106,094 research outputs found

    Open Source Virtual Worlds and Low Cost Sensors for Physical Rehab of Patients with Chronic Diseases

    Get PDF
    For patients with chronic diseases, exercise is a key part of rehab to deal better with their illness. Some of them do rehabilitation at home with telemedicine systems. However, keeping to their exercising program is challenging and many abandon the rehabilitation. We postulate that information technologies for socializing and serious games can encourage patients to keep doing physical exercise and rehab. In this paper we present Virtual Valley, a low cost telemedicine system for home exercising, based on open source virtual worlds and utilizing popular low cost motion controllers (e.g. Wii Remote) and medical sensors. Virtual Valley allows patient to socialize, learn, and play group based serious games while exercising

    Improving engagement of stroke survivors using desktop virtual Reality-Based serious games for upper limb rehabilitation: A multiple case study

    Get PDF
    Engagement with upper limb rehabilitation post-stroke can improve rehabilitation outcomes. Virtual Reality can be used to make rehabilitation more engaging. In this paper, we propose a multiple case study to determine: (1) whether game design principles (identified in an earlier study as being likely to engage) actually do engage, in practice, a sample of stroke survivors with a Desktop Virtual Reality-based Serious Game designed for upper limb rehabilitation; and (2) what game design factors support the existence of these principles in the game. In this study, we considered 15 principles: awareness , feedback , interactivity , flow , challenge , attention , interest , involvement , psychological absorption , motivation , effort , clear instructions , usability , purpose , and a first-person view . Four stroke survivors used, for a period of 12 weeks, a Virtual Reality-based upper limb rehabilitation system called the Neuromender Rehabilitation System. The stroke survivors were then asked how well each of the 15 principles was supported by the Neuromender Rehabilitation System and how much they felt each principle supported their engagement with the system. All the 15 tested principles had good or reasonable support from the participants as being engaging. Use of feedback was emphasised as an important design factor for supporting the design principles, but there was otherwise little agreement in important design factors among the participants. This indicates that more personalised experiences may be necessary for optimised engagement. The insight gained can be used to inform the design of a larger scale statistical study into what engages stroke survivors with Desktop Virtual Reality-based upper limb rehabilitation

    Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.

    Get PDF
    Abstract Purpose: This paper proposes a novel system (using the Nintendo Wii remote) that offers customised, non-immersive, virtual reality-based, upper-limb stroke rehabilitation and reports on promising preliminary findings with stroke survivors. Method: The system novelty lies in the high accuracy of the full kinematic tracking of the upper limb movement in real-time, offering strong personal connection between the stroke survivor and a virtual character when executing therapist prescribed adjustable exercises/games. It allows the therapist to monitor patient performance and to individually calibrate the system in terms of range of movement, speed and duration. Results: The system was tested for acceptability with three stroke survivors with differing levels of disability. Participants reported an overwhelming connection with the system and avatar. A two-week, single case study with a long-term stroke survivor showed positive changes in all four outcome measures employed, with the participant reporting better wrist control and greater functional use. Activities, which were deemed too challenging or too easy were associated with lower scores of enjoyment/motivation, highlighting the need for activities to be individually calibrated. Conclusions: Given the preliminary findings, it would be beneficial to extend the case study in terms of duration and participants and to conduct an acceptability and feasibility study with community dwelling survivors. Implications for Rehabilitation Low-cost, off-the-shelf game sensors, such as the Nintendo Wii remote, are acceptable by stroke survivors as an add-on to upper limb stroke rehabilitation but have to be bespoked to provide high-fidelity and real-time kinematic tracking of the arm movement. Providing therapists with real-time and remote monitoring of the quality of the movement and not just the amount of practice, is imperative and most critical for getting a better understanding of each patient and administering the right amount and type of exercise. The ability to translate therapeutic arm movement into individually calibrated exercises and games, allows accommodation of the wide range of movement difficulties seen after stroke and the ability to adjust these activities (in terms of speed, range of movement and duration) will aid motivation and adherence - key issues in rehabilitation. With increasing pressures on resources and the move to more community-based rehabilitation, the proposed system has the potential for promoting the intensity of practice necessary for recovery in both community and acute settings.The National Health Service (NHS) London Regional Innovation Fund

