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Inspired by natural swarm collective behaviours such as colonies of bees and schools
of fish, coordination strategies in swarm robotics have received significant attention in
recent years. Distributed control on formation aims to coordinate a team of robots
to form a desired geometric pattern through local information, which is a hot topic
in swarm intelligence. The main objective of this thesis is to construct formation al-
gorithms combined with bearing measurements for multi-robot systems and provide
applications in real robotic scenarios.

First, we establish a basic formation framework based on edge and bearing measure-
ments for networked multi-robot systems. The edge-based and bearing-based protocols
are combined in controller design to maximise the advantages of both methods. We
discuss the robustness of the mixed controller for both leaderless and leader-follower
cases by Lyapunov approach. Simulation case studies are also presented to verify the
effectiveness of the theoretical results.

Furthermore, a bearing-only collision-free formation coordination strategy is proposed
for networked heterogeneous robots, where each robot only measures the relative bear-
ings of its neighbours to achieve cooperation. Different from many existing studies that
can only guarantee global asymptotic stability, a gradient-descent control protocol is
designed to make the robots achieve a target formation within a given finite time. The
stability of the multi-robot system is guaranteed via Lyapunov theory, and the con-
vergence time can be defined by users. The exogenous disturbances in the system and
actuator faults in the controller are also considered in convergence analysis. Then, the
proposed finite-time bearing-only protocol is extended to linear time-invariant systems.
Numerical simulations and lab-based experiments using unmanned ground vehicles are
conducted to validate the effectiveness of these proposed strategies.

Moreover, we explore the bearing-only formation for nonlinear multi-agent systems.
A compensation function is established in the controller to eliminate the effect of the
unknown nonlinear items in the system. This compensation function is also based on
bearing measurements, which ensures that the overall controller is bearing-only. By
using the Lyapunov techniques, the formation tracking error will converge to zero ex-
ponentially under the proposed bearing-only algorithm. Moreover, we investigate the
performance of the protocol for moving leaders, where the formation tracking error
can be restricted in a bounded set. Finally, the simulation results are presented to
validate the feasibility of the proposed algorithm for both fixed and moving leaders.

Finally, an SDP-based robust formation-containment coordination is proposed for
swarm robotic systems with input saturation. A novel control protocol and an im-
plementation algorithm are proposed that enable the leaders to achieve the desired
formation via SDP techniques. The followers then converge into the convex hull formed
by the leaders simultaneously. Both single-integrator dynamics and double-integrator

11



dynamics are considered in the controller design. We conduct the simulations to ver-
ify the formation-containment algorithm and analyse some of the factors that affected
the formation-containment performance. The proposed algorithm is also applied to a
real-world scenario by performing an experiment using multiple mobile robots.

12



Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy,

in any relevant Thesis restriction declarations deposited in the University Library,

and the University Library’s regulations.

14

http://documents.manchester.ac.uk/display.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/_files/Library-regulations.pdf


Abbreviations

MAS Multi-Agent Systems

MRS Multi-Robot Systems

UAV Unmanned Aerial Vehicle

LTI Linear Time-Invariant

SVD Singular Value Decomposition

SDP Semidefinite Programming

GD Gradient-Descent

FTBO Finite-Time Bearing-Only

15



Symbols

R Set of real numbers

R+ Set of positive real numbers

Rn Set of real vectors of dimension n

Rm×n Set of real matrices of size m× n

0n A column vector of size n with all entries equal to zero

0m×n A m× n matrix with all zeros

1n A column vector of size n with all entries equal to one

G Graph

A Adjacency matrix

L Laplacian matrix

B Bearing Laplacian matrix

H Incidence matrix of the oriented graph

diag{x1, · · · , xn} A diagonal matrix with diagonal entries x1 to xn

max{·} Maximum elements

min{·} Minimum elements

∥ · ∥ Euclidean norm of a vector or the spectral norm of a matrix

AT Transpose of matrix A

16



A−1 Inverse of matrix A

In Identity matrix with n dimensions

⊗ Kronecker product

f : X → Y Function f with domain X and range Y

17



Publications

[1] K. Wu, J. Hu, Z. Ding, and F. Arvin, "Finite-Time Fault-Tolerant Formation

Control for Distributed Multi-Vehicle Networks With Bearing Measurements," IEEE

Transactions on Automation Science and Engineering, 2023.

[2] K. Wu, J. Hu, B. Lennox, and F. Arvin, "Mixed controller design for multi-vehicle

formation based on edge and bearing measurements," 2022 European Control Con-

ference (ECC), 1666-1671, London, UK, 2022.

[3] K. Wu, J. Hu, B. Lennox, and F. Arvin, "Finite-time bearing-only formation track-

ing of heterogeneous mobile robots with collision avoidance," IEEE Transactions on

Circuits and Systems II: Express Briefs, 68(10), 3316-3320, 2021.

[4] K. Wu, J. Hu, B. Lennox, and F. Arvin, "SDP-based robust formation-containment

coordination of swarm robotic systems with input saturation," Journal of Intelligent

& Robotic Systems, 102, 1-16, 2021.

[5] K. Wu, J. Hu, Z. Ding, and F. Arvin, "Distributed Bearing-Only Formation Con-

trol for Heterogeneous Nonlinear Multi-Robot Systems," IFAC World Congress

2023.

[6] K. Wu, J. Hu, Z. Li, Z. Ding, and F. Arvin, "Distributed Collision-Free Bearing-

Based Coordination in Multi-UAV Networks with Actuator Faults and Time Delays,"

Submitted to IEEE Transactions on Intelligent Transportation Systems.

18



Acknowledgements

First of all. I would like to express my great thanks to my supervisor Dr. Farshad

Arvin, for his continuous support and friendly help during my Ph.D. study. Dr. Arvin

is a top academic in the field of swarm robotics who provided professional guidance

for me over the past three years. In my mind, he is also an outstanding teacher with

responsibility and patience. It is my great honour to be a Ph.D. student under his

supervision.

I would also like to thank my supervisor Prof. Zhengtao Ding for his supervision in the

theoretical part. Prof. Ding is a true master in the field of control systems who reaches

a very high level in control theory. I always feel confident about my publication after

discussing with him.

I am also very grateful to Dr. Junyan Hu who gave me many great suggestions for my

research. Besides, I also thank all my friends and colleagues in Control System Group

and Robotic Group.

Last but not least. I owe my deepest appreciation to my family, especially my father

Zulei Wu, and my mother Zhouqing Xia, for their continuous unconditional love and

support throughout my life.

19



To my beloved mother and father



Chapter 1

Introduction

1.1 Background and Motivation

Swarm robotics mainly focuses on coordination control mechanisms within a group

of homogeneous or heterogeneous robots by following collective and decentralised

decision-making approaches inspired by nature [3]. There are many swarm behaviours

such as aggregation [4], foraging [5], collective motion and flocking [6], all of which

have been successfully implemented using real mobile robots. There are also many

potential real-world applications for swarm robotic systems, such as self-assembly [7],

autonomous shepherding [8], exploration of unknown environments [9]. Moreover,

swarm robotics is able to be implemented in agriculture [10, 11]. Fig.1.1 illustrates

a scenario in precision agriculture by using the formation-containment approach in

swarm systems. All these applications require carefully designed controllers to deal

with the limitations imposed by the physical environments.

Formation in swarm robotics refers to the coordinated arrangement of individual robots

within a swarm to achieve a desired spatial configuration or pattern. The concept of

formation control draws inspiration from natural phenomena, such as bird flocks, fish

schools, and insect swarms, where individual entities align and maintain relative posi-

tions to exhibit collective behaviours. Cooperative formation control for multi-robot

systems (MRS) involves designing algorithms and control strategies that enable the

robots to organise themselves spatially while performing a task. This technique can

be implemented in many scenarios. For example, in surveillance and monitoring tasks

21
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Figure 1.1: A scenario in precision agriculture where leaders mark an area of interest
using formation control. Followers then directly interact with plants, and follow the
formation-containment algorithm.

 

Ground control station 

UAV 1 
Satellite 

UAV 2 

UAV 3 

Figure 1.2: A cooperative target search task using three networked UAVs in the forest.

[12], robots can form patterns to cover a given area effectively. In search and rescue

missions [13], the formation can be used to explore hazardous or inaccessible regions

collaboratively. In autonomous vehicle platooning [14], the formation can optimise

coordination and synchronisation among robots for tasks like assembly or transporta-

tion. An illustrative example is shown in Fig. 1.2, where a network of unmanned

aerial vehicles (UAVs) are performing a cooperative target search mission in the forest

environment by maintaining a triangle formation.
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The traditional way to tackle the distributed formation problem is based on position

measurements. Position-based formation protocol focuses on regulating the relative

positions between neighbouring robots rather than relying on global or absolute coor-

dinate systems. Each robot determines its position with respect to its neighbouring

robots or a reference point in the formation [15]. This approach enables scalability

as robots can adapt to changes in swarm size without relying on a centralised global

coordinate system. As an example, the authors in [16] discussed the scalability of the

formation algorithm for multi-UAV systems. However, as the swarm grows larger, the

complexity of maintaining the desired formation pattern and ensuring coordination

among a large number of robots can become more demanding. To overcome such

limitations, the research in formation-containment control has attracted increasing at-

tention over the past decade. The robots can be divided into leaders and followers.

The formation-containment protocol enables the leaders to form a desired configura-

tion, and simultaneously, the followers converge to the convex hull spanned by the

leaders. Fig.1.1 illustrates an application of the formation-containment protocol in

agriculture.

Another limitation of the position-based method is that it heavily relies on accurate

perception and sensing of neighbouring robots’ positions, which requires high-quality

sensory outputs that may not be easily fulfilled in extreme environments. Hence,

bearing-only formation control is proposed to deal with such issue. Only the neigh-

bouring bearings of robots are required to realise the desired goal by implementing

bearing-only protocols. During the hardware implementation, the bearing information

can be detected by wireless vision-based sensors [17]. It is noticeable that exchanging

signal may not accessible because the camera is a passive sensor [18]. Whereas, the

relative bearing of the robot is a unit vector generated from a relative position vec-

tor by normalising its length, which can be obtained the onboard cameras based on

vision-based techniques [19, 20]. Therefore, the design of bearing-only control shows

the promising capacity to achieve multi-robot formation tasks by using onboard sen-

sors. Some preliminary results on bearing-based formation such as bearing rigidity

theory have been developed in the last decade. Nevertheless, there are still many is-

sues to be considered when implementing bearing-only formation control techniques
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on real-world MRS, e.g., dealing with nonlinear dynamics to ensure the convergence

and stability of the whole system.

Another important indicator of performance is the settling time of the cooperation

task. As a result, the finite-time control techniques (see [21–23] and the references

therein) have been extensively explored in multi-agent systems (MAS). A typical

method to deal with the finite-time convergence is based on signum functions. The

finite-time protocols proposed in [24–26] were based on this approach. However, the

convergence time is affected by the initial states. The authors in [27–29] further ex-

plored fixed-time strategies, where the settling time is independent to the initial state.

Nevertheless, the designed control inputs are not smooth as they contain signum func-

tions and fractional power feedback. Besides, in order to provide reliable performance

in real-world applications, the uncertainties such as unknown disturbances and actu-

ator faults in the robot dynamics should also be taken into consideration. In other

words, how to design finite-time bearing-only (FTBO) formation control with smooth

control inputs, exogenous disturbances, and actuator faults remains an open problem.

1.2 Thesis Organisation

This thesis is organised as follows:

Chapter 2: Literature Review and Main Objectives

In this chapter, we first introduce some previous works related to traditional formation

techniques, cooperative formation-containment protocols, and bearing-based coordina-

tion techniques. After that we list the main objectives of the thesis

Chapter 3: Preliminaries

In this chapter, some related preliminaries including matrix theory, graph theory, bear-

ing measurement, and Lyapunov stability theory are introduced.

Chapter 4: Basic Formation Framework Based on Bearing Measurements
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In this chapter, a basic formation framework based on edge and bearing measure-

ments is proposed for networked MRS. Although conventional edge-based controllers

have been widely used in many formation tasks, the tracking accuracy may not be

guaranteed in some extreme environments as it depends on the quality of the sen-

sors and requires the exact position data of each robot. To overcome this limitation,

we combine the edge-based controller with a bearing-based method where only rel-

ative bearings among the robots are required. Depending on the sensing-ability of

the robotic platform, this mixed control method can provide an efficient solution to

maximise the tracking performance. Both leaderless and leader-follower cases are con-

sidered in the protocol design. The stability of the networked MRS under the proposed

mixed formation approach is ensured by Lyapunov theory. Finally, we present simu-

lation results to verify the effectiveness of the theoretical results.

Chapter 5: Finite-Time Bearing-Only Formation Control

This chapter addresses a bearing-only formation tracking problem in robotic networks.

In contrast to traditional position-based coordination strategies, the bearing-only co-

ordinated movements of the robots only rely on the neighbouring bearing information.

This feature can be utilised to reduce the sensing requirements in the hardware imple-

mentation. A GD protocol is first developed to achieve the desired coordination within

a prespecified settling time. After that, the unknown disturbances are considered in

the robotic dynamics, and then the bound of formation tracking error is guaranteed

by the Lyapunov approach. In case of damage to the actuators (e.g., motors) in some

of the robots during the task, fault-tolerant analysis of the proposed controller is pro-

vided to ensure the success of the task in extreme environments. Finally, numerical

simulations and lab-based experiments using unmanned ground vehicles are conducted

to validate the effectiveness of the proposed strategy.

Chapter 6: Formation-Containment Protocol and Application

In this chapter, formation-containment controller design for single-integrator and double-

integrator swarm robotic systems with input saturation is investigated. The swarm

system contains two types of robots – leaders and followers. A novel control protocol

and an implementation algorithm are proposed that enable the leaders to achieve the
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desired formation via semidefinite programming (SDP) techniques. The followers then

converge into the convex hull formed by the leaders simultaneously. In contrast to con-

ventional consensus-based formation control methods, the relative formation reference

signal is not required in real-time data transmission, which provides greater feasi-

bility for implementation on hardware platforms. The effectiveness of the proposed

formation-containment control algorithm is demonstrated with both numerical simula-

tions and experiments using real robots that utilise the miniature mobile robot, Mona.

Chapter 7: Conclusion

This chapter summarises the thesis and discusses future research.

Appendix A: Extension of the FTBO protocol to the LTI Systems with

Exogenous Disturbance

In this appendix, we further explore the robustness of the finite-time bearing-only

protocol for the LTI systems with exogenous disturbances, which can be applied to a

wider range of robotic platforms.

Appendix B: Bearing-Only Formation Control for Nonlinear Systems

In this appendix, we address the bearing-only formation tracking problem for heteroge-

neous nonlinear MRS. In contrast to position and distance-based formation algorithms,

the robots can only measure the bearing information from their neighbours to achieve

cooperation while the state information is unavailable. This characteristic is able to

be implemented in the hardware to reduce the requirements of the sensors. We con-

struct a compensation function in the proposed controller to eliminate the effect of

the unknown nonlinear terms in the system. This compensation function is also based

on bearing measurements, which guarantees that the overall controller is bearing-only.

The stability of the proposed formation tracking strategy can be ensured by Lyapunov

techniques. Moreover, we analyse the performance of the protocol for moving leaders,

where the formation tracking error can be restricted in a bounded set. Finally, the

simulation results are presented to validate the feasibility of the proposed algorithm

for both fixed and moving leaders.



Chapter 2

Literature Review and Main

Objectives

2.1 Literature Review

2.1.1 Traditional Formation Techniques

Formation in robotic networks has received great attention from robotics and automa-

tion communities. Motivated by commonly observed collective behaviours of animals,

distributed control on formation tasks aims to coordinate a team of unmanned vehi-

cles to form a desired geometric pattern through local information [30]. During the

past decade or so, many control mechanisms have been proposed, and valuable results

have been obtained that relate to formation control in swarm systems. Among all the

distributed formation control methods proposed in the last decade, one of the major

approaches to deal with multi-robot formation problems is based on position mea-

surement [31]. As an example, a cooperative control was proposed in [32] for vehicle

formation. The authors used algebraic graph theory to model the communication net-

work and then related its topology to formation stability. The eigenvalues of the graph

Laplacian matrix were used to prove the Nyquist criterion to determine the effect of

the communication topology on formation stability. The results showed that the in-

formation flow can thus be rendered highly robust to changes in the graph, enabling

tight formation control despite limitations in intervehicle communication capability.

The distributed motion coordination among a group of nonholonomic ground robots

27
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was studied in [33]. The authors used a consensus approach to design vision-based

control laws for parallel and balanced circular formations. These control protocols

were distributed in the sense that they require information only from the neighbours.

In [34], the problem of distributed and global stabilisation of rigid formations in the

plane for a group of mobile agents was studied. The authors proposed a constructive

perturbation method with the conventional gradient control law. They also proved

that the control protocol stabilised the desired rigid formation in a global sense for

all initial conditions except the case when a pair of communicating agents happened

to have the same initial location. Lin et al. in [35] proposed a distributed forma-

tion law via complex Laplacian matrix. After that, the authors in [36] discussed the

formation problem for leader-follower networks with variable formation size. A com-

plex Laplacian-based method was used to describe the shape of the formation. In

[37], the formation-keeping issue was considered for a group of autonomous agents

in their local coordinates. The rooted graphs were adopted in the controller design.

The formation protocol for the double-integrator swarm system was discussed in [38].

A consensus-based approach was utilised in formation design. The authors also pre-

sented the necessary and sufficient conditions for the multi-UAV systems to achieve

time-varying formations. Both simulation and experiment were provided to validate

the main results. Based on their proposed method, multiple leaders and switching

interaction topologies were considered in [39] and [40], respectively. Moreover, Rao

et al. in [41] proposed a phase-based formation protocol for self-propelled vehicles.

A distributed estimation and formation control problem was addressed in [42] with

guaranteed performance. Hu et al. in [43] investigated the cooperative control of

heterogeneous vehicle platoons using the adaptive formation control technique. Auto-

matic cruise control was achieved via vehicle-to-vehicle communication. Bio-inspired

formation control for UAV swarms was analysed in [44], where multiple leaders and

switching topology were considered in the control system design. Another standard

way to solve the formation issue is based on distance measurements. For example,

Distance-based formations for multiple robot localisation in MAS were studied in [45].

The authors proposed distributed formation control for multi-vehicle systems. The

control was derived from a potential function based on an undirected infinitesimally
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rigid graph that specifies the target formation. A sufficient condition for local asymp-

totical stability of the equilibrium manifold was studied in this paper. They also

pointed out the drawbacks of the method – it assumes two-way sensor capability of

the robots. The simulation results also showed that the theory can be only applied to

undirected sensor graphs not to more general directed sensor graphs. In another work,

distance-based multi-robot formation control was explored in [46] by utilizing the goal

assignment. The authors in [47] developed nonlinear gradient control laws for nonlinear

MRS with distance-based formation. This work investigated the relationship between

the cycle space of the formation graph and the resulting equilibria of cyclic formations.

It is noticeable that the uncertainties (such as disturbance, actuator faults, etc.) in

the system could not be ignored when considering the formation design. For instance,

in [12], a distributed, adaptive, and nonlinear control protocol was proposed to achieve

the group formation tracking for linear MAS having a directed communication topol-

ogy with uncertainties. The control protocol used only relative state information and,

thus, avoids direct computation of the graph Laplacian matrix. The results can be

applied in swarm robotics, especially in multi-target surveillance operations where the

targets (considered as leaders) may be placed far apart and sometimes the targets

may keep on changing their positions due to an external disturbance. Robust forma-

tion control of MAS with uncertain dynamics was analysed in [48], where the leader’s

nonzero control input was also considered in the controller design. Distributed for-

mation law for unmanned underwater vehicles was studied in [49] and this protocol is

robust to disturbances and parametric uncertainties in the system. In another study,

Hu et al. [50] proposed a novel formation control protocol for multiple mobile robots

based on negative imaginary dynamics with modelling uncertainties. The article [51]

has laid a major contribution in the area of fault-tolerant formation control design,

where an event-triggered control scheme was developed for autonomous surface ve-

hicles under malicious attacks. A fault-tolerant formation protocol was proposed for

wheeled mobile robots in [52]. The authors in [53] employed the radial basis function

neural networks and sliding-mode PID controller to deal with the fault-tolerant issue

for heterogeneous vehicular platoons.
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Safety is another significant indicator for multi-robot tasks. Hence, the obstacles and

collision issues should also be taken into consideration during the formation process.

As an example, a semianalytic approach was proposed in [54] to address the collision-

free formation reconfiguration issue. In [55], a connectivity-preserving controller was

developed to tackle the collision-free formation problem for nonholonomic-wheeled

mobile robots. Liu et al. [56] studied collision-avoidance formation law for elliptical

agents with dynamic mapping. In [57], the fuzzy formation problem was considered

for swarm robotic cyber-physical systems. A robust orthogonal firefly algorithm was

implemented to achieve collision-free formation. The collision-free formation tracking

problem with communication constraints for second-order MAS was explored in [58].

