 73.6% 72.9% 70.2% 71.9% 71.0%
CNN 64.4% 62.1% 63.2% 61.1% 60.5% 60.8%

• The (0�11!30 strategy, which only uses 2⁄3 of the entire image dataset, achieves really

competitive classification performances;

• According to the F-score of image sequence classification of the (0�1!10 (54.1%), the

(0�1!15 (55.0%) and the (0�1!20 (63.0%), the image data from the first 10 or 15 days

in the 30 days period have minor contribution to the drought plant stress detection.

This observation can be confirmed by the (0�16!30 strategy with the F-score of

image sequence classification as 70.7%, which can also achieve good classification

performances without the information from the first 15 days.

By considering both the accuracy and the efficiency, the ODCS could be the

(0�11!30 strategy that uses the continuous image data from the 11Cℎ day to the 30Cℎ day after

planting to achieve 74.1% precision and 75.2% recall in the patch sequence classification

evaluation, and 73.0% precision and 71.1% recall in the image sequence classification eval-

uation. According to the classification performances of the (0�1!20 strategy, the earliest

moment that the proposed method can accurately detect the drought stress is the 20Cℎ day

after planting.
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Table A4.4. The proposed BLSTM model is validated on the MSTCivil Dataset by com-
paring to the BRNN model, the LSTM model and the CNN model.

Method Patch sequence classification Image sequence classification
Precision Recall F-score Precision Recall F-score

BLSTM 74.1% 75.2% 74.6% 73.0% 71.1% 72.0%
BRNN 72.5% 71.0% 71.7% 71.4% 70.8% 71.1%
LSTM 70.7% 67.2% 68.9% 70.9% 70.0% 70.4%
CNN 66.1% 63.1% 64.6% 62.9% 60.3% 61.6%

4.3. VALIDATION OF THE BLSTMMODEL

In this section, to validate the proposed BLSTM model, we compare it with the

bidirectional RNN (BRNN) model, the LSTM model, and the CNN model on the two RGB

image datasets.

4.3.1. Methods toBeCompared. Instead of usingLSTMblocks, theBRNNmodel

uses traditional RNNs to process sequential data in two directions. The architecture of the

LSTM model is similar to the proposed BLSTM model, but the main difference between

them is that the LSTMmodel can only process data sequences in one direction. For the CNN

method, we use the fine-tuned VGG-16 model Simonyan and Zisserman (2014) (shown in

Figure A3.4). The CNN model takes the individual image patch from the patch sequence

as the input to conduct the drought plant stress detection without the temporal variation

information.

The training processes of the BRNN model and LSTM model are similar to that

of the BLSTM model. The parameters are initialized from a # (0.0, .05) distribution (the

forget gate bias of LSTMs are added 1 at initialization), and then they are trained with the

RMSprop optimizer using 10−3 as the learning rate and 10−6 as the decay rate. The LSTM

model is trained for 50 epochs with early stopping. However, since the BRNN model will

be slower to converge than the LSTM model, we train the BRNN model for 300 epochs

and use early stopping based on the validation performance. For the CNN model, we use

the fine-tuned VGG-16 model Simonyan and Zisserman (2014) (shown in Figure A3.4)
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introduced in the feature extraction section. To test this CNNmodel, the input of this model

is the 224 × 224 image patch in the patch sequence, where the image patch will inherit the

label from the patch sequence to which it belongs.

4.3.2. Comparison of Classification Performances. The quantitative comparison

results on the LemnaTecDD Dataset are presented in Table A4.3. Based on the selected

ODCS ((0�11!30), we compare the proposed BLSTM model with other models on the

MSTCivil Dataset, whose results are presented in Table A4.4.

As shown inTableA4.3 andTableA4.4, the proposedBLSTMmodel outperforms all

the other models in both of the patch sequence and image sequence classification evaluations

on the two plant image datasets. Since the CNN model only considers the spatial features

in the individual image patch without any temporal variation information, it does not work

well with the drought samples in the early stage. Compared with the CNN model, the

LSTMmodel is able to use the variation information during the plant growth to identify the

drought samples in the early stage. However, due to the subtle variation of the plants with

the mild drought condition (some samples shown in Figure A5.1), the LSTM model will

make mistakes in the classification of the mild drought samples. Compared with the LSTM

model, by using the bidirectional mechanism, the proposed BLSTM model and the BRNN

model, which can learn the full context information in the temporal variation pattern, are

able to recognize most of the mild drought samples. The BLSTM model is slightly better

than the BRNN model in the classification performance. But the BRNN model needs more

training time to obtain a good classification performance than the BLSTM model, due to

the vanishing gradient problem.

Compared to the competitive classification performances on the LemnaTecDD

Dataset, the BLSTM model achieves inferior performance (but still competitive compared

to other methods) in the MSTCivil Dataset. The main reason is the strong interference in

theMSTCivil Dataset (shown in Figure A5.2), which is collected in a greenhouse that needs

to be used for several experiments simultaneously. In some images, some plants are out of
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view for recording measurements, which cause inconsistency to the image data. Since the

image data are collected using the natural light source, shadows and nonuniform illumina-

tion conditions add challenging interferences to the early drought plant stress detection task.

In addition to these two main problems, some other interferences, such as occlusions and

water stain reflections, add nonuniform noises to the image data, which are also challenging

problems to the drought plant stress detection task on RGB images.
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5. CONCLUSIONS

Early drought plant stress detection is of great relevance in precision plant breeding

and production. However, the previous methods based on hyperspectral image analysis

were mostly focusing on analyzing the relationship between spectral reflectivity and the leaf

water content on individual hyperspectral images, but they ignored the temporal variation

information of the plants under the drought stress condition. In addition, the applications

of these approaches are limited by the high cost of hyperspectral imaging systems. In this

work, we apply the Bidirectional Long Short-Term Memory ( BLSTM ) networks to RGB

image datasets for early drought plant stress detection for the first time. By using LSTM

memory blocks and the bidirectional mechanism, the proposed BLSTM model is able to

use the discriminative temporal variation information and the full context information in the

early plant growth stage for the classification of a patch sequence containing plants under

the drought condition or not. Two independently collected RGB image datasets are used

for the validation of the proposed method. Optimal data collection strategies in a given

environment are also investigated to efficiently detect the drought stress in the early stage.
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Figure A5.1. Image sequence samples of the typical control plant (100% FC ) and the
typical drought plants (75% FC , 50% FC and 25% FC ). The mild drought plant with 75%
FC watering regimes, which has very minor drought symptoms, is really challenging for
the drought stress detection task.
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Figure A5.2. Image sequence samples in theMSTCivil Dataset. Samples with illumination
and human interferences are challenging problems to our proposed method.



APPENDIX B.

A HIERARCHICAL CONVOLUTIONAL NEURAL NETWORK FOR

VESICLE FUSION EVENT CLASSIFICATION
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1. INTRODUCTION

Vesicle exocytosis is an essential cellular trafficking process, by which materials

(e.g., transporters, receptors and enzymes) are transported from one membrane-bounded

organelle to another or to the plasmamembrane for growth and secretion. Vesicle exocytosis

needs to be highly regulated since its dysregulation is related to many human diseases (e.g.,

neurodegenerative disease, cancer and diabetes)Hou and Pessin (2007)Jahn and Fasshauer

(2012). Different modes of vesicle exocytosis have been found and characterized in mam-

malian cells. These include the full fusion where a vesicle collapses completely when it

fuses with the plasma membrane, and the partial fusion or “kiss-and-run” fusion where a

vesicle transiently fuses with the plasma membrane without the full collapse Rizzoli and

Jahn (2007)Xu et al. (2011a). In cell biology research, it is of great importance to detect

vesicle fusion events and also to classify different modes of vesicle exocytosis. Because

the quantitative analysis of these biological processes can provide insights into cellular

behaviors in normal and disease conditions.