    USEQ: A Short Questionnaire for Satisfaction Evaluation of Virtual Rehabilitation Systems

    Get PDF
    [EN] New emerging technologies have proven their efficacy in aiding people in their rehabilitation. The tests that are usually used to evaluate usability (in general) or user satisfaction (in particular) of this technology are not specifically focused on virtual rehabilitation and patients. The objective of this contribution is to present and evaluate the USEQ (User Satisfaction Evaluation Questionnaire). The USEQ is a questionnaire that is designed to properly evaluate the satisfaction of the user (which constitutes part of usability) in virtual rehabilitation systems. Forty patients with balance disorders completed the USEQ after their first session with ABAR (Active Balance Rehabilitation), which is a virtual rehabilitation system that is designed for the rehabilitation of balance disorders. Internal consistency analysis and exploratory factor analysis were carried out to identify the factor structure of the USEQ. The six items of USEQ were significantly associated with each other, and the Cronbach alpha coefficient for the questionnaire was 0.716. In an analysis of the principal components, a one-factor solution was considered to be appropriate. The findings of the study suggest that the USEQ is a reliable questionnaire with adequate internal consistency. With regard to patient perception, the patients found the USEQ to be an easy-to-understand questionnaire with a convenient number of questions.Gil-Gómez, J.; Manzano-Hernández, P.; Albiol-Perez, S.; Aula-Valero, C.; Gil Gómez, H.; Lozano Quilis, JA. (2017). USEQ: A Short Questionnaire for Satisfaction Evaluation of Virtual Rehabilitation Systems. Sensors. 17(7):1-12. https://doi.org/10.3390/s17071589S112177BEVAN, N. (2001). International standards for HCI and usability. International Journal of Human-Computer Studies, 55(4), 533-552. doi:10.1006/ijhc.2001.0483Abran, A., Khelifi, A., Suryn, W., & Seffah, A. (2003). Software Quality Journal, 11(4), 325-338. doi:10.1023/a:1025869312943Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) Part 11: Guidance on Usabilityhttp://www.iso.org/iso/catalogue_detail.htm?csnumber=16883Holden, M. K. (2005). Virtual Environments for Motor Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 187-211. doi:10.1089/cpb.2005.8.187Sveistrup, H. (2004). Journal of NeuroEngineering and Rehabilitation, 1(1), 10. doi:10.1186/1743-0003-1-10Lange, B., Koenig, S., Chang, C.-Y., McConnell, E., Suma, E., Bolas, M., & Rizzo, A. (2012). Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and Rehabilitation, 34(22), 1863-1870. doi:10.3109/09638288.2012.670029Lewis, G. N., & Rosie, J. A. (2012). Virtual reality games for movement rehabilitation in neurological conditions: how do we meet the needs and expectations of the users? Disability and Rehabilitation, 34(22), 1880-1886. doi:10.3109/09638288.2012.670036Singh, D. K. A., Mohd Nordin, N. A., Aziz, N. A. A., Lim, B. K., & Soh, L. C. (2013). Effects of substituting a portion of standard physiotherapy time with virtual reality games among community-dwelling stroke survivors. BMC Neurology, 13(1). doi:10.1186/1471-2377-13-199Green, D., & Wilson, P. H. (2011). Use of virtual reality in rehabilitation of movement in children with hemiplegia − A multiple case study evaluation. Disability and Rehabilitation, 34(7), 593-604. doi:10.3109/09638288.2011.613520Meldrum, D., Herdman, S., Moloney, R., Murray, D., Duffy, D., Malone, K., … McConn-Walsh, R. (2012). Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: a randomised controlled trial. BMC Ear, Nose and Throat Disorders, 12(1). doi:10.1186/1472-6815-12-3Gil-Gómez, J.-A., Lloréns, R., Alcañiz, M., & Colomer, C. (2011). Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. Journal of NeuroEngineering and Rehabilitation, 8(1), 30. doi:10.1186/1743-0003-8-30Albiol-Perez, S., Gil-Gomez, J.