13,260 research outputs found

    SLR - Análisis del Aprendizaje Basado en Juegos Serios en las Prácticas de los Estudios de Ingeniería

    Get PDF
    Este trabajo se trata de un Análisis Sistemático de la Literatura del uso de los juegos serios en los estudios de ingeniería.15 página

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    An Industrial Automation Course: Common Infrastructure for Physical, Virtual and Remote Laboratories for PLC Programming

    Get PDF
    This work describes the development of a teaching strategy to leverage current simulation tools and promote learning of industrial automation systems. Specifically, Programmable Logic Controller (PLC) programming in an industrial automation course. We propose an infrastructure where it is possible to work with physical, virtual and mixed laboratories

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Industry 4.0 Competencies as the Core of Online Engineering Laboratories

    Get PDF
    Online laboratories are widely used in higher engineering education and due to the COVID-19 pandemic, they have taken on an even greater relevance. At Tecnologico de Monterrey, Mexico, well-established techniques such as Problem-Based Learning (PBL), Project-Oriented Learning (POL) and Research-Based Learning (RBL) have been implemented over the years, and over the past year, have been successfully incorporated into the students’ learning process within online and remote laboratories. Nevertheless, these learning techniques do not include an element which is crucial in today’s industrialized world: Industry 4.0 competencies. Therefore, this work aims to describe a pedagogical approach in which the development of Industry based competencies complements the aforementioned learning techniques. The use and creation of virtual environments and products is merged with the understanding of fundamental engineering concepts. Further, a measurement of the students’ perceived self-efficacy related to this pedagogical approach is carried out, focusing on the physiological states and mastery experiences of the students. An analysis of its results is presented as well as a discussion on these findings, coupled with the perspectives from different key stakeholders on the importance of the educational institutions’ involvement in developing Industry 4.0 competencies in engineering students. Finally, comments regarding additional factors which play a role in the educational process, but were not studied at this time, as well as additional areas of interest are given

    Automation & control remote laboratory : evaluating a cooperative methodology

    Get PDF
    This paper presents a study carried out in order to evaluate the students’ perception in the development and use of remote Control and Automation education kits developed by two Universities. Three projects, based on real world environments, were implemented, being local and remotely operated. Students implemented the kits using the theoretical and practical knowledge, being the teachers a catalyst in the learning process. When kits were operational, end-user students got acquainted to the kits in the course curricula units. It is the author’s believe that successful results were achieved not only in the learning progress on the Automation and Control fields (hard skills) but also on the development of the students soft skills, leading to encouraging and rewarding goals, motivating their future decisions and promoting synergies in their work. The design of learning experimental kits by students, under teacher supervision, for future use in course curricula by enduser students is an advantageous and rewarding experience.The authors are grateful to the Research Center Algoritmi and WALC research project (PTDC/ESC/6806912006) for funding. The authors are also grateful to the students that participated in this project as designers and as end users.This work is funded by FEDER funds through the "Programa Operacional Factores de Competitividade - COMPETE" and by national funds by FCT- Fundacao para a Ciencia e a Tecnologia, project reference FCOMP-OI-OI24-FEDER-022674

    Design and development of an industrial network laboratory

    Get PDF
    This paper presents the first developments of an industrial network laboratory prototype. In the Automation Laboratory several kits have been implemented for local and remote control tests. The approach includes the design and implementation of an industrial network where the common communications protocols can be tested: the Automation Network Locker (ANL). To facilitate the monitoring and control of the network, WALC (Web Assisted Laboratory for Control Engineering on-line Education) interface platform was developed. This allows the remote monitoring and control of the pedagogic kits to complement the teaching/learning automation to undergraduate engineering students. The security of network access is also taken into account in order to limit and control the number of users that can access it. An on-line questionnaire accessed at the end of each semester, allows an actualization and to follow the students’ feedbackFundação para a Ciência e a Tecnologia (FCT

    Towards automatic apparatus integration in Automation Remote Laboratories

    Get PDF
    International audienceIn the context of ELearning, remote handson training has become an insisting need as in traditional learning, especially in scientific and technical disciplines. Electronic Laboratories (ELabs) have been growing for the last few years. LIESP team started in 2002 a research aiming to provide a framework which helps towards exchanging ELab learning scenarios when they fit to similar apparatuses (same functions, maybe not the same hardware). Meanwhile, LIMOS team focused on a design process to automate PLC code generation to help to design and generate programs for industrial discrete systems. This paper presents a project of merging these approaches to help ELab designers to design and integrate apparatuses into ELab frameworks when these apparatuses are discrete systems

    Remote laboratories: new technology and standard based architecture

    Full text link
    E-Laboratories are important components of e- learning environments, especially in scientific and technical disciplines. First widespread E-Labs consisted in proposing simulations of real systems (virtual labs), as building remote labs (remote control of real systems) was difficult by lack of industrial standards and common protocols. Nowadays, robotics and automation technologies make easier the interfacing of systems with computers. In this frame, many researchers (such as those mentioned in [1]) focus on how to set up such a remote control. But, only a few of them deal with the educational point of view of the problem. This paper outlines our current research and reflection about remote laboratory modelling
    corecore