Total Internal Reflection Fluorescence Microscopy (TIRFM), which illuminates the

aqueous phase immediately adjacent to a glass interface with an exponentially decaying

excitation (about 100 nm in z-axis), has been used widely to visualize single vesicle exocy-

tosis at the cell surface Axelrod (1981a)Schneckenburger (2005a). A pH-sensitive mutant

of GFP, pHluorin, was developed and expressed to visualize vesicle exocytosis Miesenböck

et al. (1998). Usually, pHluorin is targeted to the lumen of the vesicle, which is quenched

and non-fluorescent in acidic environment, but becomes brightly fluorescent when the vesi-

cle exposes to the extracellular neutral environment as the vesicle fuses with the plasma

membrane Xu et al. (2011a)Xu et al. (2016). In this study, we imaged a variety of vesicle

exocytosis in different types of mammalian cells. These include constitutive exocytosis

(transferrin receptor-pHluorin exocytosis in endothelial cells and 3T3-L1 adipocytes) and
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regulated exocytosis (VAMP2-pHluorin labeled insulin granule inMIN-6 cells andVAMP2-

pHlurin labeled GLUT4 vesicle in 3T3-L1 adipocytes). Quantitative analysis of the vesicle

exocytosis in these typical examples will strengthen our understanding of how vesicle exocy-

tosis is regulated and how its dysregulation triggers human disease (e.g., insulin resistance

and diabetes)Bornemann et al. (1992a)Leney and Tavare (2009a)Xu et al. (2011a).

Usually, the membrane fusion between pHluorin labeled vesicles and the plasma

membrane can be represented by 2 significant stages in a continuous video sequence, as

illustrated in Figure A1.1 In stage 1, the vesicle is invisible in the pre-appearance frame

(quenched), and then suddenly appears in the first-appearance frame as a brightly fluorescent

circle spot. In stage 2, after being immobilized for some frames (from about 100 ms to a few

seconds), the vesicle will either fuse completely with the plasma membrane with a visible

bright “halo” (full fusion event), or remain its circular shape and gradually fade (partial

fusion event), which can be observed in the last appearance frame, respectively. At the end of

this process, the vesicle under the full or partial fusions will disappear in the disappearance

frame. Note that, since the moving trajectory of vesicles during the exocytosis process is

almost perpendicular to the cell membrane, the trajectory projected onto the cell surface

(i.e., the image plane in the TIRFM) only has a small spatial displacement. In this movement

process, the appearance variation pattern of the vesicle fusion event is a critical characteristic

that is able to generate representative features to distinguish the vesicle fusion event from the

background. Specially, the pre-appearance frame, first-appearance frame, last-appearance

frame and disappearance frame are the 4 key moments of the vesicle fusion event, which

represent the significant appearance change of a given fusion event.

A typical time-lapse TIRFM movie consists of thousands of individual frames with

hundreds of vesicle fusion events. Unfortunately, so far the vesicle fusion detection and

classification are performed mainly in a manual manner, which is a very time-consuming

process, and likely to introduce personal biases. Therefore, there is a great demand to
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Figure A1.1. The 2 significant stages of vesicle fusion processes and the related 4 key
moments. 3T3-L1 adipocytes were transfected with VAMP2-pHluorin to label the GLUT4
vesicles. pHluorin is a pH-sensitive fluorescent protein that is invisible in the lumen
of acidic vesicles, which becomes much more fluorescent when a vesicle fuses with the
plasma membrane and exposes to a neutral environment. After a vesicle touches the cell
membrane, it either fully collapses and fuses with the plasma membrane (a. Full fusion
event), or partially fuses with the plasma membrane and then is retrieved rapidly by the
clathrin-dependent process (b. Partial fusion event).

develop effective computational tools to automatically extract the vesicle fusion event infor-

mation in TIRFM video sequences, which will aid the quantitative analysis on the vesicle

exocytosis process.

1.1. RELATEDWORK

When the computer-based microscopy image analysis is used to relieve human from

the tedious manual labeling Basset et al. (2014a)Basset et al. (2015a)Godinez et al. (2009),

it is unsurprising that lots of challenges, such as the uncontrollable noise interference

of TIRFM images and the high variability of fusion events’ properties (e.g., intensity

profiles, lifetime length and movement patterns), hinder the automated image processing.

Furthermore, some of the bright spots (endocytic vesicles or vesicles from other non-acidic

compartments) in TIRFM image sequences are moving in and out of the TIRFM field,
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Figure A1.2. Some samples of partial fusion event (a), full fusion events (b,c), and non-
fusion events (d,e,f). (a)A typical partial fusion event; (b)A typical full fusion eventwith the
“puff”phenomenon; (c) A short full fusion event is characterized by its “puff”phenomenon;
(d) A bright circular object caused by the background intensity fluctuation; (e) A moving
bright spot, which only moves in the first several frames then stays immobile, is similar to
a partial fusion event when it stops moving; (f) A background fluctuation, which is really
similar to standard full fusion events in the early stage, then gradually moves out of the field
of view.

which is a great challenge for designing automated algorithms for vesicle fusion detection.

In order to detect fusion events, one needs to use specific detection algorithms considering

both spatial and temporal features of individual objects.

Based on the bright circular appearance of vesicle fusions under the TIRFM, some

approaches have been proposed to perform automated fusion identification, such as the pixel

intensity thresholding methods in Huang et al. (2007a)Yuan et al. (2015) and the intensity

distribution analysis methods in Smith et al. (2011)Wu et al. (2015a). However, these

methods are sensitive to the variation of vesicle fusion intensity profiles (shown in Figure

A1.2(a,b,c)). In order to improve the tolerance to the variation, some automated approaches

were developed to model the moving process of fusion events. Based on both the temporal

and spatial features, a template matching method was proposed to identify the fusion events

with high correlation to a standard fusion event template in Vallotton et al. (2007a). In

another study, a Gaussian model was used to fit typical fusion events in Bai et al. (2007a),

where the parameters in the Gaussian model are used to classify fusion events. However,

due to the frequent background intensity fluctuations (as shown in Figure A1.2(d, e, f))

introduced by the TIRFM system and intracellular activities, it is hard to build a standard

template or a general model to represent all fusion events.
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Because of the large variations of the fusion events’ properties (e.g., intensity pro-

files, lifetime length and movement patterns) and frequent background fluctuations, the

robustness of a vesicle fusion detection and classification method is highly important. A

robust detection method was proposed in Berger et al. (2012), which first detects candi-

date fusion events that suddenly appear in the TIRFM field. Then, a diffusive model is

developed to analyze the intensity distribution variation pattern of the fusion event for the

classification. Based on the visible “puff”phenomenon of the full fusion event, the diffusive

fusion model effectively distinguishes full fusion events from non fusion regions, leaving

a large amount of partial fusion events unrecognized. In addition, a Layered Probabilistic

Approach was proposed in Godinez et al. (2012) to identify full fusion events by exploring

three abstractions: the intensity over time, the underlying temporal intensity model and the

high level behavior. Each of these three abstractions corresponds to a layer and these layers

are represented via stochastic hybrid systems and hidden Markov models. However, partial

fusion events are not considered in this work.

Unlike the full fusion event, which can be distinguished by its “puff”/spread signal,

the partial fusion event is resembled to other bright spots (Figure A1.2(d, e, f)) on the back-

ground, which is problematic in most of the existing detection and classification methods.

In order to reveal the unique variation pattern of the fusion events, a learning based method

was developed in our previous work Li (2015a). An adaptive detection and tracking method

is first applied to TIRFM images to search for potential fusion patches through video frames,

then a Gaussian Mixture Model (GMM) is fitted on each individual fusion event. Using

the estimated parameters of this model as features, a classifier is trained to distinguish full

fusion events, partial fusion events and non-fusion events. However, in this GMM-based

method, the handcrafted features ignore the discriminative appearance information from the

4 key moments of a fusion event, which leads to miss-detection problems in short fusion

events (shown in Figure A1.2).



74

1.2. THE MAJOR CHALLENGES

According to the observation of our own datasets and the review of previous works,

the major challenges to the task of detecting and classifying vesicle fusion events are

summarized as follows.

1.2.1. TheHigh Variability of Vesicle Fusion Events. Some typical partial fusion

events and full fusion events are shown in Figure A1.2(a) and Figure A1.2(b) respectively,

from which we can observe the characteristics of vesicle fusion events. For example,

normally partial fusion events present the momentary appearance and disappearance, and

full fusion events present a sudden appearance and a gradual disappearancewith their signals

fading away. However, in practical cases, the vesicle fusion event has large variations in its

intensity profile, lifetime and movement pattern. For instance, compared with a typical full

fusion event in Figure A1.2(b), the full fusion event in Figure A1.2(c) has a much shorter

lifetime and a much more blurry intensity profile. These variations yield challenges in

modeling the various visual patterns of fusion events.