-A., Llorens, R., Alcaniz, M., & Font, C. C. (2014). The Role of Virtual Motor Rehabilitation: A Quantitative Analysis Between Acute and Chronic Patients With Acquired Brain Injury. IEEE Journal of Biomedical and Health Informatics, 18(1), 391-398. doi:10.1109/jbhi.2013.2272101Jokela, T., Koivumaa, J., Pirkola, J., Salminen, P., & Kantola, N. (2005). Methods for quantitative usability requirements: a case study on the development of the user interface of a mobile phone. Personal and Ubiquitous Computing, 10(6), 345-355. doi:10.1007/s00779-005-0050-7Vermeulen, J., Neyens, J., Spreeuwenberg, van Rossum, E., Sipers, Habets, … de Witte. (2013). User-centered development and testing of a monitoring system that provides feedback regarding physical functioning to elderly people. Patient Preference and Adherence, 843. doi:10.2147/ppa.s45897Duffy, S. A., Fowler, K. E., Flanagan, P. S., Ronis, D. L., Ewing, L. A., & Waltje, A. H. (2013). The Development of the Tobacco Tactics Website. JMIR Research Protocols, 2(2), e22. doi:10.2196/resprot.2445Mathew, D., McKibbon, K. A., Lokker, C., & Colquhoun, H. (2014). Engaging With a Wiki Related to Knowledge Translation: A Survey of WhatisKT Wiki Users. Journal of Medical Internet Research, 16(1), e21. doi:10.2196/jmir.3001Mattos, L. S., Deshpande, N., Barresi, G., Guastini, L., & Peretti, G. (2014). A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery. The Laryngoscope, 124(8), 1887-1894. doi:10.1002/lary.24566Meldrum, D., Glennon, A., Herdman, S., Murray, D., & McConn-Walsh, R. (2011). Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii®Fit Plus. Disability and Rehabilitation: Assistive Technology, 7(3), 205-210. doi:10.3109/17483107.2011.616922Kalawsky, R. S. (1999). VRUSE—a computerised diagnostic tool: for usability evaluation of virtual/synthetic environment systems. Applied Ergonomics, 30(1), 11-25. doi:10.1016/s0003-6870(98)00047-7Cameirao, M. S., Bermudez i Badia, S., Duarte Oller, E., & Verschure, P. F. (2010). Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. Journal of NeuroEngineering and Rehabilitation, 7(1), 48. doi:10.1186/1743-0003-7-48Regenbrecht, H., Hoermann, S., McGregor, G., Dixon, B., Franz, E., Ott, C., … Hoermann, J. (2012). Visual manipulations for motor rehabilitation. Computers & Graphics, 36(7), 819-834. doi:10.1016/j.cag.2012.04.012Shin, J.-H., Ryu, H., & Jang, S. (2014). A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. Journal of NeuroEngineering and Rehabilitation, 11(1), 32. doi:10.1186/1743-0003-11-32Kizony, R., Katz, N., & (Tamar) Weiss, P. L. (2003). Adapting an immersive virtual reality system for rehabilitation. The Journal of Visualization and Computer Animation, 14(5), 261-268. doi:10.1002/vis.323Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240. doi:10.1162/105474698565686Kizony, R., Raz, L., Katz, N., Weingarden, H., & Weiss, P. L. T. (2005). Video-capture virtual reality system for patients with paraplegic spinal cord injury. The Journal of Rehabilitation Research and Development, 42(5), 595. doi:10.1682/jrrd.2005.01.0023Muñoz Tomás, M. T., Gil Gómez, J. A., Gil Gómez, H., Lozano Quillis, J. A., Albiol-Pérez, S., & Forcano García, M. (2013). Suitability of virtual rehabilitation for elderly: A study of a virtual rehabilitation system using the SEQ. European Geriatric Medicine, 4, S109. doi:10.1016/j.eurger.2013.07.358Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Forcano García, M., Albiol-Perez, S., Aula Valero, M. C., Gil Gómez, J. A., Solsona Hernández, S., & Manzano Hernández, P. (2013). Balance virtual rehabilitation in the elderly: The use of the «ABAR» system. European Geriatric Medicine, 4, S109. doi:10.1016/j.eurger.2013.07.356Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. doi:10.1007/bf02310555Babikian, T., & Asarnow, R. (2009). Neurocognitive outcomes and recovery after pediatric TBI: Meta-analytic review of the literature. Neuropsychology, 23(3), 283-296. doi:10.1037/a0015268Streiner, D. L. (2003). Starting at the Beginning: An Introduction to Coefficient Alpha and Internal Consistency. Journal of Personality Assessment, 80(1), 99-103. doi:10.1207/s15327752jpa8001_18Fackrell, K., Fearnley, C., Hoare, D. J., & Sereda, M. (2015). Hyperacusis Questionnaire as a Tool for Measuring Hypersensitivity to Sound in a Tinnitus Research Population. BioMed Research International, 2015, 1-12. doi:10.1155/2015/29042