The authors designed a potential function-based mechanism in formation protocol to

avoid collision between agents. In another research, the authors in [59] investigated

formation tracking problems in complex obstacle-laden environments. A built-in ob-

stacle avoidance mechanism based on repulsive potentials was applied in the controller

to deal with the collisions. Sui et al. in [60] utilised the deep reinforcement learning

method to deal with collisions during the formation task.

The settling time of the cooperation task is also an important performance indicator.

Therefore, the finite-time control techniques have been extensively explored in MAS

(see [61–65] and the references therein). A distributed finite-time protocol was de-

signed in [66] for quadrotor formation. In [67], a novel adaptive fuzzy fast finite-time

formation strategy was developed for second-order MAS. The finite time rigidity-based

formation issue was considered in [68]. The authors first designed a distributed ve-

locity estimator to estimate the desired group velocity in finite time. After that, a

finite-time formation manoeuvring controller is proposed for each agent to achieve the

target formation in finite time. In another work, a finite-time formation algorithm

was proposed in [69] for marine surface vehicle formation. In [70], the constraints of

the sensors were taken into consideration for nonholonomic multi-robot formation. A

finite-time vision-based formation tracking protocol was proposed for each robot to

meet the requirements of visibility and performance constraints. H∞ time-varying

formation tracking problem was studied in [71] for heterogeneous nonlinear MAS. Two

kinds of distributed finite-time observers are designed for each follower. However, in
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the aforementioned literature, the convergence time is related to the initial state of

each agent. Hence, the research on fixed-time formation [72–75] has also attracted

much attention in the past decade. A fixed-time formation protocol was proposed in

[65] for MRS. Both simulation and experiment were displayed to verify the theoret-

ical results. In [76], a fixed-time leader-follower formation algorithm was developed

for autonomous underwater vehicles with an event-trigger scheme. The authors in [77]

studied the formation tracking problem for wheeled mobile robots with prescribed per-

formance. A novel fixed-time protocol was presented to achieve the formation tracking.

A fast fixed-time formation tracking algorithm was designed in [78] for networked au-

tonomous surface vehicles. The settling time is independent of the initial conditions

in these works. However, the designed control inputs are not smooth as they contain

signum functions and fractional power feedback. How to generate a smooth formation

protocol with a prescribed settling time remains an open problem.

2.1.2 Cooperative Formation-Containment Protocols

In the existence of multiple leaders, the containment problem should be analysed where

the followers can move into the convex hull formed by the states of the leaders. For

example, in [79], a hybrid stop-go control strategy was discussed. The authors devel-

oped a hybrid Stop-Go policy for the leaders in a multi-agent containment scenario

by exploiting the theory of partial difference equations. They also analysed the Non-

Zenoness, liveness and convergence of the resulting system. The results illustrated

that the followers in a connected interaction graph will always converge to locations

in the leader-polytope for stationary leaders. In another study, the authors in [80]

explored a distributed containment control for double-integrator systems with both

stationary and dynamic leaders. For moving leaders, the author also considered two

cases – leaders with an identical velocity and leaders with nonidentical velocities. They

proposed several distributed containment algorithms for each scenario. Furthermore,

a finite-time containment control under a fixed directed network topology was also

proposed in this research. Both simulation and experimental results on a multi-robot

platform showed the effectiveness of the theoretical results. In [81, 82], directed inter-

action topologies in containment problem were considered for high-order LTI systems.

The time delays in a swarm system were studied in [83], and containment analysis and
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design problems for high-order LTI singular swarm systems with time delays on di-

rected graphs were discussed. The authors presented a sufficient condition to achieve

containment for a time-delayed singular swarm system by linear matrix inequality.

Then, containment problems were converted into the asymptotically stable problems

of multiple low-dimensional time-delayed systems. They also proposed changing vari-

able methods to determine the gain matrix in the protocols. The simulation results

showed the effectiveness of the theoretical results. In [84], the model-free containment

problem was investigated for MAS. A distributed containment protocol was proposed

based on reinforcement learning method. Moreover, the time-vary actuator faults

were also considered and a fault-tolerance controller was design to compensate for the

influence of actuator faults. In another work, a double constrained containment pro-

tocol was designed for smart manufacturing in [85]. The authors developed a cloud

decision-making center in the three-layer control framework to realise collaborative

manufacturing. Both nonlinearities and velocity constraints were considered in the

controller design. The authors in [86] explored the fixed-time containment problem

for stochastic nonlinear MAS with event-trigger scheme. Based on e back-stepping

technique and adaptive fuzzy protocol, the containment errors can converge to zero in

fixed-time. Furthermore, the predefined-time containment issue was explored in [87].

In [88], a novel distributed bipartite containment control law was designed for high-

order nonlinear MAS. The unknown and time-varying powers in the systems was also

taken into the consideration. The bipartite containment observer and dynamic gain

compensator were designed to tackle such issue. The authors in [89] discussed adaptive

containment strategy for second-order nonlinear MAS with external disturbances. A

fully distributed containment protocol was designed without global information. Fur-

thermore, the proposed controller was independent to the bound of the disturbances.

In other work, the adaptive bipartite containment issue was addressed for the nonaffine

fractional-order MAS in [90]. A neural network approach was develop in the controller

design to estimate the ideal input signal.

It was assumed that there was no interaction between the leaders in the aforemen-

tioned research studies. However, it is possible for the leaders to transmit information
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to other leaders to accomplish complex tasks, like formation control in real-world sce-

narios, such as agri-robotics. In these applications, it is desired that not only the

followers can converge to the convex hull spanned by the leaders, but the leaders

can also converge to the desired formation, which is formed as formation-containment

problems [91]. In [92, 93], formation-containment problems for first-order swarm sys-

tems with undirected interaction topologies and switching interaction topologies were

studied. Hu et al. in [2] established adaptive formation-containment algorithms were

proposed to coordinate multiple mobile robots. In another work, the authors in [94]

proposed the formation-containment protocols for leaders to reach the predefined time-

varying formation and followers to converge to the convex hull formed by the states

of leaders. Then, they transformed the formation-containment into asymptotic sta-

bility problems and presented the sufficient conditions for swarm systems to achieve

formation containment. They also proposed the necessary and sufficient conditions

for swarm systems to achieve containment and time-varying formation. The simu-

lation results showed the effectiveness of the theoretical results. After that, output

formation-containment analysis problems for swarm systems with high-order linear

dynamics and directed topologies were studied in [95]. In [96], a distributed adap-

tive finite-time control solution to the formation–containment problem for multiple

networked systems with uncertain nonlinear dynamics and directed communication

constraints was studied. The authors integrated the special topology feature of the

new constructed symmetrical matrix to deal with the technical difficulty in the asym-

metrical Laplacian matrix under single-way directed communication. They established

an adaptive distributed control scheme for leaders by fractional power feedback of the

local error and a distributed adaptive control scheme which was independent to lead-

ers for followers to ensure that the system can achieve the formation-containment in

finite time. The simulation results showed the effectiveness of our control protocols.

In [97], The authors discussed time-varying group formation-containment problem for

linear MAS with unknown control input. The formation leaders can follow the trial

of the tracking leaders with unpredictable trajectories to reach the target formation,

and then the followers converge to the convex hull spanned by leaders. In another

work, the satellite formation-containment problem was studied in [98]. Both collision

avoidance and bounded uncertainty suppression were taken into consideration. The
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time-varying output formation-containment was addressed in [99]. The formation-

containment protocol were designed for both homogeneous and heterogeneous MAS.

In [100], a data driven formation-containment protocol was developed for multiple

spacecrafts with switching topology. A distributed observer was designed to decrease

the affect of the switching topology. Based on reinforcement learning approach, the

optimal strategy can be generated through relative motion data and system inputs.

The adaptive observer-based formation-containment issue was discussed in [101]. The

proposed controller was able to deal with the undesirable chattering from the tracking

leader’s nonzero input. In another research, the adaptive fixed-time fuzzy formation-

containment protocol was designed in [102] for Euler-Lagrange systems. However, in

the aforementioned works, the formation reference signal from the neighbours was

required before designing the control protocol, which means that some global infor-

mation is required. Hence, the formation-containment objectives cannot be achieved

by only using range & bearing sensors in a real implementation, such as [103].

2.1.3 Bearing-Based Coordination Techniques

In the aforementioned research studies, one of the constraints is that the relative

position between every neighbouring robot should be detectable, which requires high-

quality sensors in real-world implementations. Hence, the tracking accuracy of this

method may not be guaranteed in some extreme environments. To overcome these

limitations, bearing-only control techniques have been explored by researchers in re-

cent years (see [104–106]). Only the neighbouring bearings of vehicles are required

to realise the desired goal by implementing bearing-only protocols. During the hard-

ware implementation, the bearing information can be detected by wireless vision-based

sensors [107, 108]. Therefore, the design of bearing-only control shows the promising

capacity to achieve multi-vehicle formation tasks by using onboard sensors. There are

two main methods in bearing-only cooperative control, the first is controlling the bear-

ing angles. In this regard, the distributed bearing-only triangular formation control

of three mobile agents moving in the plane was discussed in [109]. They proposed the

control laws using only the locally measured bearings and established a convergence

result that guarantees global asymptotic convergence of the formation to the desired
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formation shape. The simulation results showed the effectiveness of our control proto-

cols. The second strategy is coordinating the bearing vectors [110, 111]. The authors

in [112] focused on the problem of bearing-based network localisation, which aims to

localise all the nodes in a static network given the locations of a subset of nodes termed

anchors and inter-node bearings measured in a common reference frame. The bearing

Laplacian matrix was proposed to guarantee the uniqueness of the target formation

up to a global translation, rotation, and scaling of the agents’ positions, which is a

strong method to verify whether the target formation is infinitesimally bearing rigid

and then examine the uniqueness of the target formation. In [113], the controller syn-

thesis problem for distributed bearing-only formation control was studied. The author

proposed the gradient-descent bearing-only control laws, which is favourable from the

stability analysis point of view. These protocols allowed proof of global asymptotic

convergence, and extensions for including distance measurements, leaders and collision

avoidance. They also provided simulations and comparisons with other state-of-the-art

algorithms to verify the effectiveness of their strategies. Zhao et al. in [114] studied

the problem of bearing-only formation tracking control in MAS. The authors proposed

new bearing-only formation control protocols to i) various dynamics of the system, in-

cluding single-integrator, double-integrator, and unicycle models, and ii) moving target

formation. Compared to the position measurement, The proposed control laws can

minimise the requirements on the sensing ability of the agents, which is an impor-

tant step towards the application of bearing-only formation control in practical tasks.

They also discussed the sophisticated collision avoidance strategies in the system. The

simulation and real experimental results showed the effectiveness of the theoretical

results. Since exogenous disturbances may appear in the dynamics of the vehicles, the

coordination problems become more challenging. , An integral term was also intro-

duced in [114] in the protocol to handle the exogenous disturbance. In another work,

the bearing-only formation control in the presence of the exogenous disturbance was

considered in [115]. The authors designed the gradient-descent bearing-only forma-

tion protocol with the exogenous disturbance for an undirected formation topology in

an arbitrary dimensional space. They presented the robust stability analysis by Lya-

punov approach and showed that the formation error can exponentially converge to a

bounded set with bounded exogenous disturbance. The numerical simulation example
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was also provided to verify the effectiveness of the algorithm. In the follow-up study

[116], the upper bound of the tracking error was computed and then the correlation

between system factors was discussed. However, in the aforementioned works, only

global asymptotic stability can be ensured, which means that the target geometric

pattern cannot be formed within a finite time period.

It is noticeable that convergence time is also a significant performance indicator in

formation tasks. Hence, the finite-time control protocols have also been widely dis-

cussed in the bearing-based formation (see [117–119] and the references therein). The

authors in [120] proposed a finite-time protocol for cyclic formation based on bear-

ing measurements. In [118], two types of bearing-only formation laws were designed

to achieve the target formation in finite time. In another work, the authors in [121]

develop the FTBO scheme based on global orientations estimation. Chen et al. in

[122] discussed the finite-time circumnavigation issue by implementing a bearing-only

approach. However, the finite time is related to initial states and the control input

may not be smooth because such controllers contain fractional power feedback and

signum functions. In [1]. The authors proposed the bearing-only formation protocol

to achieve target formations in finite time for both leaderless and leader-follower cases.

Unlike using the signum functions to suppress relative bearing errors, the convergence

time is all determined by initial conditions. Under such control laws, the convergence

time can be arbitrarily chosen by users and the derivative of the control input is con-

tinuous. The simulation and real experimental results showed the effectiveness of the

theoretical results. After that, the authors in [123] designed a bearing-only protocol

for second-order systems with predefined convergence time. In the above works, a

time-varying scaling function was applied in the controller to ensure that the settling

time can be selected by our users.
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2.2 Main Objectives

Motivated by the advancements and challenges in formation problems. In this thesis,

we aim to develop several advanced formation algorithms based on bearing measure-

ments and formation-containment protocols with application to real robotic platforms.

The main objectives of the thesis can be summarised as:

Objective 1: Basic Bearing-Based Formation for Linear Systems:

• Constructing a formation framework based on edge and bearing measurements.

• Exploring the stability of the controller for leaderless and leader-follower cases.

• Running the simulations in Matlab.

Objective 2: Finite-Time Bearing-Only Formation for Linear Systems:

• Proposing a gradient-descent (GD) bearing-only formation strategy with prede-

fined settling time.

• Presenting a sufficient condition to avoid the collisions between each robot.

• Discussing the robustness of FTBO protocol with exogenous disturbances and

actuator faults.

• Extending the results to linear time-invariant (LTI) system.

• Running the simulations in Matlab and implementing the algorithm to Mona

robots.

Objective 3: Bearing-Only Formation for Nonlinear Systems:

• Developing a novel compensation function based on bearing measurements to

deal with the nonlinearity.

• Discussing the stability of the controller for fixed and moving leaders.

• Running the simulations in Matlab.
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Objective 4: Formation-Containment Protocol and Application:

• Designing new formation-containment protocols for single-integrator and double-

integrator systems.

• Verifying the robustness of formation-containment protocol with input satura-

tion.

• Running the simulations in Matlab and implementing the algorithm to Mona

robots.

To sum up, four objectives are studied in this thesis. Objective 1 aims to study the

basic bearing-based formation for linear systems, a formation framework is established

in this work. Then, we consider the settling time in Objective 2. This objective aims

to explore the finite-time bearing-only formation for linear systems. We propose a GD

bearing-only protocol with predefined settling time and discuss the robustness of the

FTBO strategy with exogenous disturbances and actuator faults. Moreover, the non-

linearity is considered in Objective 3. We design a novel compensation function based

on bearing measurements to deal with the nonlinearity, and the designed controller is

still bearing-only. Finally, we focus on the formation-containment protocol and appli-

cation in Objective 4. The novel formation-containment algorithms are developed and

implemented in Mona robots in this work.



Chapter 3

Preliminaries

3.1 Matrix Theory

In this section, we give the basic definition and some properties of the Kronecker

product that will be used throughout the thesis.

Definition 3.1. [124] The Kronecker product of matrices P ∈ Rj×k and Q ∈ Rm×n is

defined as

P ⊗Q =


p11Q . . . p1mQ

... . . . ...

pj1Q . . . pjkQ

 ∈ Rnp×mq,

and it has following properties:

P ⊗ (Q+ S) = P ⊗Q+ P ⊗ S

(cP ) ⊗Q = P ⊗ (cQ) = cP ⊗Q

(R ⊗ S)(Q⊗ Z) = RQ⊗ PS

(P ⊗Q)−1 = P−1 ⊗Q−1

(P ⊗Q)T = P T ⊗QT

where W,P,Q, and Z are the matrices with compatible dimensions for multiplication.

3.2 Graph Theory

Considering n networked mobile agents (which include nl leaders and nf followers) in

Rd (n ≥ 2, d ≥ 2 and nl + nf = n). Denote the position of the ith agent as pi. The

39
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configuration of the agents can be denoted as p = col(p1, · · · , pn). Let the undirected

graph G = (V , E) denote the communication among the agents. Vl = {v1, . . . , vnl
}

denoted leaders’ set, and Vf = {vnl+1, . . . , vn} denotes followers’ set, respectively, and

V = Vl ∪ Vf . The edge set is denoted by E ⊆ V × V . The edge (i, j) ∈ E indicates

that agent i can obtain the relative bearing from agent j, such that agent j is a

neighbour of i. Let Ni = {j ∈ V : (i, j) ∈ E} be the neighbor set of agent i. Since

the graph is undirected, we have (i, j) ∈ E ⇔ (j, i) ∈ E . The adjacency matrix of

G can be written as A = [aij] ∈ Rn×n, where aij > 0 if (i, j) ∈ E and aij = 0,

otherwise. Hence, the Laplacian matrix of G can be defined as L = D − A, where

D = diag{d11, · · · , dnn} ∈ Rn×n and dii = ∑
j ̸=i aij. It is obvious that L is positive

semi-define for undirected topology and L1n = 0, where 1n = [1, · · · , 1]⊤ [125].

3.3 Basic Notations

In this section, we introduce some basic notations about formation scale and bearing

measurements.

3.3.1 Formation Scale

Definition 3.2. The scale of the formation in the system is defined as

s(t) =
√√√√ 1
n

n∑
i=1

∥pi(t) − p̄(t)∥2 = ∥p(t) − 1n
⊗
p̄(t)∥√

n
,

where p̄(t) = 1
n
(1n

⊗
Id)⊤p(t) denotes the centroid of the formation.

We note that it is complicated to analysis the stability of the formation system with

increasing formation scale. Hence, we should propose the assumption to ensure the

boundness of the formation scale for later stability analysis in some cases.

3.3.2 Bearing Measurements

The relative edge vector and bearing vector of pj with respect to pi can be defined as

eij := pj − pi, gij := eij

∥eij∥
,
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where ∥ · ∥ denotes the Euclidean norm of a vector or the spectral norm of a matrix.

The spectral norm of the matrix A ∈ Rn×n is defined as ∥A∥ =
√
λmax(ATA), where

λmax(·) represents the maximum eigenvalue.

Oriented graphs are widely used in bearing-based formation research. Specifically, an

orientation of an undirected graph is the assignment of a direction to each edge. An

oriented graph is an undirected graph together with an orientation [125]. Denote m

as the number of the undirected edges and n as the number of the agent. Let the edge

(i, j) correspond to the kth (k ∈ {1, 2, · · · ,m}) directed edge in oriented graph. For

kth directed edge, we can redefine the edge and bearing vector as

ek := eij = pj − pi, gk := ek

∥ek∥
.

Let H ∈ Rm×n be the incidence matrix of the oriented graph (undirected graph G with

orientation), [H]ki denotes the entry of H which is defined as

[H]ki =


1, i is the head of k,

−1, i is the tail of k

0, otherwise.

Based on the definition of H, we can conclude that e = col(e1, · · · , em) = H̄p, where

H̄ = H
⊗
Id.

Define

Pgij
:= Id − gijg

T
ij ∈ Rd×d ,

It is obvious that Pgij
≥ 0 , P 2

gij
= Pgij

, and Null(Pgij
) = span{gij}. Then, we can

imply that ∀x ∈ Rd, x is parallel to gij if and only if Pgij
x = 0. This property is

significant to design the controller via bearing measurement [112, 126]. Then we can

obtain the time derivative of gij as follow:

ġij =
Pgij

∥eij∥
ėij.

It can be seen that g⊤
ij ġij = e⊤

ij ġij = g⊤
k ġk = e⊤

k ġk = 0 due to the fact that Pgij
gij = 0.
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Figure 3.1: Examples of non-unique target formation (a) and unique target formation
(b and c) determined by bearing vectors.

Let p∗ = col(p∗
1, · · · , p∗

n) and g∗ = col(g∗
1, · · · , g∗

m) denote configuration and bearing

vector of the goal formation (G, p∗). The bearing Laplacian matrix B ∈ Rdn×dn is

introduced to characterise the properties of a formation. The block of B can be written

as [112]

[B]ij =


0d×d, i ̸= j, (i, j) /∈ E ,

−Pg∗
ij
, i ̸= j, (i, j) ∈ E ,∑

k∈Ni
Pg∗

ik
, i = j, i ∈ V .

It is easy to see that B ≥ 0, B1dn = Bp∗ = 0, and B = H̄⊤diag(Pg∗
k
)H̄. The partition

of B by leaders and followers is shown as

B =

 Bll Blf

B⊤
lf Bff

 (3.1)

where Bff ∈ Rdnf ×dnf and Bll ∈ Rdnl×dnl . In this thesis, it is necessary to ensure that

the target formation is unique. Hence, we present the following result.

Lemma 3.1. [112] The desired formation can be uniquely determined by the bearing

vectors {g∗
ij}(i,j)∈E and the states of the fixed leaders {p∗

i }i∈Vl
⇔ Bff is full rank.

For a better understanding of the construction of the desired formation, an illustrative

example is provided in Fig. 3.1, where the leaders are denoted by solid circles and

the followers are denoted by hollow circles. The interaction topology shown in Fig.

3.1 (a) cannot guarantee the uniqueness of the target formation. However, the target

formation can be determined uniquely by implementing the interaction topologies in

Fig. 3.1 (b) and (c).
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The following lemmas reveal some significant properties of the edge and bearing vec-

tors:

Lemma 3.2. [114]: If there is no collision between the agents, we have

p⊤H̄⊤(g∗ − g) ≤ 0 (3.2)

(p∗)⊤H̄⊤(g∗ − g) ≥ 0 (3.3)

(p− p∗)⊤H̄⊤(g∗ − g) ≤ 0 (3.4)

where the equalities hold if and only if g = g∗.

