36,500 research outputs found

    Interactive Search and Exploration in Online Discussion Forums Using Multimodal Embeddings

    Get PDF
    In this paper we present a novel interactive multimodal learning system, which facilitates search and exploration in large networks of social multimedia users. It allows the analyst to identify and select users of interest, and to find similar users in an interactive learning setting. Our approach is based on novel multimodal representations of users, words and concepts, which we simultaneously learn by deploying a general-purpose neural embedding model. We show these representations to be useful not only for categorizing users, but also for automatically generating user and community profiles. Inspired by traditional summarization approaches, we create the profiles by selecting diverse and representative content from all available modalities, i.e. the text, image and user modality. The usefulness of the approach is evaluated using artificial actors, which simulate user behavior in a relevance feedback scenario. Multiple experiments were conducted in order to evaluate the quality of our multimodal representations, to compare different embedding strategies, and to determine the importance of different modalities. We demonstrate the capabilities of the proposed approach on two different multimedia collections originating from the violent online extremism forum Stormfront and the microblogging platform Twitter, which are particularly interesting due to the high semantic level of the discussions they feature

    Looking at a digital research data archive - Visual interfaces to EASY

    Full text link
    In this paper we explore visually the structure of the collection of a digital research data archive in terms of metadata for deposited datasets. We look into the distribution of datasets over different scientific fields; the role of main depositors (persons and institutions) in different fields, and main access choices for the deposited datasets. We argue that visual analytics of metadata of collections can be used in multiple ways: to inform the archive about structure and growth of its collection; to foster collections strategies; and to check metadata consistency. We combine visual analytics and visual enhanced browsing introducing a set of web-based, interactive visual interfaces to the archive's collection. We discuss how text based search combined with visual enhanced browsing enhances data access, navigation, and reuse.Comment: Submitted to the TPDL 201

    Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup

    Get PDF
    Exploratory visual analysis is useful for the preliminary investigation of large structured, multifaceted spatio-temporal datasets. This process requires the selection and aggregation of records by time, space and attribute, the ability to transform data and the flexibility to apply appropriate visual encodings and interactions. We propose an approach inspired by geographical 'mashups' in which freely-available functionality and data are loosely but flexibly combined using de facto exchange standards. Our case study combines MySQL, PHP and the LandSerf GIS to allow Google Earth to be used for visual synthesis and interaction with encodings described in KML. This approach is applied to the exploration of a log of 1.42 million requests made of a mobile directory service. Novel combinations of interaction and visual encoding are developed including spatial 'tag clouds', 'tag maps', 'data dials' and multi-scale density surfaces. Four aspects of the approach are informally evaluated: the visual encodings employed, their success in the visual exploration of the clataset, the specific tools used and the 'rnashup' approach. Preliminary findings will be beneficial to others considering using mashups for visualization. The specific techniques developed may be more widely applied to offer insights into the structure of multifarious spatio-temporal data of the type explored here

    Structuring visual exploratory analysis of skill demand

    No full text
    The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to users’ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on

    VisIVO - Integrated Tools and Services for Large-Scale Astrophysical Visualization

    Full text link
    VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments

    You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems

    Full text link
    Visual query systems (VQSs) empower users to interactively search for line charts with desired visual patterns, typically specified using intuitive sketch-based interfaces. Despite decades of past work on VQSs, these efforts have not translated to adoption in practice, possibly because VQSs are largely evaluated in unrealistic lab-based settings. To remedy this gap in adoption, we collaborated with experts from three diverse domains---astronomy, genetics, and material science---via a year-long user-centered design process to develop a VQS that supports their workflow and analytical needs, and evaluate how VQSs can be used in practice. Our study results reveal that ad-hoc sketch-only querying is not as commonly used as prior work suggests, since analysts are often unable to precisely express their patterns of interest. In addition, we characterize three essential sensemaking processes supported by our enhanced VQS. We discover that participants employ all three processes, but in different proportions, depending on the analytical needs in each domain. Our findings suggest that all three sensemaking processes must be integrated in order to make future VQSs useful for a wide range of analytical inquiries.Comment: Accepted for presentation at IEEE VAST 2019, to be held October 20-25 in Vancouver, Canada. Paper will also be published in a special issue of IEEE Transactions on Visualization and Computer Graphics (TVCG) IEEE VIS (InfoVis/VAST/SciVis) 2019 ACM 2012 CCS - Human-centered computing, Visualization, Visualization design and evaluation method
    corecore