    Kinect-based occupational therapy virtual environment for functional neurorehabilitation of the upper limb

    Get PDF
    The use of virtual reality technologies has attracted great interest in the area of functional neurorehabilitation [1]. These technologies have a strong ludic component that can increase motivation. Furthermore, Kinect-based motion tracking enables us to individualize the exercises and to generate knowledge [2]. The aim of this research is to perform a proof of concept test of a virtual environment for upper limb rehabilitation. To this end, we have designed two rehabilitation virtual scenarios based on occupational therapy activities. Activities are monitored by a control system based on Microsoft® Kinect sensor [3], for performing bilateral hand coordination and finger dissociation rehabilitation exercises. Both virtual scenarios have been validated by expert therapists at the Institut Guttmann of Nerurrehabilitación and a preliminary evaluation has been performed with four traumatic brain injury patients

    Web-based home rehabilitation gaming system for balance training

    Get PDF
    Currently, most systems for virtual rehabilitation and motor training require quite complex and expensive hardware and can be used only in clinical settings. Now, a low-cost rehabilitation game training system has been developed for patients with movement disorders; it is suitable for home use under the distant supervision of a therapist. It consists of a patient-side application installed on a home computer and the virtual rehabilitation Game Server in the Internet. System can work with different input gaming devices connected through USB or Bluetooth, such as a Nintendo Wii balance board, a Nintendo Wii remote, a MS Kinect sensor, and custom made rehabilitation gaming devices based on a joystick. The same games can be used with all training devices. Assessment of the Home Rehabilitation Gaming System for balance training was performed on six patients with Cerebral Palsy, who went through daily training sessions for two weeks. Preliminary results showed balance improvement in patients with Cerebral Palsy after they had completed home training courses. Further studies are needed to establish medical requirements and evidence length.Peer Reviewe

    Measurements by A LEAP-Based Virtual Glove for the hand rehabilitation

    Get PDF
    Hand rehabilitation is fundamental after stroke or surgery. Traditional rehabilitation requires a therapist and implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Alternative approaches, based on mechanical and tracking-based gloves, can be really effective when used in virtual reality (VR) environments. Mechanical devices are often expensive, cumbersome, patient specific and hand specific, while tracking-based devices are not affected by these limitations but, especially if based on a single tracking sensor, could suffer from occlusions. In this paper, the implementation of a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, is described. The VG is calibrated and static positioning measurements are compared with those collected with an accurate spatial positioning system. The positioning error is lower than 6 mm in a cylindrical region of interest of radius 10 cm and height 21 cm. Real-time hand tracking measurements are also performed, analysed and reported. Hand tracking measurements show that VG operated in real-time (60 fps), reduced occlusions, and managed two LEAP sensors correctly, without any temporal and spatial discontinuity when skipping from one sensor to the other. A video demonstrating the good performance of VG is also collected and presented in the Supplementary Materials. Results are promising but further work must be done to allow the calculation of the forces exerted by each finger when constrained by mechanical tools (e.g., peg-boards) and for reducing occlusions when grasping these tools. Although the VG is proposed for rehabilitation purposes, it could also be used for tele-operation of tools and robots, and for other VR applications