1.2.2. Complex Background Interferences. Besides vesicle fusion events, there

exist a large amount of other bright circular spots on the background, which are challenges for

automated fusion event detection and classification. For instance, the circular background

intensity fluctuation (Figure A1.2(d)) is similar to a partial fusion event. Some moving

bright spots, which are temporarily immobile near the cell membrane for several frames

(Figure A1.2(e,f)), can be mistakenly classified as partial fusion events. These interferences

yield challenges in selecting effective features to build discriminative classifiers.

1.3. OUR PROPOSAL AND CONTRIBUTIONS

Rather than designing handcrafted visual models or features, Convolutional Neural

Networks (CNN) that can learn the discriminative features from big training data have been

widely used in different real world classification tasks, such as image recognitionKrizhevsky
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et al. (2012a)Lawrence et al. (1997), video analysis Yue-Hei Ng et al. (2015)Karpathy et al.

(2014) and natural language processing Hu et al. (2014)Kim (2014). CNN is a promising

learning basedmethod to handle classification challenges onmicroscopy images, such as cell

detectionMao andYin (2016)Mao et al. (2016). Therefore, in order to enhance the tolerance

to the variation of fusion events and the unpredictable background interferences, we propose

to develop a novel CNN-based application which applies a Hierarchical Convolutional

Neural Network (HCNN) to explore both appearance features and temporal cues for the

vesicle fusion event classification. First, we extract fusion event candidate sequences and

their appearance features from the input video data by using a newly developed iterative

tracking algorithm. Secondly, a center-surroundedGaussianMixtureModel (GMM) is fit on

each patch of the patch sequence using the RANSAC algorithm Fischler and Bolles (1981)

to remove outliers during the fitting process. The patch sequences are aligned with the

same time length and time-series intensity change features corresponding to the Gaussian

models’ parameters are extracted over time. Thirdly, based on the time-series parameters

from Gaussian Mixture Models and 4 key moments of the fusion event candidate sequence,

a HCNN is developed to automatically select discriminative temporal and appearance

features for the classification of the fusion event candidates in challenging datasets with low

Signal-to-Noise-Ratio and frequent background fluctuations.

Our contributions in this paper include: (1) A novel application is proposed to detect

and classify vesicle fusion events. TheHierarchical Convolutional Neural Network (HCNN)

is utilized to learn discriminative appearance features from 4 key moments of a fusion event

and combine themwith the temporal features from the parametric GaussianMixtureModels

over time; (2) A center-surrounded Gaussian Mixture Model is used to model the intensity

profile change of a fusion event in its entire lifetime; (3) A newly developed vesicle fusion

event tracking algorithm is applied for the appearance feature extraction.
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The rest of this paper is organized as follows: in Section 2, we briefly introduce our

newly developed vesicle fusion event tracking algorithm, which contributes to appearance

feature extraction for fusion event classification; in Section 3, the classification of the

fusion event candidates by HCNN is presented; in Section 4, we validate our method on 9

challenging datasets and compare it with the previous methods and other neural network

architectures. The paper concludes with Section 5.
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2. DETECTION AND TRACKING ALGORITHM

Based on our preliminary work on detecting and tracking vesicle candidates in

video sequences Li (2015a), we improved the tracking algorithm to accurately measure

the lifetimes of vesicle fusion events, which is important for the feature extraction task

in fusion event classification. The major goal of our new tracking algorithm is to find

the first-appearance frame and the last-appearance frame of a potential fusion event and

every patch center between the first-appearance frame and the last-appearance frame. We

utilize Figure A2.1 to illustrate how to iteratively search in the forward direction to find the

last-appearance frame (the search in the backward direction to find the first-appearance

frame is similar).

Assume we find the pixel (G∗, H∗) with the local maximum of local contrast as the

center of the potential fusion event and crop an = × = image patch around it. Since we use

fixed size patches, we only need to record the coordinates of the patch center in the fusion

event candidate patch sequence, which are denoted as ( =
{
G∗C , H

∗
C |C ∈ [C 5 8ABC , C;0BC]

}
where

C 5 8ABC and C;0BC denote the first and last frame index of the patch sequence, respectively. At

the beginning, C 5 8ABC = C;0BC = C0. During each iteration, we search the last-appearance

frame in a sliding temporal window of � frames. Three situations are considered during

the iterative search:

Situation 1, if the maximums of the local contrast in all � frames around location

(G∗C;0BC , H
∗
C;0BC
) are larger than Y, so we can update ( =

{
G∗C , H

∗
C |C ∈ [C 5 8ABC , C;0BC]

}
by setting

C;0BC ← C;0BC + �. Then, we continue the search from frame C;0BC + 1 to frame C;0BC + �.
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Figure A2.1. An example to search the candidate patch sequence S in the forward temporal
direction.

Situation 2, if not all of the maximums of the local contrast in � frames around

location (G∗C;0BC , H
∗
C;0BC
) are larger than Y, while Y×U > 1 (U is a decay rate on the threshold),

we update C;0BC as the last frame within the � frame whose maximal local contrast is larger

than Y and the patch centers are updated accordingly. The threshold is updated as Y ← Y×U.

Then, we continue the search from frame C;0BC + 1 to frame C;0BC + �.

Situation 3, if not all of the maximums of the local contrast in � frames around

location (G∗C;0BC , H
∗
C;0BC
) are larger than Y and Y × U ≤ 1, we update the patch sequence similar

to situation 2, then we stop the iteration.

By applying this iterative tracking algorithm to the TIRFM image sequence, we can

obtain the whole lifetimes of potential fusion events in the format of candidate patch se-

quences, each of which records the coordinates of the patch center from the first-appearance

frame to the last-appearance frame. For each potential fusion event, we compute the pair-

wise Euclidean distance between each consecutive pair of patch centers within the candidate

patch sequence. If any of these distances is larger than the neighborhood size =, this candi-

date patch sequence is highly possible to be a non-fusion event caused by a moving object

from the background, and we remove it from the candidate list.
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3. CLASSIFICATION OF FUSION EVENT CANDIDATES

In this section, wewill introduce the classification of fusion event candidates by using

a novel Hierarchical Convolutional Neural Network (HCNN). Compared with the Support

Vector Machine-based classification method in Li (2015a), HCNN is able to automatically

select discriminative features which can provide the comprehensive representation of the

fusion event. In order to enhance the tolerance to the variation of fusion events and the

unpredictable background interferences, the proposed HCNN architecture considers both

spatial and temporal information. The input of our HCNN consists of the time-series

parametric information from the Gaussian Mixture Model fitting, and the visual appearance

information from the 4 key moments of the fusion event candidate. The former is aiming

at revealing the unique hidden variation pattern of the vesicle fusion event in its entire

lifetime. The latter is proposed to extract the extraordinary visual appearance features

of the vesicle fusion event. Moreover, the hierarchical architecture is able to exploit the

high-level abstraction of intensity profiles of individual frames and the high-level temporal

features from the entire fusion event lifetime to accurately distinguish fusion events from

the other similar circular bright spots in Figure A1.2.

3.1. DATA PREPARATION

Because of the frequent background interferences in the TIRFM video data, directly

thresholding the candidate patch sequence might not be a good option to present its intensity

profile variation. Therefore, we adopt the data preparation strategy in our previous work

Li (2015a). First, a robust Gaussian Mixture Model (GMM), which consists of two center-

surrounded 2D Gaussian models (Area? and Area 5 in Figure A3.1), is adopted to fit

the intensity profile of each fusion event candidate, where a Random Sample Consensus

algorithm Fischler and Bolles (1981) is applied to robustly estimate the parameters of
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Figure A3.1. The Gaussian Mixture Model consists of a 5 × 5 “peak area” and a 13 × 13
“flat area”.

Gaussian models without the outlier effect. Second, since most of the fusion events have

their lifetimes less than 24 frames in the datasets we used in this study, we extract 24 image

patches from each fusion event candidate starting from the first-appearance frame. For

those fusion event candidates whose lifetimes are shorter than 24 frames, we will zero-

padding them. For those fusion event candidates with longer lifetimes, they will be cut into

the time length. Third, for each fusion event candidate, there are 24 extracted image patches

in the patch sequence, where each image patch is represented by a set of GMM parameters

(_?40: 1, `?40: , f?40: of Area?, and _ 5 ;0C , ` 5 ;0C , f 5 ;0C of Area 5 ). Thus, the time-series

intensity profile change of a vesicle fusion event candidate, which is represented by 24 sets

of GMM parameters, can be utilized for fusion event classification.

