4,025 research outputs found

    Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots

    Get PDF
    Mandow, A; Cantador, T.J.; Reina, A.J.; Martínez, J.L.; Morales, J.; García-Cerezo, A. "Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots," Robot2015: Second Iberian Robotics Conference, Advances in Robotics, (2016) Advances in Intelligent Systems and Computing, vol. 418. This is a self-archiving copy of the author’s accepted manuscript. The final publication is available at Springer via http://link.springer.com/book/10.1007/978-3-319-27149-1.The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end, spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides, rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error and model size is compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).This work was partially supported by the Spanish CICYT project DPI 2011-22443, the Andalusian project PE-2010 TEP-6101, and Universidad de Málaga-Andalucía Tech

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Interactive inspection of complex multi-object industrial assemblies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1016/j.cad.2016.06.005The use of virtual prototypes and digital models containing thousands of individual objects is commonplace in complex industrial applications like the cooperative design of huge ships. Designers are interested in selecting and editing specific sets of objects during the interactive inspection sessions. This is however not supported by standard visualization systems for huge models. In this paper we discuss in detail the concept of rendering front in multiresolution trees, their properties and the algorithms that construct the hierarchy and efficiently render it, applied to very complex CAD models, so that the model structure and the identities of objects are preserved. We also propose an algorithm for the interactive inspection of huge models which uses a rendering budget and supports selection of individual objects and sets of objects, displacement of the selected objects and real-time collision detection during these displacements. Our solution–based on the analysis of several existing view-dependent visualization schemes–uses a Hybrid Multiresolution Tree that mixes layers of exact geometry, simplified models and impostors, together with a time-critical, view-dependent algorithm and a Constrained Front. The algorithm has been successfully tested in real industrial environments; the models involved are presented and discussed in the paper.Peer ReviewedPostprint (author's final draft

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    Víceměřítková reprezentace topografického povrchu založená na geoprvcích

    Get PDF
    A three-dimensional (3D) representation of the topographic surface is an important element in planning, civil engineering and mapping. Many state-of-the-art representa- tions provided graphical, 3D model of entire planet. However, the existing solutions to 3D topographic surface lack the geometric flexibility and accuracy on boundaries with models of other geographic features. Most of the contemporary approaches to digital Earth solutions focus on the visualization performance. The high visual performance is achieved by the use of special data structures optimized for rendering. However, this optimization towards visualization hampers the data management of spatial data, their analysis and distribution. Therefore, the introduced solution reflects on multiple requirements of digital Earth systems. In addition to the visualization performance, the requirements regarding data interoperability, data management and distribution, data analysis and the multiple level of detail (LOD) are considered as essential for the design of the new solution. The topographic surface is central to the proposed method. It provides the defining surface in terms of which other features can be geographically referenced to. Therefore, this work introduces a new, more functional data representation of multi-resolution...Datové reprezentace topografického povrchu ve třídimenzionálním (3D) prostoru jsou důležitým nástrojem v plánování, stavebním inženýrství či mapování. Množství nejnovějších reprezentací povrchu poskytlo grafický 3D model celé planety. Existující 3D řešení nicméně postrádají flexibilitu a přesnost na hranicích s modely jiných ge- ografických objektů. Většina současných přístupů k digitálním modelům Země se zamě- řuje na rychlost vizualizace. Vysoký vizuální výkon je dosahován užitím speciálních, za tímto účelem navržených datových struktur, které jsou optimalizovány na vykreslení grafické scény. Takováto optimalizace jedním směrem ovšem brání efektivní správě prostorových dat, jejich analýze a distribuci. Proto předkládané řešení zohledňuje četné požadavky takovýchto geo-informačních systémů s globálním prostorovým pokrytím. Kromě nutnosti vysokého výkonu vizual- izace dat jsou zohledněny požadavky na interoperabilitu dat, řízení správy dat a jejich distribuce, analýzu dat a podporu více úrovní rozlišení. Topografický povrch má v navrhované metodě klíčovou, sjednocující roli. Všechny ostatní prostorové objekty jsou k němu georeferencovány. Z tohoto důvodu dizertační...Department of Applied Geoinformatics and CartographyKatedra aplikované geoinformatiky a kartografieFaculty of SciencePřírodovědecká fakult

