17 research outputs found

    Improving Leader-Follower Formation Control Performance for Quadrotors

    Get PDF
    This thesis aims to improve the leader-follower team formation flight performance of Unmanned Aerial Vehicles (UAVs) by applying nonlinear robust and optimal techniques, in particular the nonlinear H_infinity and the iterative Linear Quadratic Regulator (iLQR), to stabilisation, path tracking and leader-follower team formation control problems. Existing solutions for stabilisation, path tracking and leader-follower team formation control have addressed a linear or nonlinear control technique for a linearised system with limited disturbance consideration, or for a nonlinear system with an obstacle-free environment. To cover part of this area of research, in this thesis, some nonlinear terms were included in the quadrotors' dynamic model, and external disturbance and model parameter uncertainties were considered. Five different controllers were developed. The first and the second controllers, the nonlinear suboptimal H_infinity control technique and the Integral Backstepping (IBS) controller, were based on Lyapunov theory. The H_infinity controller was developed with consideration of external disturbance and model parameter uncertainties. These two controllers were compared for path tracking and leader-follower team formation control. The third controller was the Proportional Derivative square (PD2), which was applied for attitude control and compared with the H_infinity controller. The fourth and the fifth controllers were the Linear Quadratic Regulator (LQR) control technique and the optimal iLQR, which was developed based on the LQR control technique. These were applied for attitude, path tracking and team formation control and there results were compared. Two features regarding the choice of the control technique were addressed: stability and robustness on the one hand, which were guaranteed using the H_infinity control technique as the disturbance is inherent in its mathematical model, and the improvement in the performance optimisation on the other, which was achieved using the iLQR technique as it is based on the optimal LQR control technique. Moreover, one loop control scheme was used to control each vehicle when these controllers were implemented and a distributed control scheme was proposed for the leader-follower team formation problem. Each of the above mentioned controllers was tested and verified in simulation for different predefined paths. Then only the nonlinear H_infinity controller was tested in both simulation and real vehicles experiments

    Optimal Control of Multiple Quadrotors for Transporting a Cable Suspended Payload

    Get PDF
    In this thesis, the main aim is to improve the flight control performance for a cable suspended payload with single and two quadrotors based on optimised control techniques. The study utilised optimal controllers, such as the Linear Quadratic Regulator LQR, the Iterative based LQR (ILQR), the Model Predictive Control MPC and the dynamic game controller to solve tracking control problems in terms of stabilisation, accuracy, constraints and collision avoidance. The LQR control was applied to the system as the first control method and compared with the classical Proportional-Derivative controller PD. It was used to achieve the load path tracking performance for single and two quadrotors with a cable slung load. The second controller was ILQR, which was developed based on the LQR control method to deal with the model nonlinearity. The MPC technique was also applied to the linearised nonlinear model LMPC of two quadrotors with a payload suspended by cables and compared with a nonlinear MPC (NMPC). Both MPC controllers LMPC and NMPC considered the constraints imposed on the system states and control inputs. The dynamic game control method was developed based on an incentive strategy for a leader-follower framework with the consideration of different optimal cost functions. It was applied to the linearised nonlinear model. Selecting these control techniques led to a number of achievements. Firstly, they improved the system performance in terms of achieving the system stability and reducing the steady-state errors. Secondly, the system parameter uncertainties were taken into consideration by utilising the ILQR controller. Thirdly, the MPC controllers guaranteed the handling of constraints and external disturbances in linear and nonlinear systems. Finally, avoiding collision between the leader and follower robots was achieved by applying the dynamic game controller. The controllers were tested in MATLAB simulation and verified for various desired predefined trajectories. In real experiments, these controllers were used as high-level controllers, which produce the optimised trajectory points. Then a low-level controller (PD controller) was used to follow the optimised trajectory points

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Biomimetic Manipulator Control Design for Bimanual Tasks in the Natural Environment

    Get PDF
    As robots become more prolific in the human environment, it is important that safe operational procedures are introduced at the same time; typical robot control methods are often very stiff to maintain good positional tracking, but this makes contact (purposeful or accidental) with the robot dangerous. In addition, if robots are to work cooperatively with humans, natural interaction between agents will make tasks easier to perform with less effort and learning time. Stability of the robot is particularly important in this situation, especially as outside forces are likely to affect the manipulator when in a close working environment; for example, a user leaning on the arm, or task-related disturbance at the end-effector. Recent research has discovered the mechanisms of how humans adapt the applied force and impedance during tasks. Studies have been performed to apply this adaptation to robots, with promising results showing an improvement in tracking and effort reduction over other adaptive methods. The basic algorithm is straightforward to implement, and allows the robot to be compliant most of the time and only stiff when required by the task. This allows the robot to work in an environment close to humans, but also suggests that it could create a natural work interaction with a human. In addition, no force sensor is needed, which means the algorithm can be implemented on almost any robot. This work develops a stable control method for bimanual robot tasks, which could also be applied to robot-human interactive tasks. A dynamic model of the Baxter robot is created and verified, which is then used for controller simulations. The biomimetic control algorithm forms the basis of the controller, which is developed into a hybrid control system to improve both task-space and joint-space control when the manipulator is disturbed in the natural environment. Fuzzy systems are implemented to remove the need for repetitive and time consuming parameter tuning, and also allows the controller to actively improve performance during the task. Experimental simulations are performed, and demonstrate how the hybrid task/joint-space controller performs better than either of the component parts under the same conditions. The fuzzy tuning method is then applied to the hybrid controller, which is shown to slightly improve performance as well as automating the gain tuning process. In summary, a novel biomimetic hybrid controller is presented, with a fuzzy mechanism to avoid the gain tuning process, finalised with a demonstration of task-suitability in a bimanual-type situation.EPSR
    corecore