2,468 research outputs found

    Vision-based localization methods under GPS-denied conditions

    Full text link
    This paper reviews vision-based localization methods in GPS-denied environments and classifies the mainstream methods into Relative Vision Localization (RVL) and Absolute Vision Localization (AVL). For RVL, we discuss the broad application of optical flow in feature extraction-based Visual Odometry (VO) solutions and introduce advanced optical flow estimation methods. For AVL, we review recent advances in Visual Simultaneous Localization and Mapping (VSLAM) techniques, from optimization-based methods to Extended Kalman Filter (EKF) based methods. We also introduce the application of offline map registration and lane vision detection schemes to achieve Absolute Visual Localization. This paper compares the performance and applications of mainstream methods for visual localization and provides suggestions for future studies.Comment: 32 pages, 15 figure

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    LaneMapper: A City-scale Lane Map Generator for Autonomous Driving

    Get PDF
    Autonomous vehicles require lane maps to help navigate from a start to a goal position in a safe, comfortable and quick manner. A lane map represents a set of features inherent to the road, such as lanes, stop signs, traffic lights, and intersections. We present a novel approach to detect multiple lane boundaries and traffic signs to create a 3D city-scale map of the driving environment. We detect, recognize and track lane boundaries with multimodal sensory and prior inputs, such as camera, LiDAR, and GPS/IMU, to assist autonomous driving. We detect and classify traffic signs from the image considering high reflectivity of LiDAR points and further register the locations of traffic signs and lane boundaries together in the world coordinate frame. We have also made our code base open-source for the research community to tweak or use our algorithm for their purposes

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Survey on Monocular Re-Localization: From the Perspective of Scene Map Representation

    Full text link
    Monocular Re-Localization (MRL) is a critical component in autonomous applications, estimating 6 degree-of-freedom ego poses w.r.t. the scene map based on monocular images. In recent decades, significant progress has been made in the development of MRL techniques. Numerous algorithms have accomplished extraordinary success in terms of localization accuracy and robustness. In MRL, scene maps are represented in various forms, and they determine how MRL methods work and how MRL methods perform. However, to the best of our knowledge, existing surveys do not provide systematic reviews about the relationship between MRL solutions and their used scene map representation. This survey fills the gap by comprehensively reviewing MRL methods from such a perspective, promoting further research. 1) We commence by delving into the problem definition of MRL, exploring current challenges, and comparing ours with existing surveys. 2) Many well-known MRL methods are categorized and reviewed into five classes according to the representation forms of utilized map, i.e., geo-tagged frames, visual landmarks, point clouds, vectorized semantic map, and neural network-based map. 3) To quantitatively and fairly compare MRL methods with various map, we introduce some public datasets and provide the performances of some state-of-the-art MRL methods. The strengths and weakness of MRL methods with different map are analyzed. 4) We finally introduce some topics of interest in this field and give personal opinions. This survey can serve as a valuable referenced materials for MRL, and a continuously updated summary of this survey is publicly available to the community at: https://github.com/jinyummiao/map-in-mono-reloc.Comment: 33 pages, 10 tables, 16 figures, under revie

    Attention and Anticipation in Fast Visual-Inertial Navigation

    Get PDF
    We study a Visual-Inertial Navigation (VIN) problem in which a robot needs to estimate its state using an on-board camera and an inertial sensor, without any prior knowledge of the external environment. We consider the case in which the robot can allocate limited resources to VIN, due to tight computational constraints. Therefore, we answer the following question: under limited resources, what are the most relevant visual cues to maximize the performance of visual-inertial navigation? Our approach has four key ingredients. First, it is task-driven, in that the selection of the visual cues is guided by a metric quantifying the VIN performance. Second, it exploits the notion of anticipation, since it uses a simplified model for forward-simulation of robot dynamics, predicting the utility of a set of visual cues over a future time horizon. Third, it is efficient and easy to implement, since it leads to a greedy algorithm for the selection of the most relevant visual cues. Fourth, it provides formal performance guarantees: we leverage submodularity to prove that the greedy selection cannot be far from the optimal (combinatorial) selection. Simulations and real experiments on agile drones show that our approach ensures state-of-the-art VIN performance while maintaining a lean processing time. In the easy scenarios, our approach outperforms appearance-based feature selection in terms of localization errors. In the most challenging scenarios, it enables accurate visual-inertial navigation while appearance-based feature selection fails to track robot's motion during aggressive maneuvers.Comment: 20 pages, 7 figures, 2 table
    • …
    corecore