Lemma 3.3. [114]: If there is no collision between the agents, we have

p⊤Bp ≤ 2p⊤H̄⊤(g − g∗) max
k

∥ek∥ (3.5)

3.4 Lyapunov Stability Theory

In this section, we introduce some basic Lyapunov stability theories which will be

applied to further stability analysis of the error systems. The main reference of this

section is [127].

Considering a nonlinear system

ẋ(t) = f(x, t) (3.6)

where x ∈ U ⊂ Rn stands for the state and U ⊂ Rn is a domain with x = 0 as

an interior point. f : U ⊂ Rn × [0,+∞) → Rn denotes a continuous function with

f(0, t) = 0.

Definition 3.3. (Lyapunov stability, [127]). The equilibrium point x = 0 of the

system (3.6) is said to be Lyapunov stable if for any given constant R ∈ R+ there exists

a constant r such that ∥x(t)∥ < R, ∀t > 0 if ∥x(0)∥ < r. Otherwise, the equilibrium

point is unstable.

Definition 3.4. (Asymptotic stability, [127]). The equilibrium point x = 0 of the

system (3.6) is said to be asymptotically stable if it is Lyapunov stable and furthermore

limt→∞ x(t) = 0.
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Definition 3.5. (Global asymptotic stability, [127]). If the asymptotic stability

defined in Definition 3.4 holds for any initial state in Rn, the equilibrium point is said

to be globally asymptotically stable.

Definition 3.6. (Exponential stability, [127]). The equilibrium point x = 0 of the

system (3.6) is said to be exponentially stable if there exist two positive real numbers

a and b such that the following inequality holds:

∥x(t)∥ < a∥x(0)∥e−bt,

for t > 0 in some neighbourhood U ⊂ Rn containing the equilibrium point.

Definition 3.7. (Global exponential stability, [127]). If the exponential stability

defined in Definition 3.6 holds for any initial state in Rn, the equilibrium point is said

to be globally exponential stable.

Definition 3.8. (Positive definition function, [127]). A function V (x) ∈ U ⊂ Rn

is said to be locally positive definite if V (x) > 0 for x ∈ U except at x = 0 where

V (x) = 0. If U = Rn, i.e., the above property holds for the entire state space, V (x) is

said to be globally positive definite.

Definition 3.9. (Lyapunov function, [127]). If in U ∈ Rn containing the equi-

librium point x = 0, the function V (x) is positive definite and has continuous partial

derivatives, and if its time derivative along any state trajectory of system (3.6) is

non-positive, i.e.,

V̇ (x) ≤ 0,

then V (x) is a Lyapunov function.

Definition 3.10. (Radially unbounded function, [127]). A positive definite func-

tion V (x) : Rn → R is said to be radially unbounded if V (x) → ∞ as ∥x∥ → ∞.

Theorem 3.1. (Lyapunov theorem for global stability, [127]). For system (3.6)

with U ∈ Rn if there exists a function V (x) : Rn → R with first order derivatives such

that

• V (x) is positive definite

• V̇ (x) is negative definite
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• V (x) is radially unbounded

then the equilibrium point x = 0 is globally asymptotically stable.

Definition 3.11. (Positively invariant set, [127]). A set M is a positively invari-

ant set with respect to (3.6) if

x(0) ∈ M ⇒ x(t) ∈ M, ∀t ≥ 0.

Theorem 3.2. (LaSalle’s invariance principle, [127]). Let ω ∈ U be a compact

set that is positively invariant with respect to (3.6). Let V : U → R be a continuously

differentiable function such that V̇ (x) ≤ 0 in U . Let O be the set of all points in U

where V̇ = 0. Let M be the largest invariant set in O. Then every solution starting

in O approaches M as t → ∞.



Chapter 4

Basic Formation Framework Based

on Bearing Measurements

4.1 Introduction

Compared to traditional formation techniques, bearing-only formation control can

minimise the requirements on the sensing ability of robots, which is more practical to

deal with onboard-sensor-based issues. In this chapter, we aim to deal with Objec-

tive 1 and propose a novel mixed formation protocol that contains both edge-based

and bearing-based measurements, which helps maximise the utilisation of the sensing-

ability of each unmanned robot. Based on the different scenarios of the formation

missions, both leaderless and leader-follower cases are considered when designing the

protocol and in both cases convergence of the controlled output can be guaranteed via

Lyapunov theory. The main contributions of this chapter are as follows:

• A novel mixed formation control approach with edge and bearing measurements

is proposed, which can be used to maximise the tracking performance based on

the sensing-ability of each unmanned robot in a multi-robot team.

• Both leaderless and leader-follower cases are considered in this chapter. By using

Lyapunov theory, all the unmanned robots can be proved to achieve the target

formation asymptotically for leaderless case and exponentially for leader-follower

case.

The remainder of the chapter is organised as follows. Section 4.2 presents the main
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objective of the chapter. In Section 4.3, we propose the mixed formation protocols

based on edge and bearing measurements for both leaderless and leader-follower cases

and analyse the stability of the MRS. Section 4.4 provides simulation results to validate

the theoretical results and Section 4.5 concludes the chapter.

4.2 Problem Descriptions

Suppose that the dynamics of the ith robot can be described by

ṗi(t) = ui(t), i ∈ {1, 2, · · · , n} , (4.1)

where ui(t) ∈ Rp denotes the control input of ith robot. Suppose that the interaction

topology between each robot is denoted by G. The main problem to be solved is de-

scribed as follows.

Problem: Design the formation protocols for each robot based on both edge vectors

{eij}j∈Ni
and bearing vectors {gij}j∈Ni

such that all the robots will converge to the

target formation.

To deal with the problem, we have the following assumptions.

Assumption 4.1. There exists at least one spanning tree in the interaction topology

G.

This assumption is universally used in networked formation problem since the config-

uration of the target formation can be guaranteed by edge vectors [125].

Assumption 4.2. There is no collision during the formation task.

This assumption guarantees that the bearing vector between any pair of neighbours

is always well-defined during the formation construction, which has been commonly

used in bearing-based control problems such as [114, 126].
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4.3 Edge-based and bearing-based formation con-

troller design for multi-robot systems

4.3.1 Formation Protocols for Leaderless Case

In this section, we design the formation protocol for each robot in the leaderless case.

The control input of the ith robot can be written as

ui(t) = ue
i (t) + ub

i(t), i ∈ {1, 2, · · · , n} , (4.2)

where ue
i (t) and ub

i(t) denote the controller measured by edge vectors {eij}j∈Ni
and

bearing vectors {gij}j∈Ni
, which can be designed as

ue
i (t) =

∑
j∈Ni

ce
ij(eij − e∗

ij) , (4.3)

ub
i(t) =

∑
j∈Ni

cb
ij(gij − g∗

ij) , (4.4)

where ce
ij and cb

ij are positive control gains. The compact form of (4.2) can be written

as

ṗ = −Ĥ⊤C̄e(e− e∗) − Ĥ⊤C̄b(g − g∗) , (4.5)

where Ĥ = H ⊗ Ip, C̄e = Ce ⊗ Ip and Ce = diag{ce
ij}; C̄b = Cb ⊗ Ip and Cb = diag{cb

ij}.

In order to analyse the convergence of the system (4.5), we have the following results

Lemma 4.1. For any positive-definite diagonal matrix Q = diag{q1, · · · , qm} ∈

Rm×m, if Assumption 4.1 holds, we can obtain the following inequalities:

p⊤Ĥ⊤Q̄(g − g∗) ≥ 0 , (4.6)

−(p∗)⊤Ĥ⊤Q̄(g − g∗) ≥ 0 , (4.7)

where Q̄ = Q⊗ Ip. The equalities hold if and only if g − g∗ = 0.

Proof. According to the discussion in [114, Lemma 2] and qk > 0, ∀k ∈ {1, 2, · · · ,m},

we have
p⊤Ĥ⊤Q̄(g − g∗) =

m∑
k=1

qk∥ek∥(1 − g⊤
k g

∗
k)

= 1
2

m∑
k=1

qk∥ek∥∥gk − g∗
k∥ ≥ 0.

(4.8)



CHAPTER 4. MIXED FORMATION PROTOCOL 49

Similarly, we can get

−(p⊤)∗Ĥ⊤Q̄(g − g∗) =
m∑

k=1
qk∥e∗

k∥(1 − g⊤
k g

∗
k)

= 1
2

m∑
k=1

qk∥e∗
k∥∥gk − g∗

k∥ ≥ 0.
(4.9)

This completes the proof.

Lemma 4.2. The equilibrium of system (4.5) satisfies e = e∗, that is to say ṗ = 0 if

and only if e = e∗.

Proof. Since e = e∗ contains g = g∗, the sufficient part is finished. Now, we only focus

on the necessity part. By ṗ = 0, we have

(p− p∗)⊤ṗ = −(p− p∗)Ĥ⊤C̄b(g − g∗)

− (e− e∗)⊤C̄e(e− e∗) .
(4.10)

Consider that −(e − e∗)⊤C̄e(e − e∗) ≤ 0 and the equality holds if and only if e = e∗.

Combining with lemma 4.1, we have (p − p∗)⊤ṗ ≤ 0 and the equality holds if e = e∗.

Thus we complete the proof.

Define the centroid of the formation as

p̄ = 1
n

n∑
i=1

pi = (1n ⊗ Ip)p
n

,

The following Lemma holds.

Lemma 4.3. For system (4.1) with the controller (4.2), the centroid p̄ is fixed under

the protocols (4.3) and (4.4) during the formation task.

Proof. By the definition of H, we have

Ĥ(1n ⊗ Ip) = H1n ⊗ Ip = 0.

Then, we can imply that

˙̄p = (1n ⊗ Ip)ṗ
n

= −(Ĥ(1n ⊗ Ip))⊤(C̄e(e− e∗) − C̄b(g − g∗))
n

= 0.

(4.11)

Now, we finish the proof.
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Next, we will analyse the stability of our formation protocols and present the following

result.

Theorem 4.1. If p̄∗ = p̄(0), under Assumptions 4.1 and 4.2, all the autonomous

robots will converge to target formation p∗ asymptotically by control protocols (4.3)

and (4.4).

Proof. From lemma 4.3, we have that the centroid of the formation is fixed during the

formation. Hence we can set the centroid of the target formation p̄∗ as p̄(0), which is

invariant. By combining with Assumption 4.1, we can imply that p∗ can be uniquely

determined by e∗. That is to say e = e∗ ⇔ p = p∗. Let δp = p − p∗, consider the

following Lyapunov function

V = 1
2δ

⊤
p δp .

From (4.5), the derivative of V can be expressed as

V̇ = δ⊤
p δ̇p = δ⊤

p ṗ

= −δ⊤
p Ĥ

⊤C̄b(g − g∗) − δ⊤
p Ĥ

⊤C̄e(e− e∗)
(4.12)

According to Lemma 4.1, we have

V̇ = −(p− p∗)⊤Ĥ⊤C̄b(g − g∗) − (e− e∗)⊤Ce(e− e∗) ≤ 0 (4.13)

and V̇ = 0 ⇔ e = e∗. Then, we can imply that the equilibrium of system (4.5) is

stable. Hence, all the robots will converge to target formation p∗ asymptotically by

control protocols (4.3) and (4.4).

4.3.2 Formation Protocols for Leader-follower Case

This section studies the formation protocol for leader-follower system. Suppose there

are nl stationary leaders (ṗi = 0, ∀i ∈ {1, 2, · · · , nl}) and nf followers (nl + nf = n).

The dynamics of the follower robots can be described as

ṗi(t) = ui(t), i ∈ {nl + 1, nl + 2, · · · , n} , (4.14)

where the controller ui(t) = ue
i (t) + ub

i(t) is still measured by edge vectors {eij}j∈Ni

and bearing vectors {gij}j∈Ni
.
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The partition of B and L according to the leaders and followers can be expressed as

B =

 Bll Blf

B⊤
lf Bff

 ,L =

 Lll Llf

L⊤
lf Lff

 , (4.15)

where Bll ∈ Rpnl×pnl and Bff ∈ Rpnf ×pnf , Lll ∈ Rnl×nl and Lff ∈ Rnf ×nf . The

following assumption is presented to ensure the uniqueness of the target formation p∗.

Assumption 4.3. The target formation p∗ can be uniquely determined by the edge

vectors {eij}j∈Ni
and the bearing vectors {gij}j∈Ni

.

From the Lemma 1 in [114], we can easily find that Assumption 4.3 holds if and

only if Bff > 0. It also can be obtained that Lff > 0 by Assumption 4.1 ([128]).

To analyse the stability of our formation protocols (4.3) and (4.4), we provide the

following Lemma.

Lemma 4.4. For any positive-definite diagonal matrix Q = diag{q1, · · · , qm} ∈

Rm×m, the following inequality holds if Assumption 4.1 is satisfied

p⊤Ĥ⊤Q̄(g − g∗) ≥ q̃p⊤Bp
2 maxk ∥ek∥

, (4.16)

where Q̄ = Q⊗ Ip and q̃ = min{q1, · · · , qm}.

Proof. From [114, Lemma 3], we can get

p⊤Bp =
m∑

k=1
∥ek∥2(1 + g⊤

k g
∗
k)(1 − g⊤

k g
∗
k). (4.17)

Since q̃ ≤ qk, ∀k ∈ {1, · · · ,m} and 1 + g⊤
k g

∗
k ≤ 2, we have

q̃p⊤Bp ≤ 2 max
k

∥ek∥
m∑

k=1
q̃∥ek∥(1 − g⊤

k g
∗
k)

≤ 2 max
k

∥ek∥
m∑

k=1
qk∥ek∥(1 − g⊤

k g
∗
k)

= 2 max
k

∥ek∥p⊤Ĥ⊤Q̄(g − g∗).

(4.18)

Hence, we can imply that (4.16) holds.

The following Theorem is presented to reveal the convergence of the protocols (4.3)

and (4.4) in leader-follower case.



CHAPTER 4. MIXED FORMATION PROTOCOL 52

Theorem 4.2. Under Assumption 4.1, 4.2 and 4.3, all the robots will converge to

target formation p∗ exponentially if we apply the control protocols (4.3) and (4.4) for

each follower robot.

Proof. Let pl = [p⊤
1 , · · · , p⊤

nl
]⊤ and pf = [p⊤

nl+1, · · · , p⊤
n ]⊤ denote the state of the leaders

and followers, and p = [p⊤
l , p

⊤
f ]⊤. Substituting (4.3) and (4.4) into (4.14), the compact

form of (4.14) can be rewritten as

ṗ = −ΓC̄eĤ
⊤(e− e∗) − ΓC̄bĤ

⊤(g − g∗) , (4.19)

where Γ =

 0 0

0 Ipnf

.

Let δp = p(t) − p∗ = [0, δ⊤
pf

]⊤, we can imply that δ⊤
p Γ = δ⊤

p because the leaders are

fixed. Consider the following Lyapunov function candidate,

V = 1
2δ

⊤
p δp .

From (4.5) and the fact that δ⊤
p Γ = δ⊤

p , the derivative of V is shown as

V̇ = δ⊤
p δ̇p = δ⊤

p ṗ

= −δ⊤
p ΓĤ⊤C̄b(g − g∗) − δ⊤

p ΓĤ⊤C̄e(e− e∗)

= −δ⊤
p Ĥ

⊤C̄b(g − g∗) − δ⊤
p Ĥ

⊤C̄e(e− e∗)

(4.20)

According to (4.6), (4.13), and the definition of Laplacian matrix L, we have

V̇ ≤ −p⊤Ĥ⊤C̄b(g − g∗) − δ⊤
p Ĥ

⊤C̄eĤδp

= −p⊤Ĥ⊤C̄b(g − g∗) − δ⊤
p L̂δp

≤ 0

(4.21)

where L̂ = L ⊗ Ip. We can conclude that Bp∗ = 0 from the definition of B. Let

L̂ff = Lff ⊗ Ip, then, by Lemma 4.4, it follows that

V̇ ≤ − q̃p⊤Bp
2 maxk ∥ek∥

− δ⊤
pf

L̂ffδpf

≤ −
q̃δ⊤

p Bδp

2 maxk ∥ek∥
− δ⊤

pf
L̂ffδpf

= −
q̃δ⊤

pf
Bffδpf

2 maxk ∥ek∥
− δ⊤

pf
L̂ffδpf

≤ −( q̃λmin(Bff )
2∥e∥

+ λmin(L̂ff ))∥δp∥2.

(4.22)
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From (4.13), we can indicate that δp(t) ≤ δp(0). Hence we can get

∥e∥ ≤ ∥Ĥ∥∥p∥ = ∥Ĥ∥∥p∗ + δp∥

≤ ∥Ĥ∥(∥p∗∥ + ∥δp∥)

≤ ∥Ĥ∥(∥p∗∥ + ∥δp(0)∥).

(4.23)

This together with (4.22), we have

V̇ ≤ −( q̃λmin(Bff )
∥Ĥ∥(∥p∗∥ + ∥δp(0)∥)

+ 2λmin(L̂ff ))V

= −αV.
(4.24)

That is to say that all the robots will converge to target formation p∗ exponentially

with the exponential convergence rate α = q̃λmin(Bff )
∥Ĥ∥(∥p∗∥+∥δp(0)∥) + 2λmin(L̂ff ).

Remark 4.1. The control gains ce
i and cb

i represent the weights of the edge-based and

bearing-based control effort. To deal with the sensors with low quality, the edge-based

gain ce
i could be selected smaller and the bearing-based gain cb

i could be selected larger

to reduce the affect of low accuracy measured by positions.

4.4 Simulation Results

In this section, the performance of the formation protocols (4.3) and (4.4) is verified

by MATLAB for both leaderless and leader-follower cases.

4.4.1 Simulation Case Study without Leaders

In this simulation, six mobile robots are deployed for the leaderless case. We set

the shape of the target formation as a regular hexagon (linked by red solid lines in

Fig 4.1).According to Remark 4.1, we can treat the parameters ce
ij and cb

ij as the pro-

portion of edge-based and bearing-based controller. So we have ce
ij+cb

ij = 1. In order to

verify that the proposed mixed protocol is effective this assignment of the parameters.

The control gains ce
ij and cb

ij are selected arbitrarily from (0, 1) and satisfy ce
ij +cb

ij = 1.

In Fig 4.1, the initial positions of six robots (denoted by six different colours) are linked

by blue dashed lines. Hence, we can calculate the centroid p̄(0), which will be set as

the centroid of the target formation (denoted by the yellow star). The trajectories of
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Figure 4.1: Trajectories of the six robots with a fixed centroid (yellow star).

six robots are shown by dashed lines with six different colours corresponding to each

robot. Fig 4.2(a) and 4.2(b) show the control inputs of the six robots along the x-axis

(ux) and y-axis (uy) during the task. In Fig 4.3, we can see that the bearing error

(∥g − g∗∥), edge error (∥e− e∗∥) and the statement error (∥p− p∗∥) converge to zero

within 15 seconds. It can be observed from these results that the control protocols

(4.3) and (4.4) are effective at accomplishing the formation task.

In order to explore the performance of the mixed protocol with different proportion

of edge-based and bearing-based controller, we design a simulation case study with

four examples shown in Table 4.1. By implementing the proposed mixed protocol,

the time variation of the formation errors are shown in Fig 4.4. It can be observed

that the convergence rate will be increased for larger proportion of the edge-based

controller, which is the advantage of the edge-based controller compare with bearing-

based controller.
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Figure 4.2: Control inputs of the six robots. (a) Along the X-axis (ux). (b) Along the
Y-axis (uy).

Figure 4.3: Time variation of the bearing error (∥g − g∗∥), edge error (∥e− e∗∥), and
state error (∥p− p∗∥).

Table 4.1: Selection of ce
ij and cb

ij

ce
ij cb

ij

Example 1 0.1 0.9
Example 2 0.3 0.6
Example 3 0.7 0.2
Example 4 0.9 0.1

4.4.2 Simulation Case Study with Leaders

In this simulation, nine mobile robots (six followers and three stationary leaders) are

deployed for the leader-follower case. The shape of the target formation is selected as

four small squares, together with a large square (linked by red solid lines in Fig 4.5).
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Figure 4.4: Time variation of the formation error .

Figure 4.5: Trajectories of six follower robots with fixed leaders (yellow stars).

We choose the control gains ce
ij and cb

ij randomly from (0, 1) and satisfy ce
ij + cb

ij = 1.

In Fig 4.5, the initial positions of three leaders (denoted by three yellow stars) are

[−2, 0], [0, 0], and [2, 0]. The yellow, pink, blue, brown, green, and orange dashed

lines denote the trajectories of six follower robots from their initial states to target

formation. The control inputs of six follower robots along the x-axis (ux) and y-axis

(uy) are shown in Fig 4.6(a) and Fig 4.6(b), respectively. In Fig 4.7, we can see that

the bearing error (∥g − g∗∥), edge error (∥e− e∗∥) and the statement error (∥p− p∗∥)
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Figure 4.6: Control inputs of six follower robots. (a) Along the X-axis (ux). (b) Along
the Y-axis (uy).