3.2. THE VARIATION PATTERN IN GMM IMAGE

In order to explore the hidden correlations among the image patches in each fusion

event candidate, we generalized the vectorization process in our previous work Li (2015a)

by transforming the parameter sets of a fusion event candidate into a 2D image, which

concatenates the time-series parameter sets into a 2D array in a special order, as shown in

Figure A3.2. We call this 2D array of Gaussian Mixture Model fitting parameters as GMM

image that allows the HCNN to discover the hidden correlation among the parameter sets.

1_ is the weighting coefficient of each Gaussian component in the GMM.
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Figure A3.2. Transforming the time-series Gaussian fitting parameter sets to a 2D array
(Gaussian Mixture Model image, GMM image). In the GMM image, each cell represents
a parameter set for one image patch of the fusion event candidate. In each cell, the 6
parameters are organized as a 3 × 2 matrix (_?40: , _ 5 ;0C ; `?40: , ` 5 ;0C ;f?40: , f 5 ;0C). So the
GMM image, which contains 24 cells, is a 12 × 12 matrix.

Furthermore, in Figure A3.2, we design the GMM image to be a square image, so each

parameter set has more chances to be neighboring to other parameter sets. For example,

given 24 parameter sets to stitch, if they are concatenated into a 24× 1 matrix pattern, there

is no 4- or 8-connected neighborhood relationship among the parameter sets. However,

if we stitch them into a 12 × 2 matrix pattern, the relationship among the parameter sets

will increase a little. Thus, in this work, we concatenate the 24 parameter sets into a 4 × 6

matrix pattern, many 4- or 8-connected neighborhood relationships can be built among the

parameter sets.

3.3. THE VISUAL APPEARANCE IN 4 KEY MOMENTS

In addition to theGMM image, which contains the high-level abstraction of intensity

profiles of individual frames, we also consider the appearance features in the 4 key moments

of a fusion event candidate. As described in Figure A1.1, the movement of vesicles can

be well represented in the 4 key moments: pre-appearance frame, first-appearance frame,
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last-appearance frame and disappearance frame. By using our newly developed vesicle

fusion event tracking method, the whole entire of each fusion event candidate is able to be

obtained. Therefore, for each candidate, we extract image patches in these 4 key moments.

The first-appearance frame patch and last-appearance frame patch are extracted from the

first frame and the last frame in the fusion event lifetime, respectively. The pre-appearance

frame patch is extracted from the previous frame of the first-appearance frame. The

disappearance frame patch is extracted from the next frame of the last-appearance frame.

Both the parametric information from the GMM image and the 4 image patches of the 4 key

moments will be input to the HCNN.

3.4. THE ARCHITECTURES OF OUR HCNN

The overall architecture of our Hierarchical Convolutional Neural Network (HCNN)

is shown in Figure A3.3. In the first layer, the inputs of the first 4 Convolutional Neural

Networks �## 9

1 ( 9 ∈ [1, 4]) are the cropped image patches from 4 key moments, which

provide the detailed visual appearance information of fusion event candidates. Each of

these four CNNs takes a single cropped image patch. The input of the �##5
1 is the GMM

image which provides the time-series intensity change information of the fusion process

(a high-level abstraction using the parameters from Gaussian Mixture Model fitting). In

the second layer of our HCNN, we design the �##6
2 to learn joint features of the �## 9

1

( 9 ∈ [1, 4]), which indicate the correlation of fusion event patches in the 4 key moments.

In the third layer, the combined appearance and time-series intensity change features are

fed into the �##7
3 to make the final prediction. In our notation of �## 9

8
, 8 denotes the

layer in our HCNN and 9 indexes the CNN out of the total 7 CNNs in our proposed HCNN

architecture.

The design of our proposed HCNN architecture has three motivations. First, the

intensity variation pattern of a fusion event, which is different from other bright circular

spots in TIRFM image sequences, is a significant characteristic to classify fusion events.
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Figure A3.3. The overall architecture of our proposed Hierarchical Convolutional Neural
Network (HCNN).

Instead of directly using the consecutive image patch sequence to provide this time-series

intensity change information, the time-series parameter sets from Gaussian Mixture Model

fitting, which can avoid outlier pixels with undesired intensity fluctuations, are more reliable

and the proposed GMM image can further explore hidden relations among the time-series

parameters. Second, the characteristics of a fusion event’s appearances can be well rep-

resented in the 4 key moments, thus utilizing these appearance characteristics and the

correlation among the 4 key moments should boost the classification performance. Third,

our proposed HCNN architecture is able to learn the correlation among the 4 key moments

before combing the appearance and temporal features, which can reveal the unique variation

pattern of the fusion event.

The first layer of our HCNN contains 5 CNNs (�## 9

1 , 9 ∈ [1, 5]). The first 4 CNNs

(�## 9

1 , 9 ∈ [1, 4]), each of which takes a cropped image patch (13×13) of the fusion event

in one of the 4 key moments as the input, share the same architecture as shown in Figure

A3.4. In the architecture of �## 9

1 ( 9 ∈ [1, 4]), there are two Convolutional Layers where

each of them is connected to a Rectified Linear Unit (ReLU) for sparse representations.

The first Convolutional Layer is followed by a 2 × 2 Max Pooling Layer with stride 2. The
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Figure A3.4. The architecture of CNNs (�## 9

1 , 9 ∈ [1, 4]) in the first layer. The inputs of
this architecture are image patches which are centered at the maximum intensity pixels of
the fusion event in the 4 key moments respectively. In the Convolutional Layer 1, we set the
number of the 3 × 3 kernels as 56. In the Convolutional Layer 2, we set the number of the
5× 5 kernels as 134. In the Max Pooling 1, there is a 2× 2 max pooling layer with stride 2.
The number of neurons in each Fully Connected Layer is 1024.

major goal of adding Max Pooling Layer is to enhance the robustness of the classifier by

bringing invariance to the training process. We add a Drop-out Layer Srivastava et al.

(2014) between the two Fully Connected Layers to avoid the over-fitting.

The �##5
1 , whose architecture is shown in Figure A3.5, learns the high-level time-

series features from the intensity variation pattern introduced by the GMM image. There

are 3 Convolutional Layers, where each Convolutional Layer is followed by a Rectified

Linear Unit (ReLU) for sparse representations. Compared with the other 4 CNNs in the

first layer, there is no Max Pooling Layer in �##5
1 . Because we do not expect to loss any

time-series variation information during the convolution. To avoid the over-fitting, we add

one Drop-out Layer between the Fully Connected Layer 1 and Fully Connected Layer 2.

The architecture of the CNNs in the second and last layer of our HCNN (�##6
2

and �##7
3 ) is shown in Figure A3.6. The input feature layer to �##6

2 is the combined

feature from the Fully Connected Layer 2 of �## 9

1 ( 9 ∈ [1, 4]). The design of �##6
2 is to
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Figure A3.5. The architecture of �##5
1 in the first layer of our HCNN. The input of this

architecture is the GMM image. In the Convolutional Layer 1, we set the number of the
5 × 5 kernels as 42. In the Convolutional Layer 2, we set the number of the 3 × 3 kernels
as 72. In the Convolutional Layer 3, we set the number of the 3 × 3 kernels as 126. The
number of neurons in each Fully Connected Layer is 1024.

Figure A3.6. The architecture shared by �##6
2 in the second layer and �##7

3 in the third
layer. In �##6

2 , the input feature layer contains the high-level appearance feature, which is
extracted from the 4 key moments. In �##7

3 , the input feature layer consists of visual and
temporal information.

study the correlation information among the 4 key moments before combining appearance

features and time-series variation features. The input features to �##7
3 is the combined

features of the time-series intensity variation features from the Fully Connected Layer 2 of

�##5
1 , and the visual appearance features from the Fully Connected Layer 2 of �##6

2 .

Between the Fully Connected Layer 1 and Fully Connected Layer 2, we add a Drop-out

Layer to avoid the over-fitting.
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4. EXPERIMENTS

In this section, first we describe our datasets, experimental design and evaluation

metrics. Then, we validate the effectiveness of our fusion event candidate extraction.

Thirdly, we compare our method with the state-of-the-arts and our previous methods in Li

(2015a). Finally, we validate our HCNN design by comparing it with 11 alternative neural

network designs.

