7 research outputs found

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Steganography-based secret and reliable communications : improving steganographic capacity and imperceptibility

    Get PDF
    Unlike encryption, steganography hides the very existence of secret information rather than hiding its meaning only. Image based steganography is the most common system used since digital images are widely used over the Internet and Web. However, the capacity is mostly limited and restricted by the size of cover images. In addition, there is a tradeoff between both steganographic capacity and stego image quality. Therefore, increasing steganographic capacity and enhancing stego image quality are still challenges, and this is exactly our research main aim. Related to this, we also investigate hiding secret information in communication protocols, namely Simple Object Access Protocol (SOAP) message, rather than in conventional digital files. To get a high steganographic capacity, two novel steganography methods were proposed. The first method was based on using 16x16 non-overlapping blocks and quantisation table for Joint Photographic Experts Group (JPEG) compression instead of 8x8. Then, the quality of JPEG stego images was enhanced by using optimised quantisation tables instead of the default tables. The second method, the hybrid method, was based on using optimised quantisation tables and two hiding techniques: JSteg along with our first proposed method. To increase the steganographic capacity, the impact of hiding data within image chrominance was investigated and explained. Since peak signal-to-noise ratio (PSNR) is extensively used as a quality measure of stego images, the reliability of PSNR for stego images was also evaluated in the work described in this thesis. Finally, to eliminate any detectable traces that traditional steganography may leave in stego files, a novel and undetectable steganography method based on SOAP messages was proposed. All methods proposed have been empirically validated as to indicate their utility and value. The results revealed that our methods and suggestions improved the main aspects of image steganography. Nevertheless, PSNR was found not to be a reliable quality evaluation measure to be used with stego image. On the other hand, information hiding in SOAP messages represented a distinctive way for undetectable and secret communication.EThOS - Electronic Theses Online ServiceMinistry of Higher Education in SyriaUniversity of AleppoGBUnited Kingdo

    Steganography-based secret and reliable communications : improving steganographic capacity and imperceptibility

    Get PDF
    Unlike encryption, steganography hides the very existence of secret information rather than hiding its meaning only. Image based steganography is the most common system used since digital images are widely used over the Internet and Web. However, the capacity is mostly limited and restricted by the size of cover images. In addition, there is a tradeoff between both steganographic capacity and stego image quality. Therefore, increasing steganographic capacity and enhancing stego image quality are still challenges, and this is exactly our research main aim. Related to this, we also investigate hiding secret information in communication protocols, namely Simple Object Access Protocol (SOAP) message, rather than in conventional digital files. To get a high steganographic capacity, two novel steganography methods were proposed. The first method was based on using 16x16 non-overlapping blocks and quantisation table for Joint Photographic Experts Group (JPEG) compression instead of 8x8. Then, the quality of JPEG stego images was enhanced by using optimised quantisation tables instead of the default tables. The second method, the hybrid method, was based on using optimised quantisation tables and two hiding techniques: JSteg along with our first proposed method. To increase the steganographic capacity, the impact of hiding data within image chrominance was investigated and explained. Since peak signal-to-noise ratio (PSNR) is extensively used as a quality measure of stego images, the reliability of PSNR for stego images was also evaluated in the work described in this thesis. Finally, to eliminate any detectable traces that traditional steganography may leave in stego files, a novel and undetectable steganography method based on SOAP messages was proposed. All methods proposed have been empirically validated as to indicate their utility and value. The results revealed that our methods and suggestions improved the main aspects of image steganography. Nevertheless, PSNR was found not to be a reliable quality evaluation measure to be used with stego image. On the other hand, information hiding in SOAP messages represented a distinctive way for undetectable and secret communication.EThOS - Electronic Theses Online ServiceMinistry of Higher Education in SyriaUniversity of AleppoGBUnited Kingdo
    corecore