Figure 4.7: Time variation of the bearing error (∥g − g∗∥), edge error (∥e− e∗∥), and
state error (∥p− p∗∥).

converges to zero. Hence, the control objective can be fulfilled under the proposed

mixed formation protocol.

4.4.3 Comparison with Bearing-Only Protocol

To demonstrate the superior performance of the proposed mixed strategy, we make

a comparison of the proposed controller with the bearing-only protocol proposed in

[114]. For this comparison, nine mobile robots including six followers and three sta-

tionary leaders were deployed. We adopted the same target formation and the initial

positions of three leaders in Section IV.B and ran 50 simulations for each controller
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Figure 4.8: Controller performance of (a) mixed protocol, (b) bearing-only protocol.

with the initial positions of each follower chosen randomly from [−4, 4] × [−4, 4]. The

performances of the mixed and bearing-only protocols are displayed in Fig. 4.8(a) and

4.8(b), respectively. We utilise ∥p − p∗∥ to define the formation error. The blue and

red zones illustrate the results of 50 simulations and the dark blue and red solid lines

represent the average result of the mixed protocol and bearing-only protocol. It can

be concluded from the comparison that the convergence time of the mixed protocol

(T = 20s) is shorter than the bearing-only protocol (T = 80s). Hence, the proposed

mixed protocol can be used to increase the convergence rate of the formation and

maximise the tracking performance based on the sensing-ability of each robot.

4.5 Summary

A novel mixed formation controller for MRS was proposed in this chapter via both

edge-based and bearing-based measurements. Both leaderless and leader-follower cases

were considered in the protocol design. The stability of the MRS can be guaranteed

by choosing an appropriate Lyapunov function. Finally, the simulation results were

demonstrated to validate the effectiveness of the proposed formation protocols. In

the next stage, the convergence time of the bearing-based protocol will be taken into

consideration.



Chapter 5

Finite-Time Bearing-Only

Formation Control

5.1 Introduction

Settling time is an important factor during the formation process, which is not con-

sidered in Chapter 4. Hence, we explore a series of FTBO formation problems in

this chapter for Objective 2. A novel GD bearing-only formation protocol is proposed

for multi-robot networks with predefined convergence time. This bearing-based con-

troller can minimise the sensing requirements of each robot compared with traditional

position-based method (see [13, 31, 42]). Different from most works related to finite-

time control strategies (see [64, 65]), the multi-robot formation can be accomplished

within a given finite time that can be predefined by users by implementing the de-

signed algorithm. Then, we present a sufficient condition to ensure that there is no

collision between each robot. After that, the exogenous disturbance and the actuator

failures are considered in the multi-robot system. Via Lyapunov stability analysis,

a sufficient condition is presented to show that the formation error will converge to

a bounded set if a bounded exogenous disturbance appears in the robot dynamics.

Besides, we also extend the proposed results to deal with LTI dynamics, which is more

practical compared to first-order and second-order systems that are often considered in

the bearing-only coordination problems. Numerical simulations and lab-based experi-

ments using wheeled robots are conducted to validate the effectiveness of the proposed

strategy. The contribution of this chapter can be summarised as:

59
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• A FTBO formation coordination protocol is proposed for multi-robot networks.

In contrast to traditional position-based coordination strategies, the coordinated

movement of each robot only requires the neighbouring bearings, which signifi-

cantly reduces the sensing requirements.

• A novel GD coordination law is proposed to realise the desired geometric pattern

within a prespecified converge time that can be selected by users. Different from

most studies in the area of bearing-only control, the proposed method can also

be used to deal with LTI dynamics.

• Exogenous disturbances and actuator faults are considered in the protocol design.

It has been proved that the formation tracking error will converge to a bounded

set for unknown exogenous disturbances and actuator faults.

The rest of the chapter proceeds as follows. Section 5.2 formulates the problem. In

Section 5.3, the bearing-only control problem is handled by a Lyapunov approach

and the bound of the formation tracking error is provided. The proposed results are

extended to deal with actuator faults. Simulation results and hardware experiments

are given in Section 5.4 to verify the feasibility of the proposed scheme. Section 5.5

concludes the chapter.

5.2 Problem Descriptions

In this chapter, we focus on developing a collaboration protocol for networked agents

in the presence of exogenous disturbance. Thus the single-integrator dynamics of the

robots are considered for simplicity. Let Vl and Vf be the set of leaders and followers.

Suppose the leaders are fixed (ṗi = 0, ∀i ∈ Vl), and the dynamics of the followers is

ṗi(t) = ui(t) + ωi(t), i ∈ Vf . (5.1)

where ωi(t) ∈ Rd is the exogenous disturbance of robot i ∈ Vf .

Remark 5.1. Although the dynamics of most robotic systems (e.g., wheeled mobile

robots and quadrotor UAVs) are nonlinear and coupled, the input–output feedback lin-

earisation technique [129] can be exploited to transform the dynamics of the robots

to a single-integrator system at any operating point. This technique has been widely



CHAPTER 5. FTBO FORMATION CONTROL 61

applied to mobile robots [130, 131]. Hence, this work particularly focuses on designing

control protocols for multi-robot formation based on the linearised model with external

disturbances.

Let δi = pi − p∗
i and δ = col(δ1, · · · , δn) denote the formation error, the assumptions

are given as follows:

Assumption 5.1. The exogenous disturbance is upper-bounded i.e., ∥ωi(t)∥ ≤ fi,

∀t ≥ 0, where fi is a positive constant.

From Assumption 5.1, we can easily conclude that ∥ω(t)∥ ≤ F = ∑n
i=nl+1

fi, where

ω(t) = col(ωnl+1(t), · · · , ωn(t)).

Assumption 5.2. In the single-integrator system with exogenous disturbance, the for-

mation scale s(t) is upper-bounded. i.e., s(t) ≤ s0, ∀ t ≥ 0.

Assumption 5.3. The target formation is unique, i.e., Bff > 0.

Assumption 5.4. There is no collision between each robot during the task.

From Assumption 5.4, we can deduce that there exists τ > 0 such that ∥pi − pj∥ > τ ,

∀i, j ∈ V and i ̸= j.

We now demonstrate the problem statement of this chapter in a precise form. Suppose

the dynamics of each mobile robot with exogenous disturbances are guaranteed by

system (5.1). To ensure superior performance of the formation tracking mission, the

main objectives can be described as: i) Developing a novel finite-time controller for

each robot i ∈ Vf based on bearing vectors {gij(t)}j∈Ni
and exploring the convergence

of the formation error δ. ii) Discussing the robustness of the controller with exogenous

disturbances. iii) Providing the fault-tolerant analysis of the finite-time protocol in

the presence of actuator failures in the hardware.

Remark 5.2. In order to transfer the main objectives into a stabilisation problem

of bearing vectors {g∗
ij}(i,j)∈E in finite time, we should link the target formation with

the bearing vectors {g∗
ij}(i,j)∈E . Hence, we have the above Assumption 5.3, which is

commonly used in bearing-only control problems (e.g., [1, 112, 114]).

Remark 5.3. Assumption 5.4 ensures that the bearing vector between any pair of

neighbours is always well-defined during the formation construction, which has been
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commonly used in bearing-based control problems such as [114, 126]. The convergence

analysis of the protocols proposed in the rest of the chapter is still valid without this

assumption before collision occurs. Hence, we also provide the sufficient conditions to

guarantee that the formation process is collision-free. With these conditions, Assump-

tion 5.4 could be dropped.

5.3 Main Results

Formation tracking algorithms can be used effectively for swarm robots to converge

to the desired pattern in a distributed manner. In this section, we first introduce

a finite-time formation control protocol with bearing-only measurements. Then, we

provide the stability analysis to guarantee the performance of the formation protocol

under external disturbances and actuator faults. Thus it can be implemented safely

by practitioners in extreme environments.

5.3.1 FTBO Protocol Design

In this section, we consider bearing-only formation tracking problem based on GD

method to deal with the main objective without exogenous (ωi = 0). The coordinated

protocol of each follower is designed as

ui(t) = (a+ b
µ̇(t)
µ(t))

∑
j∈Ni

(gij(t) − g∗
ij(t)), i ∈ Vf . (5.2)

where a > 0 and b > 0 are two gains, and µ : R+ → R+ is a time-varying scaling

function defined as

µ(t) =


T h

(T − t)h
t ∈ [0, T )

1, t ∈ [T,∞),
(5.3)

where h > 0 is a parameter to be specified. By using the right-hand derivative of µ(t)

at t = T as µ̇(T ), we have

µ̇(t) =


h

T
µ(1+ 1

h
), t ∈ [0, T )

0, t ∈ [T,∞).
(5.4)
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µ(t) is important in the controller since it ensures the bearing-only formation task can

be finished in finite time T which can be predefined by users.

Let g = col(g1, · · · , gm) and g∗ = col(g∗
1, · · · , g∗

m), in order to analyse the finite-time

convergence of the system by GD method, we introduce the following lemmas.

Lemma 5.1. [1] Suppose z : R → R≥0 is a continuously differentiable function, if

ż(t) ≤ −ηz(t) − ξ
µ̇(t)
µ(t)z(t), t ∈ [0,∞) (5.5)

where η and ξ are positive. Then, we conclude that z(t) = 0 if t ≥ T and

z(t) ≤ e−ηtµ−ξz(0), t ∈ [0, T ). (5.6)

Lemma 5.2. Let a and b be two unit vectors. If α1 ≥ α2 ≥ 0, then

∥α1a − α2b∥ ≥ α2∥a − b∥.

Proof. Let ϕ denote the angle between the unit vector a and b, we have

∥α1a − α2b∥2 − (α2∥a − b∥)2

= α2
1 − α2

2 − 2α1α2 cosϕ+ 2α2
2 cosϕ

= (α1 − α2)(α1 + α2 − 2α2 cosϕ)

≥ 2α2(α1 − α2)(1 − cosϕ) ≥ 0.

This completes the proof.

Let u = col(unl+1, · · · , un), e∗ = col(e∗
1, · · · , e∗

m), δi = pi − p∗
i , and δ = col(δ1, · · · , δn).

The distributed FTBO controller design is shown in the following Theorem:

Theorem 5.1. Under Assumption 5.3, if

∥δ(0)∥ ≤ 1√
n

(
min
i,j∈V

∥p∗
i − p∗

j∥ − γ

)
, (5.7)

where γ ∈ (0,mini,j∈V ∥p∗
i −p∗

j∥) is a constant, a collision-free path can be generated for

each robot. The robots will converge to the target formation in finite time predefined by

users under the protocol (5.2). Furthermore, let p̃∗ = p∗ − 1n
⊗
p̄ and p̄ = ∑n

i=1 p
∗
i /n

denote the centroid of the target formation, if

bhλmin(Bff ) > 2∥H̄∥(∥δ(0)∥ + ∥p̃∗∥), (5.8)

the control input u is uniformly bounded and C1 smooth for t ∈ [0,∞).
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Proof. By implementing control protocol (5.2), the compact form of (5.1) can be

expressed as

ṗ = (a+ b
µ̇

µ
)

 0 0

0 Idnf

 H̄⊤(g − g∗). (5.9)

We choose the Lyapunov function as V = 1
2∥δ∥2. The derivative of V along the system

is
V̇ = δ⊤ṗ

= −(a+ b
µ̇

µ
)δ⊤

 0 0

0 Idnf

 H̄⊤(g − g∗)

= −(a+ b
µ̇

µ
)δ⊤H̄⊤(g − g∗)

= −(a+ b
µ̇

µ
)(p− p∗)⊤H̄⊤(g − g∗)

≤ 0.

(5.10)

The last inequality can be obtain from (3.4) from Lemma 3.2. Hence, we can imply

that for any t ≥ 0, ∥δ(t)∥ ≤ ∥δ(0)∥.

From (5.7), since

∥pi(t) − pj(t)∥ = ∥(pi(t) − p∗
i ) − (pj(t) − p∗

j) + (p∗
i − p∗

j)∥

≥ ∥p∗
i − p∗

j∥ − ∥pi(t) − p∗
i ∥ − ∥pj(t) − p∗

j∥

≥ ∥p∗
i − p∗

j∥ −
n∑

m=1
∥pm(t) − p∗

m∥

≥ ∥p∗
i − p∗

j∥ −
√
n∥p(t) − p∗∥

≥ ∥p∗
i − p∗

j∥ −
√
n∥δ(0)∥,

(5.11)

we have ∥pi(t) − pj(t)∥ ≥ γ, ∀t > 0 and ∀i, j ∈ V .

According to Lemma 3.3 and the fact Bp∗ = 0 and δ = [0, δ⊤
f ], it follows from (5.10)
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that
V̇ ≤ −(a+ b

µ̇

µ
)p⊤H̄⊤(g − g∗)

≤ −(a+ b
µ̇

µ
) 1
2maxk∥ek∥

p⊤Bp

= −(a+ b
µ̇

µ
) 1
2maxk∥ek∥

δ⊤Bδ

= −(a+ b
µ̇

µ
) 1
2maxk∥ek∥

δ⊤
f Bδf

≤ −(a+ b
µ̇

µ
) λmin(Bff )
2maxk∥ek∥

∥δ∥2.

(5.12)

Note that
maxk∥ek∥ ≤ ∥e∥ = ∥H̄p∥ = ∥H̄(p− p∗ + p∗)∥

≤ ∥H̄δ∥ + ∥H̄p∗∥

= ∥H̄δ∥ + ∥H̄p̃∗∥

≤ ∥H̄∥(∥δ∥ + ∥p̃∗∥)

≤ ∥H̄∥(∥δ(0)∥ + ∥p̃∗∥).

(5.13)

Combine (5.12) and (5.13), we obtain that

V̇ ≤ − aλmin(Bff )
∥H̄∥(∥δ(0)∥ + ∥p̃∗∥)︸ ︷︷ ︸

ā

V − bλmin(Bff )
∥H̄∥(∥δ(0)∥ + ∥p̃∗∥)︸ ︷︷ ︸

b̄

µ̇

µ
V

= − āV − b̄
µ̇

µ
V.

(5.14)

From Lemma 5.1, we have

∥δ(t)∥


≤ e−ātµ−b̄∥δ(0)∥, t ∈ [0, T )

= 0, t ∈ [T,∞).
(5.15)

That is to say p → p∗ in finite time T . Then, we will prove that u remains uniformly

bounded and C1 smooth.

By (5.9), we have

∥u∥ ≤ (a+ b
µ̇

µ
)∥H̄⊤∥∥(g − g∗)∥, (5.16)

From Lemma 5.2, (5.7) and (5.11), we have

∥e− e∗∥2 =
m∑

i=1
∥gi∥ei∥ − g∗

i ∥e∗
i ∥∥2 ≥ γ2

m∑
i=1

∥gi − g∗
i ∥2

≥ γ2∥g − g∗∥2,

(5.17)
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then it follows

∥g − g∗∥2 ≤ 1
γ2 ∥e− e∗∥2 ≤ 1

γ2 ∥H̄∥2∥δ(t)∥2. (5.18)

Combined (5.18) with (5.16), we have

∥g − g∗∥


≤ 1
γ

∥H∥µ−b̄e−āt∥δ(0)∥, t ∈ [0, T )

≡ 0, t ∈ [T,∞),
(5.19)

and

∥ µ̇
µ

(g − g∗)∥



≤ 1
γ

∥H∥ h
T
µ−(b̄− 1

h
)e−āt∥δ(0)∥,

t ∈ [0, T )

≡ 0, t ∈ [T,∞),

(5.20)

from (5.8), we have b̄− 1
h
> 0, so we can obtain

lim
t→T −

∥ µ̇
µ

(g − g∗)∥ = 0. (5.21)

By (5.15), (5.16), (5.19), (5.20), and (5.21), it can be concluded that

lim
t→T −

∥u∥ = 0. (5.22)

That is to say u is uniformly bounded and continuous on [0,∞).

Next, we focus on the derivative of u. Since

du

dt
= bh

T 2µ
2
h H̄⊤(g − g∗) + (a+ b

µ̇

µ
)H̄⊤ġ

= bh

T 2µ
2
h H̄⊤(g − g∗) + (a+ b

µ̇

µ
)H̄⊤PH̄ṗ (5.23)

=[ bh
T 2µ

2
h H̄⊤ + (a+ b

µ̇

µ
)2H̄⊤PH̄H̄⊤](g − g∗)

where P = diag( Pgk

∥ek∥). It is easily to see that du
dt

is continuous on [0, T ) and (T,∞).

Furthermore ∥P∥ is bounded, so there exist Λ > 0 such that ∥H̄⊤∥2∥H̄∥∥P∥ < Λ.

Hence, from (5.23), we have∥∥∥∥dudt
∥∥∥∥ ≤ bh

T 2µ
2
h ∥H̄⊤∥∥g − g∗∥ + Λ(a+ b

µ̇

µ
)2∥g − g∗∥

=[Λa2 + 2abΛµ 1
h + (Λb2 + bh

T 2 ∥H̄⊤∥)µ 2
h ]∥g − g∗∥

(5.24)

From (5.8), we have b̄− (2/h) > 0, similar to the analysis of (5.20), (5.21) and (5.24),

we can imply that

lim
t→T −

∥∥∥∥dudt
∥∥∥∥ = 0. (5.25)
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That is to say, du/dt is uniformly bounded and continuous on [0,∞). So it can

be concluded that the control input u is uniformly bounded and C1 smooth for t ∈

[0,∞).

Remark 5.4. We utilise the forward difference method to deal with (5.9) with our

controller. Since there is only one loop in the forward difference algorithm and the

iterations of this algorithm are proportional to the finite-time T that is selected by the

user, the computational complexity of this algorithm is O(T ). Hence, the proposed

algorithm can be realised in real time because it can ensure that the execution time

increases linearly with the finite-time T .

Remark 5.5. The collision avoidance is considered in our protocol. We can observe

that condition (5.7) is the sufficient condition to avoid collision from (5.11). If we

select the initial positions of the follower robots properly to make the initial error satisfy

(5.7), the collision will not appear in the process of tracking. When the formation

size in a real-world implementation becomes very large, some of the robots may have

occlusion problems when using vision systems to determine their relative orientation.

However, since the proposed controller is distributed, the interaction topology of the

robot network can be changed to ensure that each robot is able to detect at least one

neighbour and thus the formation can still be achieved.

5.3.2 Robustness Analysis with Exogenous Disturbance

In this section, the robustness analysis of the proposed FTBO protocol with exogenous

disturbance is considered.

Since there exist unknown exogenous disturbances in the system. The goal is to discuss

the robustness of the FTBO controller (5.2). Before we show the main theorem and

associate proof, the following lemma should be introduced:

Lemma 5.3. Suppose z : R → R≥0 is a continuously differentiable function, if

ż(t) ≤ −az(t) − b
µ̇(t)
µ(t)z(t) + ε, t ∈ [0,∞) (5.26)

where a, b, and ε are positive and bh > 1 . Then, it follows that

z(t) ≤


µ−be−atz(0) + ϵ(t), t ∈ [0, T )

ε/a, t ∈ [T,∞)
(5.27)
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where

ϵ(t) = ( T − t

bh− 1 − Tµ−b

bh− 1)ε. (5.28)

Proof. On one hand, if t ∈ [0, T ). Let h(t) = µb(t)z(t), we have

ḣ = µbż + bµb−1µ̇z = µb(ż + b
µ̇

µ
z). (5.29)

From (5.26), we can get

ḣ ≤ µb(−az + ε)

= −ah+ µbε
(5.30)

That is to say

h(t) ≤ e−at(h(0) + ε
∫ t

0
µb(τ)eaτdτ)

≤ e−ath(0) + ε
∫ t

0
µb(τ)ea(τ−t)dτ

≤ e−ath(0) + ε
∫ t

0
µb(τ)dτ

(5.31)

then it can be obtained that

z(t) ≤ µ−b(e−atz(0) + ε
∫ t

0
µb(τ)dτ)

≤ µ−b(e−atz(0) + ( T bh

(bh− 1)(T − t)bh−1 − T

bh− 1)ε)

= µ−be−atz(0) + ϵ(t).

(5.32)

On the other hand, if t ∈ [T,+∞), we have

ż(t) ≤ −az(t) + ε (5.33)

Hence, we can conclude that z ≤ ε/a. This completes the proof.

Now, we would like to give the following analysis of the robustness of the multi-robot

network under the proposed control protocol.

Theorem 5.2. Consider the single-integrator system with the exogenous disturbance.

Under Assumption 5.1−5.4 and protocol (5.2), let K = 2ns0, by choosing γ =
√
K/aλmin(Bff )

and

bhλmin(Bff ) > 2K, (5.34)
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the formation error δ converges to the bound set S

S =
{
δ : ∥δ∥2 ≤ 4γ2F 2K

aλmin(Bff )

}
.

in finite time. Furthermore, the control input u is C1 smooth and uniformly bounded

over the time interval [0,∞).