4.1. DATASETS, EXPERIMENTAL DESIGN AND EVALUATION METRIC.

In this section, we introduce the datasets, experimental design and the evaluation

metrics in our experiments.

4.1.1. Datasets. In the experiments, 9 TIRFM image sequences were captured at

5 frame per second (fps), which consist of 15718 frames and 1260 fusion events in total.

The detailed information of our datasets is summarized in Table A4.1. All image sequences

were well annotated by experienced cell biologists working in the field of vesicle trafficking

analysis using TIRFM.

4.1.2. Experimental Design & Evaluation Metric. The leave-one-out strategy is

adopted to evaluate the performance of ourmethod, i.e., eight sequences are used for training

while the last one is used for testing (the parameters in the detection & tracking process and

the Gaussian Mixture Model (GMM) fitting are optimized by the 4-fold cross-validation

using the eight training sets). There are totally 9 leave-one-out experiments are performed

on the datasets. The average performance on the 9 experiments in terms of precision, recall

and F-score is utilized as the evaluation metrics.
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Table A4.1. The image size and the number of fusion events in each dataset.

DataSet 1 2 3 4 5
Full Fusion Event 118 169 31 132 48

Partial Fusion Event 28 64 56 6 10
Image Size (pixels) 327 × 179 271 × 284 233 × 324 271 × 341 408 × 381

DataSet 6 7 8 9
Full Fusion Event 16 19 76 193

Partial Fusion Event 16 76 11 797
Image Size (pixels) 382 × 338 241 × 211 478 × 412 485 × 299

4.2. EFFECTIVENESS OF THE FUSION EVENT CANDIDATE EXTRACTION

By using our newly developed detection & tracking method, we obtain 4642 candi-

date patch sequences on the 9 datasets. The candidate pool contains all the 1260 ground-truth

vesicle fusion events from 15718 frames (i.e., our candidate sequence extraction achieves

100% recall and 27% precision). Instead of exhaustively selecting fusion event candidates

from every volume of the TIRFM video sequences, the proposed detection & tracking

method not only ensures all vesicle fusion events are included in the fusion event candidate

pool, but also effectively improves the efficiency of the whole system. Note, data augmenta-

tion techniques (e.g., flipping, rotation and translation) were applied on our positive training

samples to provide enough training data.

4.3. COMPARISONWITH THE PREVIOUS METHODS

Our algorithm is compared with the learning-based Gaussian Mixture Model using

Support Vector Machine classifier (GMM-SVM, Li (2015a)), the intensity-based Single

Gaussian Model (SGM, Bai et al. (2007a)) and the Layered Probabilistic Approach (LPA-

FullFusion, Godinez et al. (2012)). Note, the Layered Probabilistic Approach can not detect

partial fusion events. All the parameters in Bai et al. (2007a), Godinez et al. (2012) and Li

(2015a) are optimized to ensure that they can achieve their best performance in our TIRFM
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Table A4.2. Comparing our method with 2 state-of-the-arts and our previous method on
9 challenging datasets: GMM-SVM Li (2015a): Gaussian Mixture Model using Support
VectorMachine classifier; SGMBai et al. (2007a): SingleGaussianModel; LPA-FullFusion
Godinez et al. (2012): Layered Probabilistic Approach for full fusion detection.

Full Fusion Partial Fusion
Precision Recall F Score Precision Recall F Score

Our Method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
GMM-SVM Li (2015a) 76.9% 79.3% 78.1% 75.5% 76.0% 75.7%
SGM Bai et al. (2007a) 61.1% 64.7% 62.8% 64.6% 62.0% 63.3%

LPA-FullFusion Godinez et al. (2012) 75.3% 72.3% 73.8% N/A N/A N/A

image sequences. As shown in Table A4.2, compared with the GMM-SVM Li (2015a)

that uses handcrafted features, our method achieved much better classification results for

both the full fusion event and the partial fusion event in 9 datasets. It validates that the

automatically selected features from the time-series intensity change introduced by GMM

images and the visual appearance in 4 key moments by our HCNN architecture have a

more comprehensive representation of the vesicle fusion event. Compared to the SGM Bai

et al. (2007a) that only depends on the spatial radius of the Single Gaussian fit to the bright

blob, our method achieved better classification results, which proves that the proposed

Gaussian Mixture Model has a more precise representation to extract the intensity variation

pattern of vesicle fusion events. Compared with the Layered Probabilistic Approach in

Godinez et al. (2012), which uses three abstractions of fusion events as the feature for the

classification, the temporal and spatial features extracted by GMM in our previous method

Li (2015a) achieved better classification results on full fusion events. Furthermore, our

proposed HCNN architecture, which can automatically select the discriminative features

from the whole lifetime of the fusion event, obtained the best performance. In short, besides

visual appearance features, our HCNN based method can extract hidden variation patterns

of the fusion event, which are qualified for the task of accurate fusion event classification.

Fusion event classification samples of our proposed method are presented in Figure A4.6

and Figure A4.7.
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4.4. COMPARISON OF DIFFERENT NEURAL NETWORK DESIGNS

In this subsection, first we test different layouts in our overall architecture (Figure

A3.3) and compare the performance. Second, we test different input formats of the visual

appearance features extracted from 4 key moments and compare the performance. Third,

we test different input formats of the temporal features and compare the performance. Last,

we test different designs in our individual CNNs (there are 7 CNNs in total, Figure A3.3).

Figure A4.1. The architectures of the HCNN-4KM (a), CNN-GMM (b) and HCNN-4KM-
GMM (c).

4.4.1. Comparison of Alternative Overall Architecture Designs. We designed

the HCNN-4KM (Figure A4.1(a)) that only considers appearance features, and the CNN-

GMM (Figure A4.1(b)) that only considers temporal features. As shown in Table A4.3,

our HCNN architecture outperformed HCNN-4KM and CNN-GMM, which validates that

both appearance features and temporal features contribute significantly to the fusion event

classification task.
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Table A4.3. Comparing our HCNN with 3 alternative overall architecture designs on 9
challenging datasets, which include: HCNN-4KM (Figure A4.1(a)): based on our HCNN,
we remove the�##5

1 and�##
6
2 so only appearance features are used; CNN-GMM (Figure

A4.1(b)): based on our HCNN, we only use the temporal features in GMM images for the
classification; HCNN-4KM-GMM (Figure A4.1(c)): based on our HCNN, we remove the
�##6

2 .

Full Fusion Partial Fusion
Precision Recall F Score Precision Recall F Score

Our Method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
HCNN-4KM 79.3% 82.4% 80.8% 85.1% 84.7% 84.9%
CNN-GMM 84.8% 88.7% 86.7% 82.0% 85.6% 83.8%

HCNN-4KM-GMM 94.1% 95.0% 94.6% 90.0% 92.7% 91.3%

In order to show the importance of the �##6
2 in our proposed HCNN architecture

(Figure A3.3), we designed HCNN-4KM-GMM (Figure A4.1(c)) by removing the �##6
2

from our HCNN, and compared the classification results. As shown in Table A4.3, our

proposedHCNNarchitecture achieved better classification results thanHCNN-4KM-GMM,

which proves that it is important to learn the correlation information among the 4 key

moments before combining appearance and temporal features.

Figure A4.2. The architectures of the SCNN-4KM (a) and HCNN-SCNN-4KM (b).
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Table A4.4. Comparison of different input formats of the appearance features on 9 chal-
lenging datasets, which include: SCNN-4KM (Figure A4.2(a)): we stitch the image patches
from 4 key moments into an image, which will be the input to a CNN; HCNN-SCNN-4KM
(Figure A4.2(b)): based on our HCNN, instead of using 4 CNNs, we use a CNN to learn
the appearance features from stitched image patches for the classification.

Full Fusion Partial Fusion
Precision Recall F Score Precision Recall F Score

Our Method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
SCNN-4KM 93.7% 94.9% 94.3% 91.0% 93.2% 92.1%

HCNN-SCNN-4KM 94.8% 94.0% 94.4% 92.1% 91.7% 91.9%

4.4.2. Comparison of Alternative Appearance Feature Input Formats. In our

HCNN architecture, we use 4 CNNs to learn the appearance features from the 4 key

moments, where each CNN takes a single cropped image patch as input. In order to show

the effectiveness of this design, we compared our HCNN architecture with SCNN-4KM

(Figure A4.2(a)), which is one single CNN whose inputs are the stitched image patches

from 4 key moments, and HCNN-SCNN-4KM (Figure A4.2(b)), which uses a CNN to

learn appearance features from stitched image patches of 4 key moments and then combines

with temporal features from GMM images for classification. As shown in Table A4.4,

our proposed method achieved better classification results than SCNN-4KM and HCNN-

SCNN-4KM, which validates the high-level appearance features extracted from 4 CNNs

are more reliable for the fusion event classification task.