    An Evaluation of the Suitability of Commercially Available Sensors for Use in a Virtual Reality Prosthetic Arm Motion Tracking Device

    Get PDF
    The loss of a hand or arm is a devastating life event that results in many months of healing and challenging rehabilitation. Technology has allowed the development of an electronic replacement for a lost limb but similar advancements in therapy have not occurred. The situation is made more challenging because people with amputations often do not live near specialized rehabilitation centres. As a result, delays in therapy can worsen common complications like nerve pain and joint stiffness. For children born without a limb, poor compliance with the use of their prosthesis leads to delays in therapy and may affect their development. In many parts of the world, amputation rehabilitation does not exist. Fortunately, we live in an age where advances in technology and engineering can help solve these problems. Virtual reality creates a simulated world or environment through computer animation much like what is seen in modern video games. An experienced team of rehabilitation doctors, therapists, engineers and computer scientists are required to realize a system such as this. A person with an amputation will be taught to control objects in the virtual world by wearing a modified electronic prosthesis. Using computers, it will be possible to analyze his or her movements within the virtual world and improve the wearer's skills. The goals of this system include making the system portable and internet compatible so that people living in remote areas can also receive therapy. The novel approach of using virtual reality to rehabilitate people with upper limb amputations will help them return to normal activities by providing modern and appropriate rehabilitation, reducing medical complications, improving motivation (via gaming modules), advancing health care technology and reducing health care costs. The use of virtual reality technology in the field of amputee rehabilitation is in its earliest stages of development world wide. A virtual environment (VE) will facilitate the early rehabilitation of a patient before they are clinically ready to be fitted with an actual prosthesis. In order to create a successful virtual reality rehabilitation system such as this, an accurate method of tracking the arm in real-time is necessary. A linear displacement sensor and a microelectromechanical system (MEMS) inertial measurement unit (IMU) were used to create a device for capturing the motion of a user's movement with the intent that the data provided by the device be used along with a VE as a virtual rehabilitation tool for new upper extremity amputation patients. This thesis focuses on the design and testing of this motion capture device in order to determine the suitability of current commercially available sensing components as used in this system. Success will be defined by the delivery of accurate position and orientation data from the device so that that data can be used in a virtual environment. Test results show that with current MEMS sensors, the error introduced by double integrating acceleration data is too significant to make an IMU an acceptable choice for position tracking. However, the device designed here has proven to be an excellent cable emulator, and would be well suited if used as an orientation tracker

    An investigation of effects of the partial active assistance in a virtual environment based rehabilitation system

    Get PDF
    This thesis describes a study on a new active assistance in robotic rehabilitation in a haptic virtual environment for post-stroke patients. The novelty of this active assistance system lies in that the assistance is directly rendered on the result of a task performing. Active assistance will generally raise the confidence level of patients in performing a rehabilitation exercise. However, an overly high assistance level may induce cognitive fatigue with patients and thus decreases their motivation of performing a rehabilitation exercise. This thesis hypothesizes that a proper active assistance can improve the performance of a rehabilitation exercise, but will not reduce the motivation of patients in doing rehabilitation exercise. However, due to the difficulty in obtaining a proper number of patients for the experiment, the study turned to healthy people. Accordingly, a revised hypothesis is that active assistance on healthy people does not improve the task performance and not reduces the motivation of healthy people. In this thesis, first, a test-bed with the haptic virtual environment was designed and constructed. The test-bed included a simple task – i.e., following a predefined circle trajectory. Then, a statistical experiment was designed and an experiment was conducted on the test-bed. The experimental results test the hypothesis successfully. The main contributions of this thesis are: (1) the development of a new active assistance system for rehabilitation in a virtual environment and (2) the experimental study on the motivation of healthy people with the developed active assistance system. A care must, however, be taken that the experiment was conducted on healthy people and the conclusion drawn from the study may not be valid on patients
    corecore