7,222 research outputs found

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test

    Aerial-Ground collaborative sensing: Third-Person view for teleoperation

    Full text link
    Rapid deployment and operation are key requirements in time critical application, such as Search and Rescue (SaR). Efficiently teleoperated ground robots can support first-responders in such situations. However, first-person view teleoperation is sub-optimal in difficult terrains, while a third-person perspective can drastically increase teleoperation performance. Here, we propose a Micro Aerial Vehicle (MAV)-based system that can autonomously provide third-person perspective to ground robots. While our approach is based on local visual servoing, it further leverages the global localization of several ground robots to seamlessly transfer between these ground robots in GPS-denied environments. Therewith one MAV can support multiple ground robots on a demand basis. Furthermore, our system enables different visual detection regimes, and enhanced operability, and return-home functionality. We evaluate our system in real-world SaR scenarios.Comment: Accepted for publication in 2018 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR

    Highly efficient Localisation utilising Weightless neural systems

    Get PDF
    Efficient localisation is a highly desirable property for an autonomous navigation system. Weightless neural networks offer a real-time approach to robotics applications by reducing hardware and software requirements for pattern recognition techniques. Such networks offer the potential for objects, structures, routes and locations to be easily identified and maps constructed from fused limited sensor data as information becomes available. We show that in the absence of concise and complex information, localisation can be obtained using simple algorithms from data with inherent uncertainties using a combination of Genetic Algorithm techniques applied to a Weightless Neural Architecture

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    Assistive trajectories for human-in-the-loop mobile robotic platforms

    Get PDF
    Autonomous and semi-autonomous smoothly interruptible trajectories are developed which are highly suitable for application in tele-operated mobile robots, operator on-board military mobile ground platforms, and other mobility assistance platforms. These trajectories will allow a navigational system to provide assistance to the operator in the loop, for purpose built robots or remotely operated platforms. This will allow the platform to function well beyond the line-of-sight of the operator, enabling remote operation inside a building, surveillance, or advanced observations whilst keeping the operator in a safe location. In addition, on-board operators can be assisted to navigate without collision when distracted, or under-fire, or when physically disabled by injury

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable
    corecore