Proof. By implementing the protocol (5.2), the dynamics of (5.1) can be written in a

compact form as

ṗ = (a+ b
µ̇

µ
)

 0 0

0 Idnf

 H̄⊤(g∗ − g) + ω. (5.35)

The Lyapunov function can be constructed as V = 1
2∥δ∥2. The derivative of V can be

described as
V̇ = δ⊤ṗ

= (a+ b
µ̇

µ
)δ⊤

 0 0

0 Idnf

 H̄⊤(g∗ − g) + δ⊤ω

= (a+ b
µ̇

µ
)δ⊤H̄⊤(g∗ − g) + δ⊤ω

= (a+ b
µ̇

µ
)(p− p∗)⊤H̄⊤(g∗ − g) + δ⊤ω.

(5.36)

From Lemma 3.2 and 3.3, we can substitute (3.5) in (5.36). Since Bp∗ = 0 and

δ = [0, δ⊤
f ], we have

V̇ = (a+ b
µ̇

µ
)(p− p∗)⊤H⊤(g∗ − g) + δ⊤ω

≤ (a+ b
µ̇

µ
)p⊤H⊤(g∗ − g) + δ⊤ω

≤ −(a+ b
µ̇

µ
) 1
2maxk∥ek∥

p⊤Bp+ δ⊤ω

≤ −(a+ b
µ̇

µ
) λmin(Bff )
2maxk∥ek∥

∥δ∥2 + δ⊤ω.

(5.37)

For all robots in the system, from Cauchy inequality, we have

n2s(t)2 = n
n∑

k=1
∥pk − p̄∥2

≥ (∥pi − p̄∥ +
n∑

k∈V,k ̸=i

∥pk − p̄∥)2

≥ ∥pi − p̄∥2

(5.38)
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From (5.38) and Assumption 5.2, we can obtain

∥ek∥ = ∥pi − pj∥

= ∥(pi − p̄) − (pj − p̄)∥

≤ ∥pi − p̄∥ + ∥pj − p̄∥

≤ 2ns(t) ≤ 2ns0 = K.

(5.39)

By average inequality, we have

γ−2

4 ∥δ∥2 + γ2∥ω∥2 ≥ ∥δT ∥∥ω∥ ≥ δTω. (5.40)

Combine with (5.39), (5.37) can be written as

V̇ ≤ −(a+ b
µ̇

µ
)λmin(Bff )

2K ∥δ∥2 + δ⊤ω

≤ −(a+ b
µ̇

µ
)(λmin(Bff )

2K ∥δ∥2) + γ−2

4 ∥δ∥2 + γ2∥ω∥2

≤ −(a+ b
µ̇

µ
)(λmin(Bff )

2K − γ−2

4a )∥δ∥2 + γ2∥ω∥2

(5.41)

By choosing

γ =
√

K

aλmin(Bff ) (5.42)

and following Assumption 5.1, we have

V̇ ≤ −(a+ b
µ̇

µ
)λmin(Bff )

4K V + γ2F 2. (5.43)

Therefore
V̇ ≤ − aλmin(Bff )

2K V − bλmin(Bff )
2K

µ̇

µ
V + γ2F 2

= − āV − b̄
µ̇

µ
V + γ2F 2,

(5.44)

where ā = aλmin(Bff )
2K

and b̄ = bλmin(Bff )
2K

.

In light of Lemma 5.3, we have

∥δ(t)∥2


≤ µ−b̄e−āt∥δ(0)∥2 + 2ϵ̄(t), t ∈ [0, T )

≤ 2γ2F 2/ā, t ∈ [T,∞)
(5.45)

where

ϵ̄(t) = ( T − t

b̄h− 1
− Tµ−b̄

b̄h− 1
)γ2F 2. (5.46)
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Since

lim
t→T −

µ−b̄ = 0, (5.47)

it is easily to get

lim
t→T −

ϵ̄(t) = 0. (5.48)

From (5.47) and (5.48), it can be concluded that

lim
t→T −

∥δ(t)∥ = 0. (5.49)

Hence, we can obtain that the formation error δ converges to the bound set S in finite

time T from Lemma 5.3.

From (5.34), we have b̄− 2
h
> 0. Similar to the proof in Theorem 5.1, we can conclude

that ∥u∥ and ∥du/dt∥ are bounded. Moreover

lim
t→T −

∥u∥ = lim
t→T −

∥∥∥∥dudt
∥∥∥∥ = 0. (5.50)

That is to say, the continuity and uniformly boundness of u and du/dt can be guar-

anteed on [0,∞). Hence we complete the proof.

Following the analysis presented above, the procedure to construct the offline protocol

ui is given in Algorithm 1.

5.3.3 Fault-Tolerant Analysis

Based on the fact that actuator failures (e.g., the efficiency and the output bias) of

the controller could not be ignored in some platforms. The fault-tolerant analysis of

the proposed controller is discussed in this subsection. We explore the robustness of

the controller (5.2) against the exogenous disturbances and the actuator failures.

The actuator failures uf
i of each follower agent can be expressed as

uf
i (t) = ρi(t)ui(t) + b̃i(t), (5.51)

where ρi(t) ∈ (0, 1] represents the unknown efficiency factor of the actuator channel,

and b̃i(t) = [b̃i1(t), · · · , b̃id(t)]⊤ represents the unknown output bias of the actuator

channel following [51, 52, 132]. For both time-varying ρi(t) and b̃i(t), we have the

following assumption
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Algorithm 1 Finite-time bearing-only protocol design
1: Select nl leader robots and nf follower robots;
2: Set the target formation configuration p∗ and compute the target bearing g∗;
3: Set the initial positions for fixed leaders and followers
4: Set the bidirectional communication graph and the oriented graph among each

robot;
5: if Assumption 4 is satisfied then
6: Compute the edge vectors and bearing vectors for each connected robot;
7: Compute the bearing Laplacian matrix B as shown in (3.1);
8: if Bff > 0 then
9: Set the finite time T ;

10: Select the positive control parameters a, b, and h;
11: if condition (5.8) holds then
12: Construct the control law ui given in (6.1);
13: else
14: Back to step 9;
15: end if
16: else
17: Back to step 4;
18: end if
19: else
20: Back to step 3;
21: end if

Assumption 5.5. The unknown efficiency factor and unknown output bias are bounded,

and there exists a positive constant ρ∗ and b̃∗ such that 0 < ρ∗ ≤ ρi(t) ≤ 1 and

∥bi(t)∥ ≤ b̃∗
i .

From Assumption 5.5, we can easily conclude that ∥b̃(t)∥ ≤ b̃∗ = ∑n
i=nl+1

b̃∗
i , where

b̃(t) = col(b̃nl+1(t), · · · , b̃n(t)).

Suppose the leaders are fixed, the dynamics of the followers can be described as

ṗi(t) = uf
i (t) + ωi i ∈ Vf . (5.52)

Now, we would like to present the following result of the fault-tolerant analysis of the

multi-robot network under the proposed control protocol.

Theorem 5.3. Consider the single-integrator system with the exogenous disturbance

and actuator failures. Under Assumption 5.1-5.5, let K = 2ns0, by choosing

γ =
√
K/ρ∗aλmin(Bff )
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and

ρ∗bhλmin(Bff ) > 2K, (5.53)

the formation error δ converges to the bound set S

S =
δ : ∥δ∥2 ≤ 4γ2(F + b̃∗)2K

ρ∗aλmin(Bff )

 .
in a finite time.

Proof. By implementing the protocol (5.2), the compact form of (5.52) can be written

as

ṗ = (a+ b
µ̇

µ
)

 0 0

0 ρ̄(t)

 H̄⊤(g∗ − g) + ω + b̃(t). (5.54)

Choosing Lyapunov function as V = 1
2∥δ∥2. The derivative of V can be described as

V̇ = δ⊤ṗ

= (a+ b
µ̇

µ
)δ⊤

 0 0

0 ρ̄(t)

 H̄⊤(g∗ − g) + δ⊤(ω + b̃(t))

≤ (a+ b
µ̇

µ
)ρ∗(p− p∗)⊤H̄⊤(g∗ − g) + δ⊤(ω + b̃(t)).

(5.55)

The last inequality can be obtained by Assumption 5.5. By average inequality, we

have

δ⊤(ω + b̃(t)) ≤ ∥δ⊤∥(∥ω∥ + ∥b̃(t)∥)

≤ ∥δ⊤∥(∥ω∥ + b̃∗)

≤ γ−2

4 ∥δ∥2 + γ2(∥ω∥ + b̃∗)2

(5.56)

Choosing

γ =
√

K

ρ∗aλmin(Bff ) (5.57)

According to (5.37)-(5.39), (5.41), and (5.43), we can get

V̇ ≤ − ρ∗aλmin(Bff )
2K V − ρ ∗ bλmin(Bff )

2K
µ̇

µ
V

+ γ2(F + b̃∗)2

= − afV − bf
µ̇

µ
V + γ2(F + b̃∗)2

(5.58)

with af = ρ∗aλmin(Bff )
2K

and bf = ρ∗bλmin(Bff )
2K

.



CHAPTER 5. FTBO FORMATION CONTROL 74

From Lemma 5.3, we have

∥δ(t)∥2


≤ µbf e−af t∥δ(0)∥2 + 2ϵf (t), t ∈ [0, T )

≤ 2γ2(F + b̃∗)2/af , t ∈ [T,∞)
(5.59)

where

ϵf (t) = ( T − t

bfh− 1 − Tµ−bf

bfh− 1)γ2(F + b̃∗)2. (5.60)

Similar to the analysis in Theorem 5.1, we can find that the formation error δ converges

to the bound set S in finite time T from Lemma 5.3. This completes the proof.

Remark 5.6. The performance of the finite-time controller is affected by the efficiency

factor and the output bias of the actuator channel. The formation error is closer to

zero for smaller output bias and larger control gain a, which can reduce the effect of the

actuator failures. From (5.59), it can be obtained that the decrease of ∥δ∥ is faster for

larger af , bf , and ρ∗. Hence, the convergence rate of the formation error is determined

by the boundary of the efficiency factor.

5.4 Simulation and Experimental Results

To verify the effectiveness of the obtained results, Matlab simulation results and hard-

ware experimental results using real mobile robots are shown in this section.

5.4.1 Formation Tracking Performance without Exogenous

Disturbances

In this section, a simulation case study performed in Matlab is presented to validate the

feasibility of the control protocol (5.2) without exogenous disturbances. Four omnidi-

rectional mobile robots (i.e., two fixed leaders and two followers) with single-integrator

dynamics are used in the task. All the robots are expected to form a square-shaped

target formation using bearing-only measurements. The predefined settling time is set

as T = 50 s. In Fig. 5.1, the initial positions of the leaders (shown as green star and

blue star) are (1, 0) and (5, 0), respectively. For the followers (marked by pink and

yellow nodes), we choose their positions as (−1.5,−2) and (7.5,−1.5), which satisfy

the conditions in Theorem 5.1. For the parameters, we set a = 2, b = 5, h = 6
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Table 5.1: Selection of a, b, and h

a b h
Example 1 1 1 1
Example 2 2 2 5
Example 3 2 4 8
Example 4 4 5 10

which satisfy the condition (5.8). The formations of the robots at t = 0 s, t = 10 s,

and t = 50 s are linked by blue dash lines, purple dash lines, and red solid lines,

respectively. The pink and the yellow dotted lines are the trajectories of the followers

from t = 0 s to t = 50 s. Control inputs of the followers along the X and Y axes are

illustrated in Fig. 5.2(a) and Fig. 5.2(b), respectively. It can be seen that the designed

inputs are uniformly bounded and C1 smooth as proved in Theorem 1. Fig. 5.3 shows

that the formation tracking error ∥p−p∗∥ reaches zero at t = 50 s. From the observed

results, all the robots can form the target square formation within the given finite time

T using bearing-only measurements.

In order to explore the performance of the finite-time convergence with different pa-

rameters, we design a simulation case study with four examples shown in Table 5.1. By

implementing the proposed FTBO protocol, the time variation of the formation errors

are shown in Fig 5.4. It can be observed that the finite-time convergence can not be

achieved if the parameters are chosen from Example 1. Moreover, the formation error

still can not converge to zero in the predefined settling time even though we increase

the parameters shown in Example 2. However, when we increase the parameters such

that they satisfy the conditions on Theorem 5.1, such as Example 3 and 4, The for-

mation error will converge to zero in the finite-time. Furthermore, if we continue to

increase the parameters (shown in Example 4), the formation error can also converge

to zero in the finite time with a faster convergence rate compare with Example 3.

Hence, the finite-time formation task can only be completed if the selection of the

parameters satisfy the conditions on Theorem 5.1.
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Figure 5.1: Positions of the robots at different time instants.

Figure 5.2: Control inputs of the followers. (a) Along the X-axis. (b) Along the Y-
axis.

5.4.2 Formation Tracking Performance with Exogenous Dis-

turbances

We design the simulations to validate the effectiveness and the continuity of the FTBO

controller with exogenous disturbance. Five UAVs, with two leaders and three follow-

ers, are used in this task. These UAVs aim to attain a pentagon shape desired formation
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Figure 5.3: Time variation of the formation tracking error ∥p− p∗∥.

Figure 5.4: Time variation of the formation tracking error for four examples with
different parameter shown in Table 5.1

in a 3D space via bearing-only measurements in the presence of unknown exogenous

disturbances with the boundary 0.1. We set the predefined convergence time T = 50 s.

The positions of the two fixed leaders (marked by blue and green squares) in the x-y-z

plane are selected as (2.5, 2, 0) and (2.5, 5, 0), respectively. The initial positions of

three followers are selected as (2, 6, 4), (4, 1, 3), and (1, 3, 0.5) respectively. The inter-

action topology between each agent is represented by red solid lines in 5.5 (a). For

the parameters, we first choose a = 2. After that, we can estimate the boundary of bh
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according to (5.34) in Theorem 5.2 because K is related to a and initial state , and

λmin(Bff ) can be determined by the interaction topology. Hence, we select b = 8 and

h = 5 which satisfy the condition in Theorem 5.2.

By implementing Algorithm 1, the trajectories of the UAVs during the formation

forming mission are shown in Fig. 5.5. We adopt the yellow, pink, and dark green

dotted lines to denote the movements of the followers from t = 0 s to t = 50 s. The

formations of the UAVs are captured at time instants t = 0 s, t = 5 s t = 15 s,

and t = 50 s (From (a) − (d) in Fig. 5.5), respectively. Fig. 5.6 shows the control

actions of the followers during the mission. From the curves of the control inputs,

it can be concluded that the controller can converge to zero in finite-time smoothly.

Fig. 5.7 reveals that ∥δ∥ (represented by a blue solid line) will converge to a bound

set at t = 50 s. The tracking errors of three followers are denoted by the yellow, pink,

and dark green dash lines. As can be seen from all these figures, the bearing-only

formation tracking task has been accomplished by the proposed finite-time protocol

under unknown external disturbances.

5.4.3 Fault-Tolerant Formation Tracking with Different Pa-

rameters

In this section, four simulation case studies (with different efficiency factors and out-

put bias) are conducted to explore the relationship between the fault parameters and

the performances of the controller in the presence of the exogenous disturbance. The

selection of ρ∗ and b̄∗ is presented in Table 5.2. ρi(t) and b̃i(t) are generated randomly

at any time t to satisfy Assumption 5 for each robot to simulate the unknown actuator

failures. Twelve UAVs, with three leaders and nine followers, are used to complete the

formation task within the finite-time T = 50 s. The interaction topology between

these UAVs is shown in Fig. 5.8. These UAVs aim to attain the desired formation as

two equilateral triangles in a 2D space via bearing-only measurements in the presence

of unknown exogenous disturbances with boundary 0.1.

In order to satisfy the conditions in Theorem 5.3, we set the parameters as a = 2,
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Figure 5.5: Trajectories of the networked UAVs at different time instants during the
formation forming mission. (a) t = 0 s; (b) t = 5 s; (c)t = 15 s and (d) t = 50 s.

b = 8, and h = 5 for all the examples. By implementing the controller to (5.52), the

trajectories and the tracking errors of the mobile robots during the formation forming

mission are shown in Fig. 5.9 and Fig. 5.10 ((a) − (d) represent the example 1-4).

The positions of the three fixed leaders (marked by three yellow stars) are selected as

(−2, 0), (0, 0), and (2, 0), respectively. We select the same initial positions of the nine

followers for all the examples. It can be concluded from (a), (b), and (d) in Fig. 5.9

that different efficiency factors (ρ∗) affect the performance slightly if the parameters a,



CHAPTER 5. FTBO FORMATION CONTROL 80

 

Figure 5.6: Control actions of the follower UAVs along the X-axis, Y-axis and Z-axis.

Figure 5.7: Time variation of the formation tracking error. The black dash line denotes
the computed bound.

b, and h are chosen appropriately to satisfy the conditions in Theorem 5.3. We can also

obtain that different efficiency factors can affect the convergence rate of some followers

from (a), (b), and (d) in Fig. 5.10. From (b) and (c) in Fig. 5.9 and Fig. 5.10, we can

conclude that the bound set S is expanded for large output bias (b̄∗). Hence, the

tracking error will increase, and the final formation shape will be affected in a certain
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Figure 5.8: Interaction topology between each UAV. The three yellow stars (labelled
by 1,2,3) are leaders, the nine circles (labelled from 4 to 12) are followers. The com-
munication between each agent is denoted by green solid lines.

Table 5.2: Selection of ρ∗ and b̄∗

ρ∗ b̄∗

Example 1 0.8 0.05
Example 2 0.5 0.05
Example 3 0.5 0.2
Example 4 0.3 0.05

degree for large output bias. From all these figures and analyses, it can be concluded

that the bearing-only fault-tolerant formation tracking task has been accomplished by

the proposed finite-time protocol under unknown external disturbances.

5.4.4 Comparison and Discussion

In recent years, some bearing-based formation control methods have been developed in

the literature. In [118, 120, 121], the signum functions were used in the designed proto-

cols to ensure finite-time convergence. However, the controller becomes non-smooth,

and the settling time depends on the initial state. To overcome this limitation, an

improved bearing-based finite-time controller for double-integrator was considered in

a recent work [123]. However, the position measurements are still required in the

proposed algorithm, which increases the sensing requirements in the hardware im-

plementation. Compared with those aforementioned works related to bearing-based

control protocol design, the proposed FTBO protocol also facilitates robustness against

exogenous disturbance and actuator faults.

To highlight the superior robust performance of the FTBO protocol proposed in this
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Figure 5.9: Trajectories of the followers for Example 1 (a), Example 2 (b), Example 3
(c), and Example 4 (d).

chapter, we make a comparison between the proposed controller and the conventional

bearing-only method proposed in [1], which adopts the same scaling function µ(t) with

different forms of the bearing-based scheme. According to the conventional results, the

convergence rate of the traditional method relies on the initial formation error, which

is possible to affect the performance of the controller under the exogenous disturbance

and actuator failures. In this comparison, four UAVs, with two leaders and two fol-

lowers, are used to attain the desired square formation via bearing-only measurements

in the presence of unknown exogenous disturbances with a boundary of 0.05. The

boundary of the efficiency factor (ρ∗) and the output bias (b̄∗) are chosen as 0.3 and
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Figure 5.10: Tracking error of the followers for Example 1 (a), Example 2 (b), Example
3 (c), and Example 4 (d). The black dashed line denotes the computed bound for each
example.
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Figure 5.11: The performance of (a) the proposed controller and (b) the conventional
method proposed in [1].

0.05. For each controller design, we choose the same interaction topology and the same

parameters as shown in Section A. The initial states of the leaders are set as [0, 0] and

[6, 0]. The initial states of the followers are selected randomly from [1, 11] × [1, 11]. 50

simulations are run for both controllers.

The performances of the proposed protocol and the conventional bearing-only protocol

are demonstrated in Fig. 5.11(a) and (b), respectively. The formation error is defined

as ∥p − p∗∥. The blue and red zones display the 50 times simulation results of the

protocols proposed in this chapter and the conventional strategy, and the blue and

red solid lines represent the average values. It can be obtained that the formation

error of the proposed protocol can converge to a small bound set under the exogenous

disturbance and actuator faults with any initial state of the followers. However, under

the conventional method, the formation tracking error becomes large if the initial

positions of the followers are far away from the leaders. Hence, compared to the

conventional controller, the proposed approach shows a better robust performance

against the exogenous disturbances.

5.4.5 Experimental Validation

In this section, we conduct lab-based experiments to further verify the feasibility of

the proposed method in real-world applications.
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Camera 

Robots 

Host computer 

Figure 5.12: The experimental arena includes the overhead camera tracking system,
the base station and the small-scale mobile robots.
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Figure 5.13: The control loop of the experiment. All the blocks are operated through
the host computer shown in Fig. 5.12.

For the validation purpose, we use the wheeled mobile robot Mona [133] as the robotic

platform. As shown in Fig. 5.12, the experimental platform includes a rectangular

arena, a digital camera, and a laptop that operates the proposed control algorithm.

The control architecture is shown in Fig. 5.13. The blue block denotes the controller

module with the distributed FTBO protocol. The relative bearing between the neigh-

bours is detected by the camera tracking system [134] and then transmitted to the

controller module via the ROS (Robot Operating System) communication framework



CHAPTER 5. FTBO FORMATION CONTROL 86

in the host computer. Hence, we can get the velocities of each robot along x-axis and

y-axis. After that, the linear and angular velocities of each robot can be acquired

by the feedback linearisation algorithm [129]. Then, we can obtain the velocities of

the wheels according to the kinematic model as the output. All the blocks shown in

Fig. 5.13 are operated through the host computer shown in Fig. 5.12. The controlled

output (velocities of the wheels) is transmitted to each follower by the RF (Radio

Frequency) module attached on the Mona robot.