4.4.3. Comparison of Alternative Temporal Feature Input Formats. In our pro-

posed HCNN architecture, each GMM image consists of 24 parameter sets which are orga-

nized as a 4 × 6 matrix pattern (Figure A3.2) to allow the HCNN to discover the hidden

correlation among the parameter sets. In order to validate the effectiveness of our GMM

image design, we compared our proposed 4 × 6 GMM image with the 24 × 1 GMM image

(Figure A4.3(a)) and the 12×2 GMM image (Figure A4.3(b)). As shown in Table A4.5, our

proposed HCNN architecture with 4 × 6 GMM image inputs achieved better classification

results than HCNN-GMM(24×1) with 24×1 GMM image inputs and HCNN-GMM(12×2)
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Figure A4.3. The structures of 24 × 1 GMM image (a) and 12 × 2 GMM image (b).

Table A4.5. Comparison of 2 alternative GMM image designs on 9 challenging datasets,
which include the 24 × 1 GMM image (Figure A4.3(a)) in HCNN-GMM(24 × 1) and the
12 × 2 GMM image (Figure A4.3(b)) in HCNN-GMM(12 × 2).

Full Fusion Partial Fusion
Precision Recall F Score Precision Recall F Score

Our Method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
HCNN-GMM(24 × 1) 91.3% 94.0% 92.6% 92.3% 93.0% 92.7%
HCNN-GMM(12 × 2) 93.3% 93.5% 93.4% 92.3% 94.3% 93.3%

with 12 × 2 GMM image inputs. It proves that the 4 × 6 matrix pattern GMM image, which

contains many 4- or 8-connected neighborhood relationships, can provide comprehensive

information to reveal the unique pattern of the fusion event.

4.4.4. Comparison of Alternative CNN Designs. To validate the effectiveness of

the individual CNNs in our proposed HCNN architecture, we tested different number of

Convolutional Layers and Fully Connected Layers and compared with our proposed HCNN.

Since it is unpractical to test all possible CNN structures, we only tested some reasonable

CNN designs in this work.

In our proposed HCNN architecture, the structure of �## 9

1 ( 9 ∈ [1, 4]) has 2

Convolutional Layers (Figure A4.4(a)) and the structure of �##5
1 has 3 Convolutional

Layers (Figure A4.4(c)). We designed HCNN-1CL-4KM (Figure A4.4(b)) by setting only
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Table A4.6. Comparison of 4 alternative CNN designs in our proposed HCNN architecture
on 9 challenging datasets, which include: HCNN-1CL-4KM, HCNN-2CL-GMM, HCNN-
3FCL and HCNN-1FCL. These architectures are described in Section 4.4.4 in details.

Full Fusion Partial Fusion
Precision Recall F Score Precision Recall F Score

Our Method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
HCNN-1CL-4KM 86.0% 84.1% 85.0% 82.9% 85.4% 84.1%
HCNN-2CL-GMM 82.7% 80.2% 81.4% 81.4% 80.3% 80.9%

HCNN-3FCL 94.8% 95.0% 94.9% 95.9% 96.3% 96.1%
HCNN-1FCL 91.0% 93.5% 92.2% 93.2% 95.2% 94.2%

Figure A4.4. (a) The �## 9

1 ( 9 ∈ [1, 4]) structure in our proposed HCNN; (b) The �## 9

1
( 9 ∈ [1, 4]) structure inHCNN-1CL-4KM; (c) The�##5

1 structure in our proposedHCNN;
(d) The �##5

1 structure in HCNN-2CL-GMM.

1 Convolutional Layer to the structure of �## 9

1 ( 9 ∈ [1, 4]) in our proposed HCNN,

where the other CNNs in HCNN-1CL-4KM are exactly the same with the ones in our

proposed HCNN. We also designed HCNN-2CL-GMM (Figure A4.4(d)) by setting only 2

Convolutional Layers to the structure of �##5
1 in our proposed HCNN, where the other

CNNs in HCNN-2CL-GMM are exactly the same with the ones in our proposed HCNN. As

shown in Table A4.6, our proposed HCNN architecture outperformed HCNN-1CL-4KM

and HCNN-2CL-GMM, which validates the effectiveness of the �## 9

1 ( 9 ∈ [1, 5]) in our

proposed HCNN architecture.
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Figure A4.5. (a) The structure shared by �##6
2 and �##7

3 in our proposed HCNN; (b)
The structure shared by �##6

2 and �##7
3 in HCNN-3FCL; (c) The structure shared by

�##6
2 and �##7

3 in HCNN-1FCL.

In our proposed HCNN architecture, the structure shared by �##6
2 and �##7

3 has

2 Fully Connected Layers (Figure A4.5(a)). We designed HCNN-3FCL (Figure A4.4(b))

by setting 3 Fully Connected Layers to the structure shared by�##6
2 and�##7

3 , where the

other settings in HCNN-3FCL are the same with our proposed HCNN. We also designed

HCNN-1FCL (Figure A4.4(c)) by setting only 1 Fully Connected Layer to the structure

shared by �##6
2 and �##7

3 , where the other settings in HCNN-1FCL are the same with

our proposed HCNN. As shown in Table A4.6, our proposed HCNN architecture achieved

the best performance, which validates the effectiveness of the �##6
2 and �##7

3 in our

proposed HCNN architecture.

4.5. DISCUSSION

According to the classification results of our proposed method, there are two main

failure cases in our experiments. First, during our data collection, the Total Internal

Reflection FluorescentMicroscope (TIRFM) sometimes was out of focus for several frames,

as shown in Figure A4.8. Our proposed tracking method can still detect the image patches



95

Figure A4.6. Fusion event classification samples of dataset 1, 2, 3, 4 (yellow : full fusion;
red: partial fusion; square: ground truth; circle: our result).
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Figure A4.7. Fusion event classification samples of dataset 5, 6, 7, 8, 9 (yellow : full fusion;
red: partial fusion; square: ground truth; circle: our result).
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Figure A4.8. The TIRFM image samples which are affected by out-of-focus.

while the TIRFM is out of focus, but the intensity variation pattern of the fusion event is

largely interfered by the out-of-focus problem, which misleads the HCNN to make a wrong

classification. Second, some fusion events have extremely short lifetimes which are as short

as 2 frames. For the short event process, the time-series intensity variation information

from Gaussian fitting and the patches from the key moments are not very informative for the

classification. Refining our current TIRFM hardware and increasing the image acquisition

rate will be our future work to overcome the current drawbacks.
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5. CONCLUSION

Accurately detecting and classifying vesicle-plasma membrane fusion events from

TIRFM images is an essential research problem on cellular trafficking processes. In this

paper, we proposed a novel Hierarchical Convolutional Neural Network (HCNN) based

application to solve the fusion event detection and classification task. An adaptive detection

& tracking method is developed to extract fusion event candidates and their time-series

intensity variation information. By using the time-series intensity variation pattern intro-

duced by Gaussian Mixture Models and the appearances in 4 key moments of the process

of a fusion event, a HCNN architecture is proposed to classify fusion event candidates into

three classes: full fusion, partial fusion and non-fusion. Our method showed its competitive

performance and outperformed our previous work, two state-of-the-arts and eleven alterna-

tive neural network architectures on nine challenging datasets with low signal to noise ratio

and frequent background fluctuations.



APPENDIX C.