    RH-Map: Online Map Construction Framework of Dynamic Objects Removal Based on Region-wise Hash Map Structure

    Full text link
    Mobile robots navigating in outdoor environments frequently encounter the issue of undesired traces left by dynamic objects and manifested as obstacles on map, impeding robots from achieving accurate localization and effective navigation. To tackle the problem, a novel map construction framework based on 3D region-wise hash map structure (RH-Map) is proposed, consisting of front-end scan fresher and back-end removal modules, which realizes real-time map construction and online dynamic object removal (DOR). First, a two-layer 3D region-wise hash map structure of map management is proposed for effective online DOR. Then, in scan fresher, region-wise ground plane estimation (R-GPE) is adopted for estimating and preserving ground information and Scan-to-Map Removal (S2M-R) is proposed to discriminate and remove dynamic regions. Moreover, the lightweight back-end removal module maintaining keyframes is proposed for further DOR. As experimentally verified on SemanticKITTI, our proposed framework yields promising performance on online DOR of map construction compared with the state-of-the-art methods. And we also validate the proposed framework in real-world environments

    Computing views, remodeling environments

    Get PDF
    This article traces the development and expansion of early computer systems for analyzing views at three state-owned agencies in the United States and Great Britain: the US Forest Service, the Central Electricity Generating Board of England and Wales, and the Greater London Authority. Following the technology over four decades, from 1968 to 2012, the article traces assumptions incorporated into initial programs and propagated through to the present. These programs were designed to address questions about visual environments and proximities by numerical calculations alone, without the need for field observations. Each historical episode provides unique insights into the role of abstraction and calculation in the production of landscapes and the built environment, and shows how computer-generated view data became an important currency in planning control, not primarily for aesthetic but for financial and political reasons

    Appearance Preserving Rendering of Out-of-Core Polygon and NURBS Models

    Get PDF
    In Computer Aided Design (CAD) trimmed NURBS surfaces are widely used due to their flexibility. For rendering and simulation however, piecewise linear representations of these objects are required. A relatively new field in CAD is the analysis of long-term strain tests. After such a test the object is scanned with a 3d laser scanner for further processing on a PC. In all these areas of CAD the number of primitives as well as their complexity has grown constantly in the recent years. This growth is exceeding the increase of processor speed and memory size by far and posing the need for fast out-of-core algorithms. This thesis describes a processing pipeline from the input data in the form of triangular or trimmed NURBS models until the interactive rendering of these models at high visual quality. After discussing the motivation for this work and introducing basic concepts on complex polygon and NURBS models, the second part of this thesis starts with a review of existing simplification and tessellation algorithms. Additionally, an improved stitching algorithm to generate a consistent model after tessellation of a trimmed NURBS model is presented. Since surfaces need to be modified interactively during the design phase, a novel trimmed NURBS rendering algorithm is presented. This algorithm removes the bottleneck of generating and transmitting a new tessellation to the graphics card after each modification of a surface by evaluating and trimming the surface on the GPU. To achieve high visual quality, the appearance of a surface can be preserved using texture mapping. Therefore, a texture mapping algorithm for trimmed NURBS surfaces is presented. To reduce the memory requirements for the textures, the algorithm is modified to generate compressed normal maps to preserve the shading of the original surface. Since texturing is only possible, when a parametric mapping of the surface - requiring additional memory - is available, a new simplification and tessellation error measure is introduced that preserves the appearance of the original surface by controlling the deviation of normal vectors. The preservation of normals and possibly other surface attributes allows interactive visualization for quality control applications (e.g. isophotes and reflection lines). In the last part out-of-core techniques for processing and rendering of gigabyte-sized polygonal and trimmed NURBS models are presented. Then the modifications necessary to support streaming of simplified geometry from a central server are discussed and finally and LOD selection algorithm to support interactive rendering of hard and soft shadows is described
    corecore