In the experiment, four mobile robots (including two leaders and two followers) aim

to achieve a square formation in a given 2D arena. We choose T = 30 s as the desired

settling time. In the beginning, the four robots were randomly placed in the arena.

The positions of the mobile robots during the experiment are shown in Fig. 5.14.

The trajectories and the formation tracking error are given in Fig. 5.15 and Fig. 5.16,

respectively. We emphasise that although the camera tracking system may provide

centralised measurements to all the robots, in view of a distributed implementation,

each robot only used relative information from its neighbours. The experimental re-

sults verified that the designed coordination strategy fulfils the desired objectives in

the presence of certain real disturbances such as communication delays and actuator

noises.

To further explore the robustness of the FTBO algorithm when the leaders are not

fixed, we execute a case study with four mobile robot followers and two virtual moving

leaders in a 2D space. The trajectories of the virtual leaders are designed as

ṗi =

 ṗix(t)

ṗiy(t)

 =

 0.02

0.02 sin(4π
65 t)

 , i ∈ Vl, (5.61)

where Vl = {1, 2}. We set the target formation of the followers as a square by

bearing-only measurements in the presence of unknown exogenous disturbances with

the boundary 0.06. The efficiency factor (ρ∗) and the output bias (b̄∗) are selected as

0.5 and 0.05, and the parameters in the controller are chosen as a = 5, b = 5, and

h = 4. The formation task is expected to be completed within the finite-time T = 50 s.

The movements of the followers under the proposed protocol with moving leaders are
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t = 0 s t = 5 s 

t = 15 s t = 30 s 

Figure 5.14: Progress of the formation tracking task being achieved by a group of four
unmanned ground robots.

 

Figure 5.15: Trajectories of the robots in the experiment.
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Figure 5.16: Time variation of the formation tracking error.

 

t=50s 

t=0s 

t=100s 

Figure 5.17: The trajectories of the followers with moving leaders.

illustrated in Fig. 5.17. The initial position of each robot is labelled by t = 0 s in

Fig. 5.17, where the leaders are marked as two red stars. We use the dash curves with

four different colours to denote the trajectories of four followers from 0 s to 100 s.
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Figure 5.18: The formation tracking errors of the followers with moving leaders.

Fig. 5.18 displays that the tracking error of each follower during the formation task

will converge to a bounded set in the finite-time. Hence, it can be obtained that the

followers can converge to the target formation within a finite-time (labelled by t = 50

s in Fig. 5.17) when tracking the movements of the dynamic leaders, which validates

the effectiveness of the proposed control design. It can be found that there exists a

jump in the tracking error at t = 50 s, which is caused by the switching gain in the

controller under the effect of the dynamic leaders. Based on that, the sudden change

will influence the movement of the followers. Hence, the tracking error is affected by

this sudden change and there exist a jump in Fig. 5.18.

5.5 Summary

In this chapter, the finite-time formation tracking problem with bearing-only measure-

ments was addressed. A novel gradient-decent control protocol was proposed to let

the multi-robot system achieve the target formation by measuring the relative bear-

ings of their neighbours. Furthermore, the finite convergence time of the multi-robot

network with exogenous disturbance was discussed and extended to the LTI system.

Fault-tolerant analysis was also considered for these robots during the formation task.

It was validated that the bound of the formation error could be guaranteed when



CHAPTER 5. FTBO FORMATION CONTROL 90

there were external disturbances and actuator failure in the robot dynamics. Finally,

numerical simulations and practical experiments were provided to verify the obtained

results. In the following chapter, the nonlinearity of the system will be considered

when designing the bearing-only protocol.



Chapter 6

Formation-Containment Protocol

and Application

6.1 Introduction

In the former chapters, we only consider the formation tasks for each robot. However,

the robots should be assigned various goals for a complex project according to their

function. In this chapter, we focus on the formation-containment issue in Objective 4.

A novel distributed protocol is proposed to solve the formation-containment problem in

a collaborative swarm system. Both single-integrator dynamics and double-integrator

dynamics are considered in the control protocol design. For each robot, the controller

only requires the relative state information from its neighbours, which ensures the

asymptotic stability of the swarm when controlling large-scale robotic systems. The

novelty of the control protocol for leaders is that it is robust in several conditions such

as white noise perturbation, saturated input, etc., which has the potential to be used

in extreme environments. The contributions of this chapter can be summarised as:

• A novel formation-containment control framework which only requires local rel-

ative state measurements is proposed.

• The convergence of the swarm system is guaranteed by the rigorous mathematical

proof, and the feasibility of the proposed algorithm is analysed.

• Experiments using real robots were conducted to verify the effectiveness of the

theoretical results.

91
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The remainder of the chapter proceeds as follows. Section 6.2 illustrates the main prob-

lem of this chapter. Section 6.3 and 6.4 present the proposed formation-containment

framework, from which the swarm system under the proposed coordinated algorithm

is shown to satisfy asymptotically stable properties via a rigorous mathematical proof.

Section 6.5 presents simulation results and Section 6.6 presents the experimental val-

idation of the proposed strategy using laboratory-based small-scale mobile robots.

Section 6.7 concludes the chapter.

6.2 Problem Description

Robots in the swarm system can be divided into leaders and followers, with each hav-

ing different properties: i) the neighbours of a leader are only leaders, and ii) the

neighbours of a follower can be leaders or other followers. The leaders are expected

to form the desired formation and the followers are expected to converge into the

convex hull formed by the leaders by a proper design. Due to the behavioural dif-

ferences, the swarm system can be viewed as a heterogeneous swarm as described by

Dorigo et al. [135]. The communication network among all the robots is described us-

ing Graph Theory. We use GE to represent the interaction topology among the leaders.

Assume that there are M(M < N) followers and N −M leaders in the robot swarm.

Let VF = {1, 2, ...,M} and VE = {M + 1,M + 2, ..., N} be the follower subscript set

and leader subscript set respectively. Hence we have the follower’s state pi(t) (∀i ∈ VF )

and the leader’s state pj(t) (∀j ∈ VE).

Definition 6.1. [94] A swarm system is said to achieve containment if for any given

bounded initial states and any k ∈ VF , there exists non-negative αk,j(j ∈ VE) satisfying∑N
j=M+1 αk,j = 1 such that

lim
t→∞

(pk(t) −
N∑

j=M+1
αk,jpj(t)) = 0 . (6.1)

Let the formation reference vector h ∈ R2(N−M) denote the coordinate of the desired

formation of leaders and h⊥ ∈ R2(N−M) denote the coordinates of agents when the

desired formation is rotated by 90◦. The swarm system is said to achieve formation-

containment if for any given bounded initial states, on condition that the agents of the
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leaders globally converge to the desired formation, there exists non-negative αk,j(j ∈

VE) satisfying ∑N
j=M+1 αk,j = 1 such that (6.1) holds.

6.3 Formation-Containment Protocol for Single In-

tegrator Systems

6.3.1 Control Strategy

In this section, we aim to design the formation-containment control protocol for single-

integrator systems. Consider N robots in the swarm system with single-integrator

dynamics described by

ṗi(t) = ui(t) , (6.2)

where pi = [pi1, pi2]⊤ ∈ R2 is the coordinate for robot i ∈ {1, 2, ..., N}, and ui ∈ R2 is

the control input. In order to achieve formation-containment, inspired by [136], the

control protocol for the leaders and followers is chosen as

ui =
∑

j∈Ni

Aij(pj − pi) i ∈ VE , (6.3)

ui =
∑

j∈Ni

wij(pj − pi) i ∈ VF , (6.4)

where Ni represents the neighbors of agent i, wij is a non-negative gain and Aij ∈ R2×2

are the constant control gain matrices with the form of

Aij =

 aij −bij

bij aij

 , aij, bij ∈ R . (6.5)

In the formation control design process, we establish a formation matrix A which

contains the formation information and the communication topology of the leaders.

A is given by (6.6) as shown in the top of the next page, where Aij is defined as

zero matrices if j /∈ Ni. We note that A has a block Laplacian structure, hence the

following vectors

1 = [1, 0, 1, 0, ..., 1, 0]⊤ ∈ R2(N−M)

1⊥ = [0, 1, 0, 1, ..., 0, 1]⊤ ∈ R2(N−M)

satisfy A1 = 0 and A1⊥ = 0.
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A =


−∑N−M

j=2 A1j A12 . . . A1(N−M)
A21 −∑N−M

j=1,j ̸=2 A2j . . . A2(N−M)
... ... . . . ...

A(N−M)1 A(N−M)2 . . . −∑N−M−1
j=1 A(N−M)j

 ∈ R2(N−M)×2(N−M) ,

(6.6)

Denote L as the Laplacian matrix corresponding to the interaction topology (G) of

the swarm system (6.2). L has the form

L =

 L1 L2

0 L3

 ,
where L1 ∈ RM×M , L2 ∈ RM×(N−M) and L3 ∈ R(N−M)×(N−M), the following Lemma

holds.

Lemma 6.1. [128] Assume the interaction topology among leaders (GE) has a spanning

tree and, for each follower, there exists at least one directed path from a leader, we

have:

(I) all eigenvalues of L1 have positive real parts,

(II) each entry of −L1L2 is non-negative, and each row of −L1L2 has a sum of one.

Here, we present the following theorem to guarantee the convergence of a single-

integrator system under the proposed formation-containment coordination.

Theorem 6.1. Consider leaders and followers with single-integrator dynamics (6.2)

and control protocol (6.3) and (6.4). Assume the interaction topology among leaders

(GE) contains a spanning tree and, for each follower, there exists at least one directed

path from a leader, then, for any wij > 0, the swarm system (6.2) achieves formation-

containment if Aij are selected such that

(I) 1, 1⊥, h and h⊥ are linearly independent and A1 = Ah = A1⊥ = Ah⊥ = 0,

(II) Reλ(A) < 0, where λ(A) denotes the non-zero eigenvalues of A and Re(·) stands

for the real part of the eigenvalue.

Proof. Let L̄1 = L1
⊗
I2 and L̄2 = L2

⊗
I2, where I2 denotes the identity matrix with

two dimensions. By using control protocol (6.3) and (6.4), the system can be written
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as:  ṗF

ṗE

 =

 −L̄1 −L̄2

0 A


 pF

pE

 , (6.7)

where pF and pE are the states of followers and leaders, respectively.

On the one hand, for leaders, from (6.7), we have

ṗE = ApE , (6.8)

the solution of (6.8) can be shown as

pE(t) = eAtpE(0) , (6.9)

where pE(0) is the initial position of leaders.

Denote J as the Jordan form of A, the following case is given on condition that A

has all Jordan blocks of order one. The general case follows similarly. Hence, we can

obtain from (6.9) that

pE(t) = QeJtQ−1pE(0)

=
2(N−M)∑

i=1
rie

λitq⊤
i pE(0)

=
2(N−M)∑

i=1

(
q⊤

i pE(0)
)
eλitri ,

(6.10)

where ri ∈ R2(N−M)×1 and q⊤
i ∈ R1×2(N−M) are the right and left eigenvectors of A

respectively, and λi(i = 1, 2, · · · , 2(N − M)) is the eigenvalues of A. From condition

(I), we see that 1, 1⊥, h and h⊥ are four right eigenvectors respond to the four zero

eigenvalues (denoted by λ1, λ2, λ3 and λ4, respectively). Furthermore, all the entries

of the Jordan part of the four zero eigenvalues are zero. If we denote left eigenvectors

of 1, 1⊥, h and h⊥ are q⊤
1 , q⊤

2 q⊤
3 and q⊤

4 , (6.10) can be written as

pE(t) =
2(N−M)∑

i=5

(
q⊤

i pE(0)
)
eλitri + 1q⊤

1 pE(0)

+ 1⊥q⊤
2 pE(0) + hq3

⊤pE(0) + h⊥q4
⊤pE(0) .

(6.11)

From condition (II), we know

lim
t→∞

eλit = 0 for any i ≥ 5 ,
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so we let t → ∞ in (6.11), then we have

pE(t) → 1q⊤
1 pE(0) + 1⊥q⊤

2 pE(0)

+ hq3
⊤pE(0) + h⊥q4

⊤pE(0) ,
(6.12)

if we denote c1 = q⊤
1 pE(0), c2 = q⊤

2 pE(0), c3 = q⊤
3 pE(0) and c4 = q⊤

4 pE(0), they are

four constants, so we can get

pE(t) → 1c1 + 1⊥c2 + hc3 + h⊥c4 , (6.13)

that is to say, the leaders can converge to nothing but all translations, rotations, and

non-negative scale factors of h, which also indicates that leaders can converge to the

desired formation shape.

On the other hand, for followers, from (6.7), we have

ṗF = −L̄1pF − L̄2pE . (6.14)

Since leaders globally converge to the desired formation, denoted by hF , let t → ∞ in

(6.14), we obtain

ṗF = −L̄1pF − L̄2hF , (6.15)

then, we solve (6.15) and have

pF = e−tL̄1(pF (0) −
∫ t

0
esL̄1L̄2hF ds)

= e−tL̄1(pF (0) + L̄1
−1L̄2hF ) − L̄1

−1L̄2hF ,

(6.16)

where pF (0) is the initial position of the followers.

From Lemma 6.1 (I), all eigenvalues L1 have positive real parts, that is to say, L1 has

no zero eigenvalue. Hence, L1 is invertible and L̄1 is also invertible. We have

pF = −L̄1
−1L̄2hF , when t → ∞ . (6.17)

By Lemma 6.1 (II), we can conclude that pF satisfies Definition (6.1), and then the

swarm system (6.2) achieves formation-containment. This completes the proof.

Remark 6.1. It can be seen that for each robot, the formation-containment protocol is

fully distributed because the controller only requires the relative state information from
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its neighbours, which ensures the asymptotic stability of the swarm when controlling

large-scale networked robots. One of the conditions of the proposed control strategy

is the connectivity of the communication network. In the case when some robots are

experiencing communication failures, if a proper network topology can be switched to

connect all the robots, the robustness and stability of the whole swarm system can still

be guaranteed as proved in Theorem 6.1. In the extreme situation where a robot loses

communication with all the other robots, the remaining robots in the swarm will not

be affected using the proposed coordination algorithm.

Remark 6.2. From Theorem 6.1, we also indicate that for any wij > 0, the swarm

system (6.2) achieves formation-containment if and only if leaders globally converge

to the desired formation.

Let P = [h, h⊥,1,1⊥] and USV ⊤ = P be the singular value decomposition (SVD) of

P , where

U = [Q,Q] ∈ R2(N−M)×2(N−M) (6.18)

with Q ∈ R2(N−M)×4 defined as the first 4 columns of U and Q ∈ R2(N−M)×2(N−M)−4

defined as the last 2(N −M) − 4 columns of U .

Lemma 6.2. [137] Using Q in (6.18), define

A = QAQ ∈ R(2(N−M)−4)×(2(N−M)−4) . (6.19)

Matrices A and A have the same set of nonzero eigenvalues.

From Lemma 6.2, we can obtain that the projection operation in (6.19) removes the

zero eigenvalues of A. By setting aij = aji and bij = −bji in (6.5) matrix A can be

design symmetric. Hence, its eigenvalues are real and can be ordered, then A can be

computed by solving the optimisation problem

A = argmax
aij , bij

λ1(−A) , (6.20)

subject to AP = 0 ,

where λ1(·) denotes the smallest eigenvalue of a matrix.
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From the Remark 6.2, in order to let the swarm system (6.2) achieve formation-

containment, it is essential to design a proper A matrix that satisfies the conditions

in Theorem 6.1. Motivated by [137], we can use the following algorithm to solve this

issue.

Algorithm 2 Formation-containment gain design
1: Let P = [h, h⊥,1,1⊥]
2: Compute SVD of USV ⊤ = P
3: Define Q as the last 2n− 4 columns of U
4: Solve (6.20) using a SDP solver
5: if j ∈ Ni (i ∈ VF ) then
6: Set wij = 1
7: else
8: wij = 0
9: end if

Remark 6.3. Even though obstacle avoidance is not considered in the proposed formation-

containment coordination protocol design, the standard low-level obstacle avoidance

algorithms can be easily integrated with the proposed framework during the real-world

operation. Based on different scenarios and tasks, the low-level controller which is im-

plemented in the robot can be changed, however, the proposed formation-containment

coordination algorithm will remain the same.

6.3.2 Robustness to Input Saturation

In real robotic systems, the velocity of each robot cannot exceed a certain value due to

hardware constraints. Thus, any large control input will be saturated by a maximum

allowed speed. This, however, does not affect the robots to accomplish the formation-

containment task under the proposed control algorithm.

In order to prove that the control protocols (6.3) and (6.4) are robust to saturated

inputs, the following Lemma is present here.

Lemma 6.3. [138] Consider the family of switched system ẋ = fi(x), with i =

1, 2 · · · , N . Let V : Rn → R be a positive definite, continuously differentiable, and

radially unbounded function. If ∂V
∂x
fi(x) < 0, ∀x ̸= 0, ∀i then the switched system is

globally uniformly asymptotically stable.
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Lemma 6.3 can be extended to the following corollary,

Corollary 6.1. [138] For a positive semi-definite V with the zero set of Z := {x ∈

RN : V (x) = 0}. In this case, If ∂V
∂x
fi(x) < 0, ∀x /∈ Z, ∀i, then all trajectories globally

uniformly asymptotically converge to Z.

Now, we present the theorem to show that the control protocols (6.3) and (6.4) are

robust to saturated input

Theorem 6.2. Consider the single-integrator system (6.2), and assume that umax > 0

is a real positive scalar. If the control input ui of each robot is saturated such that

|ui| ≤ umax, then under the control laws (6.3) and (6.4), the formation-containment

can still be achieved globally.

Proof. In order to model the saturated control input, we introduce the diagonal matrix

S ∈ R2N×2N with diagonal entries

(S)ii =


1 if |ui| ≤ umax

umax

|ui|
if |ui| > umax .

(6.21)

It can be seen that the diagonal entries of S are considered as functions that saturate

any large control input to the maximum value umax. The single-integrator systems

under saturated input can be expressed in the vector form via ṗF

ṗE

 = S

 −L̄1 −L̄2

0 A


 pF

pE

 . (6.22)

From [138], (6.22) should be understood as a family of switched dynamical systems,

and the solution is well-defined in the Filippov sense. To verify the stability of the

system, two cases are discussed in the following part. Let

S =

 SF 0

0 SE

 , (6.23)

where SF ∈ R2M×2M and SE ∈ R2(N−M)×2(N−M). Both SF and SE are diagonal matri-

ces.
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Part I (Leaders): The dynamics of the leaders can be described as

ṗE = SEApE . (6.24)

The Lyapunov function can be constructed by

VE = −1
2p

⊤
EApE ≥ 0 , (6.25)

VE is a positive semi-definite scalar-valued function since A is negative semi-definite.

Time derivative of VE along the trajectory of (6.24) is

V̇E = −p⊤
EAṗE

= −p⊤
EASEApE (6.26)

= −(S
1
2
EApE)⊤(S

1
2
EApE) = −∥S

1
2
EApE∥2 ≤ 0 ,

where S
1
2
E is the diagonal matrix with entries given by the square root of diagonal

elements of SE. Note that all diagonal elements of SE are strictly positive, hence S
1
2
E

is well-defined. The last step of (6.26) is according to the fact that A can be designed

to be symmetric in Algorithm 1. Considering that VE is a positive semi-definite, con-

tinuously differentiable and radially unbounded function. Then, based on Lemma 6.3,

Corollary 6.1 and LaSalle’s invariance principle, we can conclude that all trajectories

of (6.24) converge to the zero set of VE (i.e., the kernel of A). That is to say, the

formation of the leaders can be achieved under input constraints. The proof of the

leaders’ part is completed.

Part II (followers): Since the leaders can converge to the desired formation hF , if t is

large enough, the dynamics of followers can be described as

ṗF = −SF L̄1pF − SF L̄2hF . (6.27)

The Lyapunov function can be constructed by

VF = 1
2p

∗
F

⊤L̄1p
∗
F ≥ 0 , (6.28)

where p∗
F = pF + L̄1

−1L̄2hF . VF is a positive definite scalar-valued function since L̄1

is positive definite from Lemma 1 (i). Time derivative of VF along the trajectory of
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(6.27) is

V̇F = p∗
F

⊤L̄1ṗF

= (pF + L̄1
−1L̄2hF )⊤L̄1(−SF L̄1pF − SF L̄2hF )

= −p⊤
F L̄1SF L̄1pF − h⊤

F L̄
⊤
2 SF L̄2hF

= −(S
1
2
F L̄1pF )⊤(S

1
2
F L̄1pF ) − (S

1
2
F L̄2hF )⊤(S

1
2
F L̄2hF )

= −∥S
1
2
F L̄1pF ∥2 − ∥S

1
2
F L̄2hF ∥2 ≤ 0 , (6.29)

where S
1
2
F is the diagonal matrix with entries given by the square root of diagonal ele-

ments of SF . Note that, all the diagonal elements of SF are strictly positive. Hence,

S
1
2
F is well-defined. The last step of (6.29) is according to the fact that L̄1 is symmetric

for undirected interaction among followers. Similar to the above analysis, all trajec-

tories of (6.27) converge to the zero set of VF applying Lemma 6.3, Corollary 6.1 and

LaSalle’s invariance principle. Hence, we can imply that

pF = −L̄1
−1L̄2hF , when t → ∞ . (6.30)

By Lemma 6.1 (II), we can conclude that pF satisfies Definition (6.1). Thus, the

followers can converge to the hull convex formed by leaders. Combining Parts I and

II, it can be concluded that the swarm system (6.2) achieves formation-containment

under input saturation. This completes the proof.