AUTOMATED VESICLE FUSION DETECTION USING CONVOLUTIONAL

NEURAL NETWORKS
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1. INTRODUCTION AND RELATEDWORKS

Vesicle exocytosis is an essential cellular trafficking process, by which materials

(e.g., transporters, receptors and proteins) are transported from one membrane-bounded

organelle to another or to the plasma membrane for growth and secretion. The analysis of

these processes can provide deep insights on the cellular behavior in the diseased status

Leney and Tavare (2009b)Bornemann et al. (1992b). The fusion interaction between

vesicles and the cell membrane, which is able to be observed by using Total Internal

Reflection Fluorescence Microscopy (TIRFM)Schneckenburger (2005b)Axelrod (1981b),

can be represented in 2 momentous stages (Figure A1.1). In stage 1, vesicles are invisible in

the pre-appearance frame, and then suddenly appear in the first-appearance frame as bright

fluorescent circle spots. In stage 2, after halting for several frames, vesicles will either

fuse on the cell membrane with a visible “halo” (full fusion events), or depart from the

cell membrane with the circular shape (partial fusion events), which can be observed in the

last appearance frame, respectively. Finally, vesicles under the full or partial fusion event

will disappear in the disappearance frame. As the moving trajectory of a vesicle during

the fusion process is almost perpendicular to the cell membrane, the vesicle fusion event

projected onto the membrane surface (i.e., the image plane in TIRFM) has minute spatial

displacement.

It is impractical to manually analyze TIRFM image sequences that typically consist

of thousands of frames with hundreds of vesicles. Therefore, developing computational

algorithms to automatically extract vesicle fusion information in TIRFM image sequences

is badly needed to aid the quantitative study on the intercellular behavior. Image process-

ing methods have been proposed to detect fusion events Bai et al. (2007b)Huang et al.

(2007b)Basset et al. (2014b)Basset et al. (2015b). Individual vesicles in each frame are

segmented by analyzing local gray scale distributions, then full and partial fusion events are
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Figure A1.1. The 2 momentous stages of vesicle fusions and the related 4 key frames. Here
are two real TIRFM images with a full fusion event (left) and a partial fusion event (right),
respectively. During the fusion events, vesicles exhibit different patterns of appearance,
brightness and shape in images.

classified by a pixel intensity threshold. But these methods are sensitive to the variation of

intensity profiles (shown in Figure A2.1(c)). Based on both temporal and spatial features,

Vallotton et al. Vallotton et al. (2007b) proposed a filter matching method, which is able to

identify the fusion events with high correlation to a standard fusion event. However, due

to the frequent background intensity fluctuation (shown in Figure A2.1(d,e,f)) introduced

by the TIRFM system and intercellular activities, it is difficult to build a template that is

representative for all fusion events. In order to enhance the tolerance to the variations of

fusion events and the unpredictable noise interferences, some learning based methods were

developed in recent years. Based on backpropagation neural network, Dosset et al. Dosset

et al. (2016) developed an automatic method to detect fusion events by using a temporal

sliding window. Li et al. Li (2015b) first applied a Gaussian Mixture Model (GMM) to fit

on each individual fusion event, then a classifier was learned from the estimated parameters

of GMMs to classify fusion events. However, the fixed temporal sliding window used in

these methods may lose the critical information of fusion events with long duration.
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2. CHALLENGES AND OUR PROPOSAL

Figure A2.1(a,b,c) show a few vesicle fusion event samples, from which we can

observe some characteristics of vesicle fusion events regarding to their patterns ofmovement,

shapes and intensities. However, it is challenging for automated image processing methods

to distinguish vesicle fusion events from the large number of similar bright spots in TIRFM

images. For instance, the circular background intensity fluctuation (Figure A2.1(d)) is

similar to the vesicle fusion event. Some moving bright spots, which temporarily stay

immobile near the cell membrane for several frames (Figure A2.1(e,f)), can be mistakenly

considered as vesicle fusion events. In this paper, we explore both appearance features and

temporal cues to detect and classify fusion events. Instead of a brute-force scanning on

the input image sequence to detect fusion events, we extract fusion event candidate patch

sequences to improve the detection efficiency. Then, we propose to build an event image

that mosaics the critical frames of the candidate patch sequence into a single image. In

addition to the visual appearance features in individual frames, the event image also embeds

the temporal correlation among the critical frames into a single-image joint representation,

which is used as the input to Convolutional Neural Networks (CNNs) Krizhevsky et al.

(2012b). According to different lengths of the candidate patch sequences, adaptable formats

of event images and their corresponding CNN architectures are designed to classify the

candidate patch sequence into three classes: full fusion event, partial fusion event and

non-fusion event.
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Figure A2.1. (a) A typical partial fusion event; (b) A typical full fusion event; (c) A short
full fusion event is characterized by its halo; (d) A bright circular object caused by the
background intensity fluctuation; (e) A moving bright spot, which only moves in the first
several frames then stays immobile, is similar to a partial fusion event when it stops moving;
(f) A background fluctuation, which is really similar to standard full fusion event in the
early stage, then gradually moves out of the field of view.

Figure A2.2. An example to search the candidate patch sequence ( in the forward temporal
direction.



104

3. EXTRACT CANDIDATE PATCH SEQUENCES

As observed in the previous works Bai et al. (2007b)Xu et al. (2011b)Wu et al.

(2015b), the vesicle fusion event appears to be a bright immobile circular spot, whose local

contrast between its center and surrounding medium gradually decreases when the event

disappears. Thus, we leverage the local spatial contrast to extract candidate patches in each

frame, and then track them in the video sequence for the later classification, which has much

better efficiency than exhaustively scanning the video volumes using spatiotemporal filters.

Given the image � at time C0, we compute the local contrast at each pixel location (G, H) as

5 (G, H) =
(=2 − 1)�G,H∑
(8, 9) �8, 9

, (A3.1)

where (8, 9) represents pixels in the n-by-n neighborhood around (G, H). Pixel (G, H) is

possible to belong to a fusion event if 5 (G, H) is larger than a threshold n . Around a potential

fusion event, there might be many pixels with their local contrast larger than the threshold.

We find the pixel (G∗, H∗) with the local maximum of local contrast as the center of the

potential fusion event and crop an =-by-= image patch around it. Since we use fixed size

patches, we only need to record the coordinates of the patch center into the fusion event

candidate patch sequence, which is denoted as ( =
{
G∗C , H

∗
C |C ∈ [C 5 8ABC , C;0BC

}
] where C 5 8ABC

and C;0BC denote the first and last frame index of the patch sequence, respectively. At the

beginning, C 5 8ABC = C;0BC = C0.

Then, we develop an iterative searching process to find the first-appearance frame

and the last-appearance frame of a potential fusion event and every patch center within this

time window. We use Figure A2.2 to illustrate the search in the forward direction to find the

the last-appearance frame (the search in the backward direction to find the first-appearance

frame is similar). During each iteration, we search the last-appearance frame in a sliding

temporal window of � frames. Three situations are considered during the iterative search:
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Figure A3.1. Build event image for the CNNs.

Situation 1, if the maximums of the local contrast in all � frames around location

(G∗C;0BC , H
∗
C;0BC
) are larger than nm then we update ( =

{
G∗C , H

∗
C |C ∈ [C 5 8ABC , C;0BC

}
] by setting

C;0BC ← C;0BC + � and finding the patch centers (G∗, H∗) in the � frames which are the

maximums of the local contrast.

Situation 2, if not all of the maximums of the local contrast in � frames around

location (G∗C;0BC , H
∗
C;0BC
) are larger than n , while n × U > 1 (U is a decay rate on the threshold),

we update C;0BC as the last frame within the � frame whose maximal local contrast is larger

than n and the patch centers are updated accordingly. The threshold is updated as n ← n×U.

Situation 3, if not all of the maximums of the local contrast in � frames around

location (G∗C;0BC , H
∗
C;0BC
) are are larger than n and n × U ≤ 1, we update the patch sequence

similar to situation 2, then we stop the iteration.

By applying this iterative searching algorithm to the TIRFM image sequence, we

can obtain potential fusion events in the format of candidate patch sequences, each of

which records the coordinates of the patch center from the first-appearance frame to the

last-appearance frame. For each potential fusion event, we compute the pairwise Euclidean

distance between each consecutive pair of patch centers within the candidate patch sequence.

If any of these distances is larger than the neighborhood size =, this candidate patch sequence

is highly possible to be a non-fusion event cause by a moving object from the background,

and we remove it from the candidate list.



106

In the experiment, we choose the following parameter setting: neighborhood size

= = 13, sliding temporal window length � = 5, the initial threshold for local contrast

n = 1.3 and the threshold decay rate U = 0.95.
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4. EVENT IMAGE AND CNN ARCHITECTURE

In this section, we propose an event image to mosaic image patches in the candidate

sequence into a single image as the input to a Convolutional Neural Networks (CNNs).

The event image contains both the visual appearance information of each individual patch

and the visual correlation among different patches. The CNN automatically learns a

comprehensive representation of temporal and spatial features from the event image for

fusion event classification. By a series of parameterized layers, CNN maps each input

event image into the probabilities of three classes: full fusion event, partial fusion event or

non-fusion event.

