240 research outputs found

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    VLSI decoding architectures: flexibility, robustness and performance

    Get PDF
    Stemming from previous studies on flexible LDPC decoders, this thesis work has been mainly focused on the development of flexible turbo and LDPC decoder designs, and on the narrowing of the power, area and speed gap they might present with respect to dedicated solutions. Additional studies have been carried out within the field of increased code performance and of decoder resiliency to hardware errors. The first chapter regroups several main contributions in the design and implementation of flexible channel decoders. The first part concerns the design of a Network-on-Chip (NoC) serving as an interconnection network for a partially parallel LDPC decoder. A best-fit NoC architecture is designed and a complete multi-standard turbo/LDPC decoder is designed and implemented. Every time the code is changed, the decoder must be reconfigured. A number of variables influence the duration of the reconfiguration process, starting from the involved codes down to decoder design choices. These are taken in account in the flexible decoder designed, and novel traffic reduction and optimization methods are then implemented. In the second chapter a study on the early stopping of iterations for LDPC decoders is presented. The energy expenditure of any LDPC decoder is directly linked to the iterative nature of the decoding algorithm. We propose an innovative multi-standard early stopping criterion for LDPC decoders that observes the evolution of simple metrics and relies on on-the-fly threshold computation. Its effectiveness is evaluated against existing techniques both in terms of saved iterations and, after implementation, in terms of actual energy saving. The third chapter portrays a study on the resilience of LDPC decoders under the effect of memory errors. Given that the purpose of channel decoders is to correct errors, LDPC decoders are intrinsically characterized by a certain degree of resistance to hardware faults. This characteristic, together with the soft nature of the stored values, results in LDPC decoders being affected differently according to the meaning of the wrong bits: ad-hoc error protection techniques, like the Unequal Error Protection devised in this chapter, can consequently be applied to different bits according to their significance. In the fourth chapter the serial concatenation of LDPC and turbo codes is presented. The concatenated FEC targets very high error correction capabilities, joining the performance of turbo codes at low SNR with that of LDPC codes at high SNR, and outperforming both current deep-space FEC schemes and concatenation-based FECs. A unified decoder for the concatenated scheme is subsequently propose

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    Resource Allocation in Ad Hoc Networks

    No full text
    Unlike the centralized network, the ad hoc network does not have any central administrations and energy is constrained, e.g. battery, so the resource allocation plays a very important role in efficiently managing the limited energy in ad hoc networks. This thesis focuses on the resource allocation in ad hoc networks and aims to develop novel techniques that will improve the network performance from different network layers, such as the physical layer, Medium Access Control (MAC) layer and network layer. This thesis examines the energy utilization in High Speed Downlink Packet Access (HSDPA) systems at the physical layer. Two resource allocation techniques, known as channel adaptive HSDPA and two-group HSDPA, are developed to improve the performance of an ad hoc radio system through reducing the residual energy, which in turn, should improve the data rate in HSDPA systems. The channel adaptive HSDPA removes the constraint on the number of channels used for transmissions. The two-group allocation minimizes the residual energy in HSDPA systems and therefore enhances the physical data rates in transmissions due to adaptive modulations. These proposed approaches provide better data rate than rates achieved with the current HSDPA type of algorithm. By considering both physical transmission power and data rates for defining the cost function of the routing scheme, an energy-aware routing scheme is proposed in order to find the routing path with the least energy consumption. By focusing on the routing paths with low energy consumption, computational complexity is significantly reduced. The data rate enhancement achieved by two-group resource allocation further reduces the required amount of energy per bit for each path. With a novel load balancing technique, the information bits can be allocated to each path in such that a way the overall amount of energy consumed is minimized. After loading bits to multiple routing paths, an end-to-end delay minimization solution along a routing path is developed through studying MAC distributed coordination function (DCF) service time. Furthermore, the overhead effect and the related throughput reduction are studied. In order to enhance the network throughput at the MAC layer, two MAC DCF-based adaptive payload allocation approaches are developed through introducing Lagrange optimization and studying equal data transmission period

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Multipass communication systems for tiled processor architectures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 191-202).Multipass communication systems utilize multiple sets of parallel baseband receiver functions to balance communication data rates and available computation capabilities. This is achieved by spatially pipelining baseband functions across parallel resources to perform multiple processing passes on the same set of received values, thus allowing the system to simultaneously convey multiple sequences of data using a single wireless link. The use of multiple passes mitigates the effects of data rate on receiver processing bottlenecks, making the use of general-purpose processing elements for high data rate communication functions viable. The flexibility of general-purpose processing, in turn, allows the receiver composition to trade-off resource usage and required processing rate. For instance, a communication system could be distributed across 2 passes using 2x the overall area, but reducing the data rate for each pass and the resultant overall required processing rate, and hence clock speed, by 1/2. Lowering the clock speed can also be leveraged to reduce power through voltage scaling and/or the use of higher Vt devices. The characteristics of general-purpose parallel processors for communications processing are explored, as well as the applicability of specific parallel designs to communications processing.(Cont.) In particular, an in depth look is taken of the Raw processor's tiled architecture as a general-purpose parallel processor particularly well suited to portable communications processing. An example of a multipass system, based on the 802.11a baseband, implemented on the Raw processor along with the accompanying hardware implementation is presented as both a proof-of-concept, as well as a means to explore some of the advantages and trade-offs of such a system. A bit-error rate study is presented which shows this multipass system to be within a small fraction of dB of the performance of an equivalent data rate single pass system, thus demonstrating the viability of the multipass algorithm. In addition, the capability of tiled processors to maximize processing capabilities at the system block level, as well as the system architectural level, is shown. Parallel implementations of two processing intensive functions: the FFT and the Viterbi decoder are shown. A parallelized assembly language FFT utilizing 16 tiles is shown to have a 1,000x improvement , and a parallelized 48-tile assembly language Viterbi decoder is shown to have a 10, 000x improvement over corresponding serial C implementations.by Nathan Robert Shnidman.Ph.D

    SInCom 2015

    Get PDF
    2nd Baden-Württemberg Center of Applied Research Symposium on Information and Communication Systems, SInCom 2015, 13. November 2015 in Konstan

    NASA SERC 1990 Symposium on VLSI Design

    Get PDF
    This document contains papers presented at the first annual NASA Symposium on VLSI Design. NASA's involvement in this event demonstrates a need for research and development in high performance computing. High performance computing addresses problems faced by the scientific and industrial communities. High performance computing is needed in: (1) real-time manipulation of large data sets; (2) advanced systems control of spacecraft; (3) digital data transmission, error correction, and image compression; and (4) expert system control of spacecraft. Clearly, a valuable technology in meeting these needs is Very Large Scale Integration (VLSI). This conference addresses the following issues in VLSI design: (1) system architectures; (2) electronics; (3) algorithms; and (4) CAD tools
    • …
    corecore