6.4 Formation-Containment Protocol for Double In-

tegrator Systems

In this section, we extend the formation-containment protocol design with double-

integrator systems in 2-dimensions

ṗi(t) = vi(t)

v̇i(t) = ui(t) ,
(6.31)

where ui(t) is the acceleration input to be designed. We can find that double-integrator

systems (6.31) can be expressed in the following form ṗi

v̇i

 =

 0 I2

0 0


 pi

vi

+

 0

I2

ui . (6.32)
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Let si = (p⊤
i , v

⊤
i )⊤, For the leaders and followers, our proposed formation-containment

control protocol is

ui =
∑

j∈Ni

Âij(sj − si) i ∈ VE , (6.33)

ui =
∑

j∈Ni

wij[(pj − pi) + (vj − vi)] i ∈ VF , (6.34)

where Âij = [k0Aij , k1Aij], k0 ∈ R and k1 ∈ R are scalar control gains. wij is non-

negative gain. The definition of Aij is shown in (6.5).

Now, we present the following theorem to guarantee the convergence of double-integrator

systems under the proposed formation-containment coordination.

Theorem 6.3. Consider leaders and followers with double-integrator dynamics (6.31)

and control protocol (6.33) and (6.34). Assume the interaction topology among leaders

(GE) contains a spanning tree and, for each follower, there exists at least one directed

path from a leader, then, for any wij > 0, the swarm system (6.31) achieves formation-

containment if A is that chosen by Algorithm 1, for all the non-zero eigenvalues of A

(λ(A)), k0, k1 are selected such that

Re(k1λ(A) + Γ) < 0, (6.35)

where Γ2 = k2
1λ

2(A) + 4k0λ(A).

Proof. We put the control protocol (6.33) and (6.34) into (6.32).

On the one hand, for leaders, we have

ṠE =

 0 I2(N−M)

k0A k1A

SE , (6.36)

where, SE = [s⊤
M+1, . . . , s

⊤
N ]⊤. Let

Â =

 0 I2(N−M)

k0A k1A

 ∈ R4(N−M)×4(N−M).

Then, the proof can be divided into two steps. In step 1, we will find the eigenvectors

of Â corresponding to zero. In step 2, we will show that all non-zero eigenvalues of Â
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have negative real parts.

Firstly, since

rank(Â) = rank(A) + rank(I2(N−M)) = 4(N −M) − 4,

we have the matrix Â have 4 zero eigenvalues. If we let

1̂ = [1⊤, 0]⊤, 1̂⊥ = [1⊥⊤
, 0]⊤,

ĥ = [h⊤, 0]⊤, ĥ⊥ = [h⊥⊤
, 0]⊤,

we can easily verify that Â1̂ = Â1̂⊥ = Âĥ = Âĥ⊥ = 0. Hence we find the four eigen-

vectors corresponding to zero.

Secondly, since A is selected by Algorithm 1, we have Re(λ(A)) < 0, where Re(λ(A))

denotes the non-negative eigenvalues of A. Then, the characteristic equation of Â is

given by
det(λ2I2(N−M) − k1λA− k0A)

=
∏

µ∈eig(A)
|λ2 − k1µλ− k0µ|

= 0 .

(6.37)

From (6.35) and (6.37), for all non-zero eigenvalues of Â, we have

Re(λ(Â)) = Re(k1λ(A) + Γ)
2 < 0 , (6.38)

where Γ2 = k2
1λ

2(A) + 4k0λ(A).

Therefore, we can conclude that all of the non-eigenvalues of Â have negative real parts.

Hence, similar to the discussion in the leader case of Theorem 6.1, when t → ∞, we

obtain

SE(t) → 1̂ĉ1 + 1̂⊥ĉ2 + ĥĉ3 + ĥ⊥ĉ4 , (6.39)

which implies

pE(t) → 1ĉ1 + 1⊥ĉ2 + hĉ3 + h⊥ĉ4 , (6.40)

where ĉ1, ĉ2, ĉ3 and ĉ4 are constants. That is to say, the leaders can converge to

nothing but all translations, rotations, and non-negative scale factors of h, which also
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indicates that leaders can converge to the desired formation shape.

On the other hand, for followers, we have

ṠF =

 0 I2M

−L̄1 −L̄1

SF +

 0 0

−L̄2 −L̄2

SE , (6.41)

where SF = [s⊤
1 , . . . , s

⊤
M ]⊤. Let t → ∞, similar to discussion in the follower case of

Theorem 6.1, we conclude

SF →

 −L̄1
−1L̄2 −L̄1

−1L̄2

0 0

 ĥF , (6.42)

where ĥF = [h⊤
F , 0] and hF is the formation shaped by leaders. Then we can imply

pF = −L̄1
−1L̄2hF , when t → ∞ . (6.43)

From Lemma 6.1 (ii), we can conclude that pF satisfy Definition (6.1), and then the

swarm system (6.31) achieve formation-containment. This completes the proof.

Since the condition (6.35) is not easy to be verified, we have the following corollary.

Corollary 6.2. In Theorem 6.3, if we can select the matrix A which satisfies λ(A) ∈ R,

where λ(A) denote all non-zero eigenvalues of A. The chosen of k0 and k1 can be

substituted by k0 > 0 and k1 > 0.

Proof. Since λ(A) ∈ R, we have Γ2 ∈ R.

On the one hand, in (6.37), if k2
1λ

2(A) + 4k0λ(A) ≤ 0, we can obtain

Re(λ(Â)) = k1λ(A)
2 < 0 .

On the other hand, in (6.37), if k2
1λ

2(A) + 4k0λ(A) > 0, we can imply that Γ ∈ R. Let

γ =
√
k2

1λ
2(A) + 4k0λ(A), we have

Re(λ(Â)) = k1λ(A) + Γ
2

<
k1λ(A) + γ

2

= 4k0λ(A)
γ − k1λ(A) .

Using this, combined with the selection of A, k0 and k1, we conclude that Re(λ(Â)) <

0. The remaining proof is similar to Theorem 6.3, we omit here.
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Remark 6.4. It can be seen that the formation matrix A in the control protocol plays

a key role in both single and double integrator systems. Different from [12, 82], where

both the relative formation reference signal and the relative state information are re-

quired in the real-time data transmission, the proposed control law only uses the relative

state information. Hence, less data is used in the transmission resulting in reducing

the communication cost in each robot.

Remark 6.5. The values of k0 and k1 reflect the convergence speed of velocity and

acceleration, hence, if we select a larger set of k0 and k1, the formation-containment

task will be completed faster. However, considering the energy costs and constraints

of real-robot hardware, we cannot select arbitrary large values of k0 and k1. Therefore,

there is a trade-off between control performance and input constraints.

6.5 Simulation Results & Discussion

This section presents the observed results from simulation studies, followed by the

results obtained from experiments using real robots.

6.5.1 Mission Description

Formation-containment control of a swarm robotic system has the potential to be

applied in various applications such as automated farming and precision agricul-

ture [135, 139]. As an example, Fig. 1.1 shows an agri-robotic scenario using two

different types of robots in a swarm, which are deployed for a weed management task.

The leader robots (which are quadrotors with their embedded sensory system, e.g.

multispectral imaging camera) are deployed to form a formation around the bound-

ary of the target area i.e. an area of interest. The follower robots (which are the

ground robots directly interacting with plants) converge to the target area spanned

by the leaders using inter-robot communication to complete the task, which may, for

example, be the targeted application of insecticide. By developing and coordinating

multiple sensing mobile platforms, the observed data can facilitate the practices of

sustainable agricultural intensification.
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Figure 6.1: Interaction topology of the proposed swarm system. The four UAVs denote
the leaders and the ten Mona robots denote the followers. The interactions among
leaders and among followers are denoted by the red lines and yellow lines, respectively.
The interactions between leaders and followers are denoted by blue arrows.

6.5.2 Results

In this section, we design a numerical simulation in the Matlab/Simulink environment

to demonstrate the effectiveness of the theorem results obtained in the previous section.

We consider the double-integrator swarm system with four leaders and ten followers.

Their dynamics are described by (6.31). The interaction topology among them is

shown in Fig. 6.1. To test the robustness of the system, we add the white noise with

an amplitude equal to 0.03 to the measured position of each robot. The input sat-

uration is also considered in the simulation, where we set ∥umax∥ = 3 for all the robots.

Initially, the desired formation of the four leader agents is chosen as a square. For

simplicity, we set the final configuration of four agents as (0, 0), (1, 0), (1, 1) and

(0, 1) to fix a square shape. Hence, h can then be defined as the following form

h = [0, 0, 1, 0, 1, 1, 0, 1]⊤.
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Then, the matrix A is generated as follows, utilising Algorithm 1

A =



−2 0 1 1 0 0 1 −1

0 −2 −1 1 0 0 1 1

1 −1 −2 0 1 1 0 0

1 1 0 −2 −1 1 0 0

0 0 1 −1 −2 0 1 1

0 0 1 1 0 −2 −1 1

1 1 0 0 1 −1 −2 0

−1 1 0 0 1 1 0 −2



.

Finally, for followers, we set the interaction that has 0 − 1 weight in the final step of

Algorithm 1. It is straightforward to verify that all nonzero eigenvalues of A are real.

Hence, by Corollary (6.2), we set the control gain for k0 = k1 = 1
10 . The swarm system

(6.31) will achieve the formation-containment by the control protocol (6.33) and (6.34).

Fig. 6.2 shows the trajectory snapshots of leaders and followers with the interaction

topology in Fig. 6.1 at different time instants t ∈ {0, 20, 50, 100} s. The positions of

followers are denoted by circles, and the positions of leaders are denoted by square,

triangle, diamond, and asterisk, respectively. Moreover, the convex hull formed by

leaders is marked by the red solid line. Fig. 6.2(a) shows the initial state of leaders

and followers. From (a) to (b) in Fig. 6.2, it can be seen that the positions of the

followers converged to the convex hull which was formed by the leaders. Fig. 6.2

(b)-(d) show the leaders converged to the desired formation and, simultaneously, the

followers still stayed in the convex hull formed by the leaders. Finally, the swarm

system achieved formation-containment at t = 100 s. The states and control inputs

of the robots are shown in Fig. 6.3, where the solid lines denote leaders, and the

dashed lines denote followers. It can be seen that the velocity and acceleration of each

robot converge to zero, and all the robots complete the formation-containment task

within t =80 s. Furthermore, the results of the simulation reveal that our control pro-

tocol is robust in several situations like white noise perturbation and input constraints.

Next, we analyse how different cases in followers and leaders affected the result of
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the formation-containment. Two metrics which are i) time to achieve formation-

containment (denoted by T ) and ii) the average distance between followers to the

barycentre in followers (denoted by d) were investigated. We assumed there are four

leaders in the swarm system with the interaction shown in Fig. 6.1, and the interaction

topology between followers is a ring. The variables are the number of followers and the

interaction between leaders and followers. For each case, we repeated the experiments

50 times and the initial position of the robots was randomly selected for each run.

A. Number of followers (N): Assuming all leaders can transmit information to two

followers and every follower can receive information from at least one leader. The only

difference is the number of followers. We can indicate from Fig. 6.4 (a) that the value

of T increased as an increase in N . Also, as shown in Fig. 6.4 (b), the value of d was

also raised as an increase in N , however, with a different trend.

Figure 6.2: Trajectory snapshots of leaders (denoted by square, triangle, diamond,
and asterisk, respectively) and followers (denoted by ten nodes) in the swarm system
at different time instants, t ∈ {0, 20, 50, 100} s.

B. Leaders can transmit information to how many followers (Nl): Assuming there are

four followers and every follower can receive information from at least one leader. The

only difference is that leaders can transmit information to how many followers. We can

see from Fig. 6.5 (a) that the value of T was decreased as an increase in Nl. However,

the change in the value of d had no strong relationship with the various Nl.

C. How many followers can receive information from leaders (Nf): Assuming there

are four followers and all leaders can transmit information to one follower. The only

difference is that the number of followers can receive information from the leaders. We
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Figure 6.3: (a) and (b) show the time variation of position in x-axis (pxi
) and y-axis

(pyi
) of ith robot, respectively. (c) and (d) show the time variation of velocity in x-axis

(vxi
) and y-axis (vyi

) of ith robot, respectively. (e) and (f) show the time variation
of acceleration (control input) in x-axis (axi

) and y-axis (ayi
) with saturated input

equals to 3 of ith robot, respectively. The solid lines denote leaders, and the dashed
lines denote followers.



CHAPTER 6. FORMATION-CONTAINMENT PROTOCOL AND APPLICATION110

Figure 6.4: (a) Time of formation-containment achievement, T , and (b) aver-
age distance between followers and barycentre, d, for number of followers, N ∈
{3, 4, 5, 6, 7, 8, 9, 10} robots.

can observe from Fig. 6.5 (b) that the value of T decreased as Nf increased. However,

the value of d increased as Nf increased.
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Figure 6.5: Time of formation-containment achievement, T , and average distance
between followers and barycentre, d, for (a) the leaders link to Nl ∈ {1, 2, 3} followers
and (b) followers number (Nf ∈ {1, 2, 3, 4}) which directly linked to the leaders. The
average values of T and d from 50 simulations are indicated by the blue and red
colour lines, respectively. The shaded area indicates all the obtained results (between
minimum and maximum).
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Therefore, we can see that the time for formation-containment can be affected by

both the number of followers and the interactions between leaders and followers. The

convergence speed slows down when the number of robots increases or the interaction

becomes sparse. Hence, the required time for formation-containment will be prolonged.

However, the average distance between followers and barycentre is affected mostly by

the interaction, which increases as the interaction becomes sparse. In fact, the trend

of the red line in Fig. 6.5(a) is mainly due to the interaction since the interaction will

become sparse in ring topology as the number of robots increases. If we change to

another topology, the performance will be different.

6.5.3 Comparisons

In contrast to the formation tracking problems solved in [140] where there exists only

one leader in the swarm system, in this work, we deal with the case when there exist

multiple leaders, which brings more challenges to the control system design. Simi-

lar containment control problems are discussed in [2, 82], however, for each robot,

it requires not only the relative state information from its neighbours, but also the

relative formation reference signal which cannot be measured by the distance sensors

directly, such that the control scheme is not fully distributed and scalable. On the

contrary, the proposed control protocol only requires relative position measurements,

which provides more feasibility in real-world implementation.

In order to show the superior coordination performance under the proposed algorithm,

a comparison between the proposed formation-containment protocol and the adaptive

controller recently developed in [2] is made. For both controllers, we adopted the same

dynamics and conditions as shown in Section 6.6. The initial state of each robot was

selected randomly. We repeated experiments 50 times for each controller, where we

used ∥p − p∗∥ (p is the position vector of every robot, and p∗ is the final state vector

of every robot) to define the tracking error. The performance analysis is illustrated

in Fig. 6.6, wherein (a), the yellow area represents the observed results from 50 times

experiments of our controller and the solid yellow line is the mean value. In Fig. 6.6 (b),

the blue area represents results from 50 times experiments of the controller proposed

in [2] and the solid blue line is the mean value. It can be seen that the convergence
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Figure 6.6: Controller performances of (a) the proposed protocol in this work and (b)
the protocol proposed in [2]. The shaded area represents the observed results from 50
times experiments and lines represent the mean value.

time of the proposed protocol in this work is shorter than [2]. Such advantages reveal

that our protocol is more efficient in completing formation-containment tasks.

6.6 Real-robot Experiments

6.6.1 Experimental Setup

To investigate the performance of the proposed formation scenario, we used a col-

lection of real robots, namely Mona robots which are an open-source swarm robotic

platform [141]. Fig. 6.7 (a) shows a Mona robot and its various modules. The robot

is based on Arduino AVR architecture with ATMEGA-328 micro-controller. It is ac-

tuated with two wheels (with 3.2 mm diameter), which are differentially-driven using

two gear-head micro DC motors [142]. The main controller uses PWM (pulse-width

modulation) to control the rotational speed of the left and right motors independently.

We developed an arena with an overhead camera as shown in Fig. 6.7 (b). In the ex-

perimental setup, we used a low-cost Microsoft LifeCam Studio Webcam as the swarm

localisation platform. The position of each robot was continuously tracked by an open-

source tracking software developed in [143] with a sampling time of 0.1 s. A time delay

of 0.05 s and a tracking error of ±0.005 m can be observed during the experiments due

to the processing speed of the host computer and the quality of the camera. Hence, the
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Figure 6.7: (a) Mona Robot, an open-source swarm robotic platform. A) infrared prox-
imity sensors, B) main AVR processor, C) SPI port for RF transceiver. D) gear-head
DC micro-motor, E) local IR communication transmitters and encoders, F) commu-
nication modules processor, G) 32 mm wheels. (b) Arena configuration includes a PC
that tracks the position of robots using a digital camera and sends motion commands
to the robots using RF communication.

robustness of the swarm system subjected to certain communication delays, actuator

noises and inaccuracies of the camera tracking system can be verified via the experi-

ments. The control algorithm generates the next position for each robot and transmits

this information to them using an RF (radio frequency) module, which is connected

to the robots using a serial port. The generated position command contains two bytes

for the rotational speeds of the left and right motors. The main controller (micro-

controller) of the robots receives this command and translates it to two PWM signals

associated with the left and right motors. Details on motion control and kinematics

of the robot were presented in [141]. All the mobile robots used in the experiments
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Figure 6.8: Selected snapshots of the experiments and the trace with six robots at (a)
t=0 s, (b) t=10 s, (c) t=20 s and (d) t=40 s. The leaders are linked with red dashed
lines.

have the same physical and hardware configuration. The dynamic model in terms of

the global coordinates can be described as follows

ṗxi = vi cos θi ,

ṗyi = vi sin θi ,

θ̇i = ωi ,

(6.44)

where (pxi, pyi) denotes the position of the ith robot and θi is the orientation. vi and

ωi represent the linear and angular velocities of the ith robot respectively. In order

to deal with the nonlinear dynamics that appeared in the robot model, the feedback

linearisation technique [144] was used to transfer the dynamics of the robots (6.44)

to single-integrator systems, such that the algorithm proposed in the previous section

can be directly applied on the feedback linearised dynamics.

6.6.2 Results with Real Mobile Robots

In the real-robot experiment, six Mona robots (4 leaders and 2 followers) were utilised.

The goal of these experiments was to make the robots move and then observe the tra-

jectory they followed to achieve the final position. Analysis of this trajectory allowed

the functionality of the proposed formation-containment to be verified.

We utilised six robots, where the four leaders are linked by the red dashed lines as
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shown in Fig. 6.8, which illustrates the trajectories of the four leaders and two fol-

lowers. In Fig. 6.8 (a), the robots are positioned at randomly selected initial states.

From Fig. 6.8 (b) to (c), it was observed that the robots started to move toward the

desired position. The leaders accomplished their formation control in a square, and

the followers moved toward the convex hull spanned by the leaders. In Fig. 6.8 (d),

the formation-containment task is seen to be complete. We can see from Fig. 6.8 that

the leaders formed a square arrangement, that was set as the desired formation, grad-

ually. At the same time, the followers entered the convex hull formed by the leaders,

demonstrating that formation-containment was accomplished. Hence, it is clear from

these figures that the robots were able to achieve the formation-containment by the

control protocol proposed in this study.

In this set of experiment, because time delays and tracking errors existed in the cam-

era tracking systems, the trace of the robots was not as smooth as might be expected

(especially the yellow trace). One of the reasons was that the robots were driven by

two motors, there also existed some tracking error between the desired speed and real

speed. Furthermore, since the moment they receive the command via the RF (radio

frequency) module may be delayed because of the wireless connection, and there also

exists disturbances (such as friction and the internal interrupts of the robots), further

deviation of the tracking was observed. On the other hand, due to the fact that the

robots could not be treated as particles (points) in the real-world environment, we

activated the collision avoidance function of the robots using artificial potential field

methods. The robots changed their route when they discovered their distance between

other robots was smaller than the threshold. Despite all of this, the robustness of the

control system was shown to overcome these difficulties. Hence, the task was com-

pleted, and the effectiveness of the proposed controller was validated.

