1,239 research outputs found

    A computer vision model for visual-object-based attention and eye movements

    Get PDF
    This is the post-print version of the final paper published in Computer Vision and Image Understanding. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.This paper presents a new computational framework for modelling visual-object-based attention and attention-driven eye movements within an integrated system in a biologically inspired approach. Attention operates at multiple levels of visual selection by space, feature, object and group depending on the nature of targets and visual tasks. Attentional shifts and gaze shifts are constructed upon their common process circuits and control mechanisms but also separated from their different function roles, working together to fulfil flexible visual selection tasks in complicated visual environments. The framework integrates the important aspects of human visual attention and eye movements resulting in sophisticated performance in complicated natural scenes. The proposed approach aims at exploring a useful visual selection system for computer vision, especially for usage in cluttered natural visual environments.National Natural Science of Founda- tion of Chin

    Wide-Angle Foveation for All-Purpose Use

    Get PDF
    This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5%, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6% error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward

    Tracking in a space variant active vision system

    Full text link
    Without the ability to foveate on and maintain foveation, active vision for applications such as surveillance, object recognition and object tracking are difficult to build. Although foveation in cartesian coordinates is being actively pursued by many, multi-resolution high accuracy foveation in log polar space has not been given much attention. This paper addresses the use of foveation to track a single object as well as multiple objects for a simulated space variant active vision system. Complex logarithmic mapping is chosen firstly because it provides high resolution and wide angle viewing. Secondly, the spatially variant structure of log polar space leads to an object increasing in size as it moves towards the fovea. This is important as we know which object is closer to the fovea at any instant in time.<br /

    Human Attention in Image Captioning: Dataset and Analysis

    Get PDF
    In this work, we present a novel dataset consisting of eye movements and verbal descriptions recorded synchronously over images. Using this data, we study the differences in human attention during free-viewing and image captioning tasks. We look into the relationship between human attention and language constructs during perception and sentence articulation. We also analyse attention deployment mechanisms in the top-down soft attention approach that is argued to mimic human attention in captioning tasks, and investigate whether visual saliency can help image captioning. Our study reveals that (1) human attention behaviour differs in free-viewing and image description tasks. Humans tend to fixate on a greater variety of regions under the latter task, (2) there is a strong relationship between described objects and attended objects (97%97\% of the described objects are being attended), (3) a convolutional neural network as feature encoder accounts for human-attended regions during image captioning to a great extent (around 78%78\%), (4) soft-attention mechanism differs from human attention, both spatially and temporally, and there is low correlation between caption scores and attention consistency scores. These indicate a large gap between humans and machines in regards to top-down attention, and (5) by integrating the soft attention model with image saliency, we can significantly improve the model's performance on Flickr30k and MSCOCO benchmarks. The dataset can be found at: https://github.com/SenHe/Human-Attention-in-Image-Captioning.Comment: To appear at ICCV 201

    Perceptually optimised sign language video coding

    Get PDF

    Integrating a Non-Uniformly Sampled Software Retina with a Deep CNN Model

    Get PDF
    We present a biologically inspired method for pre-processing images applied to CNNs that reduces their memory requirements while increasing their invariance to scale and rotation changes. Our method is based on the mammalian retino-cortical transform: a mapping between a pseudo-randomly tessellated retina model (used to sample an input image) and a CNN. The aim of this first pilot study is to demonstrate a functional retinaintegrated CNN implementation and this produced the following results: a network using the full retino-cortical transform yielded an F1 score of 0.80 on a test set during a 4-way classification task, while an identical network not using the proposed method yielded an F1 score of 0.86 on the same task. The method reduced the visual data by e×7, the input data to the CNN by 40% and the number of CNN training epochs by 64%. These results demonstrate the viability of our method and hint at the potential of exploiting functional traits of natural vision systems in CNNs
    corecore