The event image stitches critical patches from a candidate sequence into a single

image by a specific order, which allows the CNN to discover not only the spatial and

temporal information of the fusion event, but also the hidden correlation among its patches.

Furthermore, we designed the event image as a square image so each patch hasmore chances

to be neighbors of other patches. For example, given 16 patches, if we concatenate them into

a 16-by-1 matrix pattern, there is no 4- or 8-connected neighborhood relationship among

the patches. Rearranging the patches into a 8-by-2 matrix pattern increases the relationship

a little. If we stitch the 16 patches into a 4-by-4 matrix pattern, a lot of 4- or 8-connected

neighborhood relationship can be built among the patches.

Due to the large variation of the duration of vesicle fusion events, it is unpractical to

design one fixed size of event image that fits all vesicle fusion events well. To distinguish

the event images containing different numbers of image patches, we name an event image

that contains k frames as :-frame event image (shown in Figure A3.1), where : is chosen

to be a squared number to insure the event image be square sized.
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Figure A4.1. Our CNN architectures. (a) The CNN architecture for vesicle fusion events in
Group 1, which accepts 4-frame event images with the size of 26× 26 pixels; (b) The CNN
architecture for vesicle fusion events in Group 2, which accepts 9-frame event images with
the size of 39 × 39 pixels; (c) The CNN architecture for vesicle fusion events in Group 3,
which accepts 16-frame event images with the size of 52 × 52 pixels; Note that, in all of
these three architectures, each convolution process is followed by a rectified linear function
(relu). Each max pooling is followed by a local normalization.

We categorize all vesicle fusion events into three groups based on their duration

lengths. Group 1 contains vesicle fusion events having 4 to 6 frames, which takes image

patches from the 4 key frames to construct 4-frame event images. Group 2 contains vesicle

fusion events having 9 to 13 frames, which constructs 9-frame event images. Group 3

contains vesicle fusion events having 16 frames or more, which constructs 16-frame event

images. For the vesicle fusion event with long duration in Group 2 or Group 3, we select

image patches not only from the 4 key frames that represent its appearance and disappearance

moments, but also from consecutive frames around the central frame " (" =
⌈
#
2
⌉
), which

contain subtle characteristics of the variation pattern during the fusion process, as shown in

Figure A3.1.

Then, the event images will be fed into the specific CNN architectures, as shown in

Figure A4.1. In this paper, we adopt the MatConvNet Vedaldi and Lenc (2015) to design

our CNN architectures. In the CNN architecture for Group 1, the first three layers are

convolutional layers, where each of layer 1 and layer 2 is followed by a max-pooling that is
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used to extract local maximum in every 2 × 2 region. For the CNN for Group 2 and Group

3, we design four convolutional layers for each of them. Compared with Group 2, we design

one more max-pooling following the third layer of CNNs in Group 3. In all of our CNNs,

the last three layers are full connection layers. We minimize the softmax cost function at the

last layer in each of these three CNNs, and use the back propagation to learn the parameters

among the layers.
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5. EXPERIMENT RESULTS

In this section, we validate the effectiveness of our framework in vesicle fusion

classification on 9 challenging datasets.

5.1. DATASETS

We imaged different cell types with a variety of vesicle exocytosis in mammalian

cells. These include constitutive exocytosis (transferrin receptor-pHluorin exocytosis in en-

dothelial cells and 3T3-L1 adipocytes) and regulated exocytosis (VAMP2-pHluorin labeled

insulin granule in MIN-6 cells and VAMP2-pHlurin labeled GLUT4 vesicle in 3T3-L1

adipocytes). In the experiments, 9 real TIRFM image sequences (examples are shown in

Figure A5.1) were captured at 5 frame per second (fps), which consist of 15718 frames

in total. Detailed specifications are summarized in Table A5.1. All datasets were well

annotated by cell biologists working on vesicle trafficking analysis.

5.2. EXPERIMENT DESIGN & EVALUATION METRIC

We use the leave-one-out strategy to evaluate our method’s performance, i.e., eight

sequences are used for training while the last one for testing. In total, 9 leave-one-out

experiments are performed on the datasets. The average performance on the 9 experiments

in terms of precision, recall and F-score are used as the evaluation metrics.
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Table A5.1. The specifications of our 9 datasets.

Dataset 1 2 3 4 5 6 7 8 9
# of Frames 2663 2661 2662 2662 579 1196 1665 428 1202

# of Full Fusions 118 169 31 132 48 16 19 76 193
# of Partial Fusions 28 64 56 6 10 16 76 11 191

Figure A5.1. Examples of our detection on 9 datasets. (yellow: full fusion; red: partial
fusion)

5.3. EFFECTIVENESS OF CANDIDATE PATCH SEQUENCE EXTRACTION

By using our proposed iterative searching algorithm, we obtain 4127 candidate patch

sequences which contain all the 1260 vesicle fusion events (i.e., the recall is 100% and the

precision is 1260/4127 = 30% from the detection step). Data augmentation techniques were

applied on our positive training samples to provide enough training data.

5.4. COMPARISONWITH STATE-OF-THE-ARTS

We compare our algorithm with two state-of-the-arts: the learning-based Gaussian

Mixture Model (GMM, Li (2015b)), and the intensity-based Single Gaussian Model (SGM,

Bai et al. (2007b)). All parameters in Li (2015b) and Bai et al. (2007b) are optimized to

ensure they can obtain their best performance in our TIRFM image sequences for fair com-
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Table A5.2. The comparison of five methods on all datasets. GMMLi (2015b): Gaussian
Mixture Model; SGMBai et al. (2007b): Single Gaussian Model; SCNN: Single-group
CNN architecture; MCNN: Multi-channel CNN architecture.

Methods Full Fusion Partial Fusion
Precision Recall F-Score Precision Recall F-Score

Ours 95.0% 95.5% 95.2% 96.7% 96.1% 96.4%
GMM Li (2015b) 77.0% 79.3% 78.1% 75.5% 76.0% 75.7%

SGM Bai et al. (2007b) 54.9% 64.7% 59.4% 64.6% 62.0% 63.0%
SCNN 93.7% 94.9% 94.3% 91.0% 93.2% 92.1%
MCNN 91.1% 91.0% 91.0% 88.2% 91.5% 89.8%

parisons. As shown in Table A5.2, compared with the GMM Li (2015b) with handcrafted

features, our method achieves much better classification results for both the full and partial

fusion events in 9 datasets, which validates that the proposed event image and the automatic

feature selection by our CNN architectures have a more comprehensive representation of

vesicle fusion events. Compared with the SGMVedaldi and Lenc (2015) that only considers

the spatial radius of the Gaussian fit to the bright blob, our method outperforms it by a large

margin via using both the visual features and temporal cues hidden in the event image.

5.5. MULTI-GROUP CNN VS. SINGLE-GROUP CNN

We compared our multi-group CNN architectures with a Single-group CNN archi-

tecture (SCNN, i.e., for each fusion event, we only select image patches from the 4 key

frames to construct the 4-frame event image for classification). SCNN uses the architecture

in Figure A4.1(a). As shown in Table A5.2, the SCNN outperformed the two state-of-the-

arts, while our method using three groups of event images and CNN architectures achieves

even higher performance than SCNN.
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5.6. MULTI-GROUP CNN VS. MULTI-CHANNEL CNN

Our proposed method is also compared with Multi-channel CNN architecture

(MCNN, i.e., for every vesicle fusion event, we construct a 4-channel image by using

its 4 key frames, as the input to a CNN). As shown in Table A5.2, both SCNN and our

multi-group CNN architectures outperformed MCNN. We believe it is because the infor-

mative hidden correlation among the patches of the fusion event is incorporated into the

CNN when event images are utilized.
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6. CONCLUSION

In this paper, we first propose an iterative searching algorithm to extract patch se-

quences of potential fusion events, then design an event image to combine some informative

patches of a candidate event into a single-image representation. According to different for-

mats of event images, three specific Convolutional Neural Networks (CNNs) are designed

to comprehensively learn the subtle characteristics of vesicle fusion events with different

durations. All the potential events are classified by our CNNs into full-, partial-, or non-

fusion events. Compared on 9 challenging datasets, our method showed very competitive

performance and outperformed two state-of-the-arts.
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