According to the results, the control protocol was successfully applied to real robots

allowing them to achieve formation-containment. The proposed technique has signifi-

cant potential to perform more complex behaviours to assist humans in dealing with

challenging tasks in real-world scenarios.
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6.7 Summary

In conclusion, a novel formation-containment control protocol design was proposed

that makes the leaders converge to the desired formation, and the followers move to

the convex hull spanned by the leaders. Simulations were performed to verify the

control design algorithm and analysed some of the factors that affected the formation-

containment performance. Finally, we applied our theorem to a real-world scenario

by performing an experiment using multiple mobile robots. It can be seen that the

proposed coordination framework can be used in precision agriculture applications

where the leaders act as markers, indicating an area of interest and the followers are

robots that interact with the plants. In the future, the nonlinear dynamics of the

robot and time delay of the sensors will be taken into consideration when designing

the distributed protocol. Furthermore, robust adaptive control techniques [145] will

also be exploited to guarantee reliable performance.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

The ultimate goal of the thesis is to explore novel formation strategies to swarm

robotics and find the potential real-world applications by implementing the proposed

algorithms.

First of all, a mixed formation strategy based on edge and bearing measurements

is designed for networked MRS. We combined the edge-based and bearing-based ap-

proaches in the controller to maximise the advantages of both methods. Depending on

the sensing-ability of the robotic platform, this mixed control method can provide an

efficient solution to maximise the tracking performance. The robustness of the mixed

controller is also discussed for both leaderless and leader-follower cases by Lyapunov

method. The effectiveness of the theoretical results is illustrated with numerical sim-

ulation case studies.

Furthermore, we design a bearing-only collision-free formation coordination strategy

for networked heterogeneous robots. In contrast to traditional position-based coor-

dination strategies, the bearing-only coordinated movements of the robots only rely

on the neighbouring bearing information. This feature can be utilised to reduce the

sensing requirements in the hardware implementation. The robots can converge to the

target formation within a prespecified settling time under the proposed GD protocol.

The bound of the tracking can be ensured in the case of exogenous disturbances and

118
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actuator faults. We also extend the result to LTI systems. Both Numerical simula-

tions and lab-based experiments are presented to validate the effectiveness of these

proposed algorithms.

Additionally, we also address the bearing-only formation tracking problem nonlinear

MRS. A novel formation protocol is designed for the follower robots based on bearing

measurements to form the desired formation configuration. We add a compensa-

tion term in the controller to tackle the unknown nonlinear elements in the system.

The formation tracking error will converge to zero exponentially under the proposed

bearing-only algorithm by Lyapunov method. After that, we extend the stability anal-

ysis of the proposed strategy on moving leaders, and the formation tracking error is

able to be guaranteed in a bounded set. Simulation case studies are provided to verify

the effectiveness of the theoretical results.

Moreover, we propose an SDP-based robust formation-containment coordination for

swarm robotics that makes the leaders converge to the desired formation, and the

followers move to the convex hull spanned by the leaders. In contrast to conventional

consensus-based formation control methods, the relative formation reference signal is

not required in real-time data transmission, which provides greater feasibility for im-

plementation on hardware platforms. We provided the robustness analysis of the pro-

tocol with input saturation. The effectiveness of the proposed formation-containment

control algorithm is demonstrated with both numerical simulations and experiments

using real robots that utilise the miniature mobile robot, Mona.

To sum up, this thesis proposes several formation protocols for MRS. Some potential

future research is listed on the next section.

7.2 Future Work

Some possible future work is displayed below

• In this thesis, the bearing-only formation protocols are only designed for follow-

ers. The performance of the bearing-based controller will be further explored if
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the input of the leaders is considered.

• It can be seen that the continuation of the protocol proposed in Chapter 6

can not be guaranteed during the formation. How to modify the bearing-only

protocol to ensure the continuity of the controller will be investigated in the

future. Moreover, the safety of the robots is also significant when designing the

protocol. Hence, the collision-free bearing-only strategy will be considered in the

future.

• The FTBO protocol is only discussed for single-integrator systems. How to

design an FTBO formation algorithm for nonlinear MAS will be taken into con-

sideration. Moreover, we will also focus on fixed-time bearing-only formation

protocol for nonlinear MAS in the future.

• Learning-based training (such as radial basis function neural network, reinforce-

ment learning, etc.) can be implemented to evaluate the uncertainty in the sys-

tem. Hence, combining bearing-only protocol with a learning-based algorithm is

also an interesting direction in the future.
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Appendix A

Extension of the FTBO protocol to

the LTI Systems with Exogenous

Disturbance

Considering that some robotic platforms may have general linear dynamics (e.g., after

implementing geometry-based robust feedback linearisation techniques), in this ap-

pendix, we aim to extend the results obtained from the previous subsections to solve

the robust formation coordination problem with exogenous disturbance and bearing

measurement for LTI systems.

Suppose the leaders are fixed (ṗi = 0, ∀i ∈ Vl), and the dynamics of the followers can

be described by

ṗi(t) = Aipi(t) + ui(t) + ωi(t), i ∈ Vf , (A.1)

where Ai ∈ Rd×d, and ωi ∈ Rd is the exogenous disturbance of robot i ∈ Vf .

Under the protocol (5.2), the dynamic of (A.1) can be written in compact form as

ṗ =

 0 0

0 A

 p+ (a+ b
µ̇

µ
)

 0 0

0 Idnf

 H̄⊤(g∗ − g) + ω, (A.2)

where A = diag{Anl+1, · · · , An} ∈ Rnf ×nf .
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Let p = [p⊤
l , p

⊤
f ]⊤, where pl = col(p1, · · · , pnl

) and pf = col(pnl+1, · · · , pn) denote the

positions of leaders and followers. We have the following corollary.

Corollary A.1. Consider the LTI system with the exogenous disturbance. Under

Assumption 5.1-5.4, if Ai is negative semi-definite, and p∗
i

⊤Ai = 0 for each follower

robot i ∈ Vf , the formation error δ converge to the bound set S

S =
{
δ : ∥δ∥2 ≤ 4γ2F 2K

aλmin(Bff )

}
.

in finite time by protocol (6.1), where K = 2ns0, and γ ≥
√
aK/λmin(Bff ).

Proof. The Lyapunov function can be constructed as V = 1
2∥δ∥2. The derivative of V

can be expressed as

V̇ =δ⊤ṗ

= − (a+ b
µ̇

µ
)(p− p∗)⊤H̄⊤(g − g∗) + δ⊤ω

+ (p− p∗)⊤

 0 0

0 A

 p.
(A.3)

From (5.37), since Ai is negative semi-definite and p∗
i

⊤Ai = 0 for each follower robot

i ∈ Vf , we have

V̇ ≤ − (a+ b
µ̇

µ
) λmin(Bff )
2maxk∥ek∥

∥δ∥2 + δ⊤ω +
n∑

i=nl+1
p∗

i
⊤Aipi

+ p⊤
f Apf

≤ − (a+ b
µ̇

µ
) λmin(Bff )
2maxk∥ek∥

∥δ∥2 + δ⊤ω.

(A.4)

Following similar steps in Theorem 5.2, we can imply that the formation error δ con-

verges to the bound set S in finite time by protocol (5.2). This completes the proof.



Appendix B

Bearing-Only Formation Control

for Nonlinear Systems

B.1 Introduction

It is noticeable that the dynamics of the robots are linear in the former chapters.

However, the movement of the robot is complex in practical scenarios. In this chapter,

we aim to deal with the nonlinearity in Objective 3. A cooperative bearing-only

formation protocol is designed to deal with the heterogeneous MRS with nonlinear

dynamics. The robots can only measure the bearing information from their neighbors

while the position or distance measures are inaccessible. Moreover, the heterogeneous

nonlinear function is included in the system. The stability of the proposed strategy can

be guaranteed via Lyapunov techniques. Furthermore, we also discuss the robustness of

the controller for moving leaders, which is more practical in real applications. Finally,

the simulations are presented to verify the effectiveness of the proposed algorithm.

The contribution of this chapter can be summarised as:

• A cooperative bearing-only formation strategy is proposed for nonlinear hetero-

geneous multi-robot networks. Compared with traditional position-based and

distance-based coordination methods, the coordinated movement of each robot

merely requires the relative bearings from their neighbours, which significantly

reduces the sensing requirements.
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• A novel compensation term based on bearing measurements is introduced in the

proposed controller. The compensation function is able to eliminate the effect

of the unknown nonlinear dynamics in the system without position and distance

measurements. Different from the works presented in [114], the dynamics of the

agents considered in this work could be nonlinear and heterogeneous.

• Moreover, the nonzero velocities of the leader are also considered in this research.

The formation error can be guaranteed in a bounded set under the proposed

protocol for moving leaders.

The rest of the chapter proceeds as follows. In Section B.2, the preliminaries and

the problem description are introduced. In Section B.3, the cooperative bearing-only

formation scheme is proposed and the stability analysis of the controller is presented

by Lyapunov method. The proposed results are extended to deal with moving leaders.

Simulation results are shown in Section B.4 to verify the feasibility of the proposed

algorithm. Section B.5 concludes the chapter.

B.2 Problem Descriptions

In this chapter, we mainly focus on nonlinear heterogeneous MRS. Let Vl and Vf be

the set of leaders and followers. Suppose the leaders are fixed (ṗi(t) = 0, ∀i ∈ Vl), the

dynamics of the ith follower robot can be written as

ṗi = ψi(pi(t)) + ui(t), ∀i ∈ Vf (B.1)

where ψi(·) ∈ Rp denotes the unknown nonlinear continuous function for each robot.

We can imply that the nonlinear MRS is heterogeneous since ψi is different for each

robot. ui(t) ∈ Rp represents the control input for the ith robot generated by bearing

measurements. The main problem of the work can be expressed as

Problem: Design the cooperative formation strategies for each follower robot merely

based on bearing vectors {gij}j∈Ni
such that all the robots will converge to the target

formation.

To deal with the problem, we propose the following assumptions
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Assumption B.1. The unknown nonlinear function ψi(·) is upper-bounded by a con-

tinuous function ψ̃(t) which is known. That is to say, ∥ψi(·)∥ ≤ ψ̃(t).

Assumption B.2. The formation scale s(t) is upper-bounded. In another words,

s(t) ≤ s0, ∀ t ≥ 0.

Assumption B.3. The desired formation is unique. i.e., λmin(Bff ) > 0, where

λmin(Bff ) denotes the minimum eigenvalue of Bff .

Assumption B.4. There is no collision between each robot during the formation task.

i.e., ∥ek∥ > σ, ∀k ∈ {1, 2, · · · ,m}, where σ is a positive constant.

Assumption B.4 ensures that the bearing vectors generated by each pair of the neigh-

bour are always well defined during the formation framework [114, 126].

B.3 Main Results

B.3.1 Bearing-Only Formation Protocol for Followers

In this section, we present a novel formation algorithm to solve the problem proposed

in Section B.2. The controller of the ith follower robot is designed as

ui(t) =
∑

j∈Ni

(aξij + bΨi(ξij)), (B.2)

where ξij = ξk = gij − g∗
ij denotes the bearing error of the kth undirected edge (i, j),

a and b are controller gains which should be defined later, and

Ψi(ξij) =


ξij

∥ξij∥2 ψ̃
2(t), when ξij ̸= 0

0, when ξij = 0.

Denote δi = pi − p∗
i as the formation error of the ith robot, and δ = [δT

1 , · · · , δT
n ]T . Let

ξ = [ξT
1 , · · · , ξT

m]T . We have the following main result

Theorem B.1. Under Assumption 1-4, the formation tracking error of the nonlin-

ear heterogeneous MRS (B.1) converges to zero exponentially for the fixed leaders by

implementing the controller (B.2) if the control gains a and b are selected to satisfy

ab >
2n2s0

mσλmin(Bff ) . (B.3)



APPENDIX B. BEARING-ONLY FORMATION FOR NONLINEAR SYSTEMS143

Proof. It is obvious that δi = 0, ∀i ∈ Vl since the leaders are stationary. Hence, we

can rewritten the formation error as δ = [0, δT
f ]T , where δf = [δT

nl+1, · · · , δT
n ]T . Let

Γ =

 0 0

0 Ipnf

, it can be obtained that

δT Γ = δT (B.4)

and
δT Bδ = δT

f Bffδf

≥ λmin(Bff )δT
f δf

= λmin(Bff )δT δ.

(B.5)

Substituting the formation protocol (B.2) to the nonlinear heterogeneous MRS (B.1),

then we present the compact form of (B.1) as

ṗ = −ΓH̃T (aξ + bΨ(ξ)) + ψ(p). (B.6)

where ψ(p) = [0, ψT
nl+1(pnl+1), · · · , ψT

n (pn)]T , and

Ψ(ξ) = ψ̃2(t)
[
ξT

1
∥ξ1∥2 , · · · , ξT

m

∥ξm∥2

]T

.

Choosing the Lyapunov candidate as

V = 1
2δ

T δ. (B.7)

The derivation of V can be expressed as

V̇ = δT ṗ

= −δT ΓH̃T (aξ + bΨ(ξ)) + δTψ(p)

= −aδT H̃T ξ − bδT H̃T Ψ(ξ) + δTψ(p)

≤ −apT H̃T ξ + Ω

≤ − aδT Bδ
2 maxk ∥ek∥

+ Ω

≤ −aλmin(Bff )
maxk ∥ek∥

V + Ω,

(B.8)

where

Ω = −bδT H̃T Ψ(ξ) + δTψ(p).
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On the one hand, according to the definition of s(t), we can imply that

n2s(t)2 = n
n∑

k=1
∥pk − p̄∥2

≥ (∥pi − p̄∥ +
n∑

k∈V,k ̸=i

∥pk − p̄∥)2

≥ ∥pi − p̄∥2.

(B.9)

Combining with Assumption B.2, it can be observed that

∥ek∥ = ∥pi − pj∥

= ∥(pi − p̄) − (pj − p̄)∥

≤ ∥pi − p̄∥ + ∥pj − p̄∥

≤ 2ns(t) ≤ 2ns0 .

(B.10)

On the other hand, from Assumption B.1 and B.4, together with the average inequality,

we have
Ω = −b(e− e∗)T Ψ(ξ) + δTψ(p)

= −b
m∑

k=1

eT
k gk − eT

k g
∗
k

∥gk − g∗
k∥2 ψ̃

2(t) + b
m∑

k=1

e∗T

k gk − e∗T

k g∗
k

∥gk − g∗
k∥2 ψ̃2(t)

+ δTψ(p)

= −b
m∑

k=1

∥ek∥(1 − gT
k g

∗
k)

∥gk − g∗
k∥2 ψ̃2(t) + b

m∑
k=1

∥e∗
k∥(gT

k g
∗
k − 1)

∥gk − g∗
k∥2 ψ̃2(t)

+ δTψ(p)

≤ −b
m∑

k=1

∥ek∥
2 ψ̃2(t) + δTψ(p)

≤ −b
m∑

k=1

∥ek∥
2 ψ̃2(t) + n

2bmσδ
T e+ bmσ

2n ∥ψ(p)∥2

≤ n

2bmσδ
T δ − b

m∑
k=1

∥ek∥ − σ

2 ψ̃2(t) ≤ n

bmσ
V.

(B.11)

Substituting (B.10) and (B.11) into (B.8), from (B.3), we have

V̇ ≤ −ãV < 0, (B.12)

where

ã = abmσλmin(Bff ) − 2n2s0

2bmnσs0
> 0.

That is to say, the formation error will converge to zero exponentially under the control

strategy (B.2) with the exponential convergence rate equal to ã. This completes the

proof.
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B.3.2 Convergence Analysis for Moving Leaders

In this section, the performance of the proposed controller (B.2) is considered if the

leaders are not fixed. Suppose the trajectories of the leaders are described as ṗi =

v(t), ∀i ∈ Vl, where v(t) is the velocities of each leader which is bounded, i.e., ∥v∥ ≤ ṽ,

where ṽ is a known positive constant. Then, it is easily to find that ṗ∗
i = v, ∀i ∈ V

[112]. The stability analysis of the proposed controller under moving leaders is shown

in the following theorem

Theorem B.2. Under Assumption B.1-B.4, the formation error of the nonlinear het-

erogeneous MRS (B.1) converges to the bounded set

S =
{
δ : ∥δ∥2 ≤ 4b2m2σ2ṽ2

n

}
.

for the moving leaders with the velocity v by implementing the controller (B.2) if the

control gains a and b are selected to satisfy

ab >
4n2s0

mσλmin(Bff ) . (B.13)

Proof. Selecting the Lyapunov function as (B.7), similar to the analysis in Theorem

B.1, we can get
V̇ = δT (ṗ− 1n ⊗ v)

≤ −aλmin(Bff )
maxk ∥ek∥

V + Ω − δTv

≤ −ãV − δTv

≤ − n

bmσ
V − δTv,

(B.14)

where the last inequity of (B.14) can be obtained from (B.13).

From average inequality, we have

−δT (1n ⊗ v) ≤ n

4bmσ∥δ∥2 + bmσ

n
∥1n ⊗ v∥2

= n

2bmσV + bmσ∥v∥2

≤ n

2bmσV + bmσṽ2.

(B.15)

Combining (B.14) and (B.15), we can get

V̇ ≤ − n

2bmσV + bmσṽ2. (B.16)
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Figure B.1: Interaction topology of the MRS for (a) Case 1: Fixed leaders, and (b)
Case 2: Moving leaders.

Define the bounded set S as

S =
{
δ : ∥δ∥2 ≤ 4b2m2σ2ṽ2

n

}
.

Denote S̄ as supplementary set of S. if e ∈ S̄, it can be observed that

V̇ ≤ 0. (B.17)

That is to say, when t → ∞, it holds that

∥e∥2 ≤ 4b2m2σ2ṽ2

n
(B.18)

Hence, the formation tracking error will converge to the bounded set S. This completes

the proof.

B.4 Simulation Results

In this section, the simulation case studies are presented to verify the theoretical results

for both fixed and moving leaders.

B.4.1 Case Study on Fixed Leaders

We first design the simulation to validate the proposed bearing-only formation protocol

(B.2) on fixed leaders. Eight mobile robots, with two leaders and six followers, are

applied to this case study. The interaction topology among the robots is appeared in
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Fig. B.1 (a). The leaders are represented by two red stars labelled 1 and 2, and the

followers are denoted by six orange circles labelled from 3 to 8. The communications

between each robot are denoted by green solid lines. These robots aim to attain

a target formation as two pentagons together in 2D space. In robot dynamics, the

nonlinear function for the ith follower robot is defined as

ψi(pi(t)) =

 0.5 sin(ipi1(t))
t+1

0.5 sin(ipi2(t))
t+1

 , i ∈ Vf , (B.19)

where pi(t) = [pi1(t), pi2(t)]T . It is easy to find that ∥ψi(pi(t))∥ ≤ 1/(t + 1), which

satisfies Assumption 1. The MRS is heterogeneous since ψi(pi(t)) is different for each

follower. According to the condition in Theorem B.1, we select the control gains as

a = 10, and b = 2.

By implementing the bearing-only controller (B.2), the trajectories of the follower

robots are elucidated in Fig. B.2. We set the positions of the leaders (represented

by two red stars) as (3, 0) and (6, 0). The initial states of the followers (represented

by six circles with different colours) are chosen as (15.9, 2), (10, 2), (−5, 1), (−5.9, 3),

(4,−9), and (14,−8). It can be observed that all the robots are able to form the

target formation under the proposed protocol. Fig. B.3 reveals the time variation of

the formation errors. We can conclude that all the formation errors of the followers will

converge to zero during the formation task. Based on these results, the bearing-only

formation task can be accomplished by the proposed strategy (B.2).

B.4.2 Case Study on Moving Leaders

In this section, we further verify the performance of the proposed protocol for moving

leaders. Six robots, with two leaders and four followers, are used in this task. Fig. B.1

(b) displays the interaction topology between each robot. The velocities of the leaders

are set as

ṗi(t) =

 0.1

0.1 sin( π
80t) + 0.01 cos5( π

50t)

 , i ∈ Vl, (B.20)

where Vl = {1, 2}. The nonlinear function ψi(pi(t)) is chosen as (B.19). The control

gains are set as a = 15, and b = 1, which satisfy the condition in Theorem B.2.
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Figure B.2: Trajectories of the followers for fixed leaders (labelled by red stars).

Figure B.3: Formation errors of the followers for fixed leaders.
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Figure B.4: Trajectories of the followers for moving leaders (labelled by red stars).

Figure B.5: Formation errors of the followers for moving leaders.
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We select the initial positions of the leaders as (−1, 0) and (1, 0). Fig. B.4 demon-

strates the movement of each robot under the controller (B.2). Two red stars denote

the moving leaders. The trajectories of the followers are represented by four dash

lines with various colours. From Fig. B.5, we can obtain that all the formation errors

of the followers will converge to a bounded set (the boundary is denoted by a black

dashed line). To sum up, the formation error can be guaranteed in a bounded set

by implementing the proposed bearing-only formation protocol, which validates the

feasibility of the theoretical result.

B.5 Summary

In this chapter, the bearing-only formation tracking problem is addressed for het-

erogeneous nonlinear MRS. We propose a novel formation protocol for the follower

robots based on bearing measurements to form the desired formation configuration. A

compensation term is included in the controller to deal with the unknown nonlinear

items in the system. By using the Lyapunov method, the formation tracking error will

converge to zero exponentially under the proposed bearing-only algorithm. Further-

more, we extend the stability analysis of the proposed strategy on moving leaders, and

the formation tracking error is able to be guaranteed in a bounded set. Simulation

case studies are provided to verify the effectiveness of the theoretical results. In the

next chapter, we will move on formation-containment problem with different types of

robots.
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