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JANoCS Joint Application and Network-on-Chip Simulator

LDPC Low Density Parity Check

LLR Logarithmic Likelihood Ratio

LSB Least Significant Bit

LT Luby Transform



MAP Maximum-A-Posteriori

MEU Minimum Extraction Unit

MP-SoC Multi-Processor System-on-Chip

MSB Most Significant Bit

MSESC Multi-Standard Early Stopping Criterion

MTBF Mean Time Between Failures

NB-LDPC Non-Binary LDPC

NDT Normalized Delivery Time

NED NEtwork Description

NI Network Interface

NMS Normalized Min-Sum

NoC Network on Chip

OC Outer Code

PE Processing Element

PP Partially Precalculated

QC-LDPC Quasi-Cyclic LDPC

QoS Quality-of-Service

RE Routing Element

RL Route Local

RP Read Pointer

RR Round Robin

RSC Recursive Systematic Convolutional

SISO Soft-Input Soft-Output



SB Single-Binary

SBTC Single-Binary Turbo Code

SCC Start of Current Configuration

SCM Send Colliding Message

SCMS Self-Corrected Min-Sum

SFC Start of Future Configuration

SI Soft Importance

SNR Signal-to-Noise Ratio

SoC System-on-Chip

SRD Symbol Reliability Difference

SSP Single Shortest Path

STB CU Symbol-To-Bit Conversion Unit

SW Sliding Window

U Urgency

UEP Unequal Error Protection

VN Variable Node

WP Write Pointer
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1.1 Motivation

The field of communications, both wireless and wired, has seen in the last decades an unprecedented

development. Every day, we use tens of different devices to store, receive and exchange information.

Regardless of their specific function, they are all characterized by a common component: the channel

decoder. Forward Error Correction (FEC) or channel coding is a technique present in all kinds of

communication standards: by encoding the transmitted information, it is possible to detect and correct

errors introduced during the transmission due to a noisy channel. Diverse FEC schemes are currently

used and both literature and industry continuously propose new codes and code combinations.

The design of an efficient channel decoder is a challenging task, since many variables come into

play. First of all, although the quest for better performance, simple hardware and small overhead

is continuous, decoders are still complex components that implement computationally intensive al-

gorithms. In fact, they often account for a large part of the device Silicon footprint and power

consumption, and they are a potential bottleneck in increasing the system throughput. Secondly,

the most recent nanometric fabrication technologies are not able to guarantee degrees of reliability

as high as before. Finally, the rate at which new standards are introduced and the wide number of

codes and related parameters considered by each one of them require decoders to be adaptable and

flexible. New design approaches and new solutions at architectural level are consequently necessary

to face these continuously evolving needs.

Covolutional Turbo Codes (CTCs) [1] ()and Low-Density Parity-Check (LDPC) codes [2] yield

very good error correction capabilities and rely on iterative decoding algorithms. They are considered

in a large number of standards, both alone and concatenated with other codes, for a variety of

applications: wireless communications (WiMAX [3], WiFi [4], 3GPP-LTE [5]), wired communications

(HpAV [6]), broadcasting (DVB-S2 [7], CMMB [8], DTMB [9]) and space communications (CCSDS

[10]). Every standard can foresee different code types, which in turn can support hundreds of different

code parameter combinations: even a channel decoder targeting a single standard must be extremely

flexible. Obviously, flexibility comes at cost in speed, area occupation and power consumption.

The design of a channel decoder can be a critical task, due to the complexity of the system

and the wide number of constraints usually involved. In particular, technological constraints (e.g.

nanotechnologies) and application bounds (standard specifications) result in problematic design of

mainly four types of channel decoders:

� multi-standard decoders, flexible with respect to existing standards (legacy-proof) and to future

standards (future-proof);
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� low-power consumption decoders;

� reliable decoders, able to correct errors within the memories;

� high-performance decoders, with extremely high error correction capabilities.

Stemming from previous studies on flexible LDPC decoders, this thesis work has been mainly

focused on the development of flexible turbo and LDPC decoder designs, and on the narrowing of

the power, area and speed gap they might present with respect to dedicated solutions. Additional

studies have been carried out within the field of increased code performance and of decoder resiliency

to hardware errors.
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1.2 Outline and contributions

In the above described context, several contributions have been proposed and will be presented in the

rest of this manuscript which is organized as follows:

1. Chapter 2 gives a brief overview on turbo and LDPC codes. The theory base behind these codes

is reviewed, and the most common decoding algorithms are described. The state of the art on

current decoder implementations is finally presented.

2. Chapter 3 regroups several main contributions in the design and implementation of flexible

channel decoders. The first part concerns the design of a Network-on-Chip (NoC) serving as

an interconnection network for a partially parallel LDPC decoder. This study follows a former

analysis that identified the best combination of design choices for an application specific NoC

used in a turbo decoder. The NoC simulator used in [11] is modified and extended to LDPC codes

as well, while additional topologies and design choices are taken in account. Joining the new

results with those in [11], a best-fit NoC architecture is selected and a complete multi-standard

turbo/LDPC decoder is designed and implemented. This decoder serves as the starting point for

a study on the reconfiguration of NoC-based channel decoder. Every time the code is changed,

the decoder must be reconfigured: this usually translates on the overwriting of one or more

memories, with the new data brought by dedicated buses. A number of variables influence the

duration of the reconfiguration process, starting from the involved codes down to decoder design

choices. Their effect is evaluated in order to achieve a reconfiguration architecture capable to

sustain as many codes as possible. The flexible decoder designed before is subsequently modified,

including also the proposed reconfiguration technique: three implementations are presented,

characterized by different decoder parallelism degrees, supported codes and achieved throughput.

NoC-based decoders, while granting flexible connectivity among all their nodes, can be burdened

with long transmission times. To meet with often high throughput requirements, it is not

always possible to wait for the transmitted information to reach its destination: to evaluate the

impact of the interconnection network on the performance of a decoder, and vice versa, a Joint

Application and NoC Simulator (JANoCS) is proposed and presented. It is a generic tool for

concurrent simulation of processing elements and interconnection for Multi-Processor Systems-

on-Chip (MP-SoCs), and it is useful for design space exploration in cases where processing

and communication need to be jointly optimized. JANoCS is then applied to the turbo/LDPC

decoder case to analyze the impact of late information delivery: correct functionality can be

ensured with a high NoC clock frequency, but to avoid the power consumption increase traffic
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reduction and optimization methods are devised, tested and implemented.

The main contributions of the work presented in this chapter are:

� a NoC simulator used to obtain the achievable throughput and an estimation of the NoC

area occupation, given the network details and the communication needs of the processing

elements;

� a best-fit NoC design targeting both turbo and LDPC code decoding;

� a multi-standard partially parallel turbo/LDPC decoder based on the designed NoC;

� an analysis of the reconfiguration problem in NoC-based decoders;

� the design of a multi-standard reconfigurable turbo/LDPC decoder, with three different

implementations targeting different sets of standards;

� the JANoCS simulator, for concurrent application-communication simulation of generic

MP-SoCs;

� the identification and analysis of the late message delivery issue in partially parallel turbo/LDPC

decoders, with the evaluation of its impact on the decoder performance;

� the design of four power reduction techniques that tackle the late message delivery issue

and avoid power-hungry solutions: the proposed methods are implemented within the

reconfigurable decoder;

� the validations of the designed solutions, carried out with appropriate tools on synthesized,

placed and routed circuits;

The obtained results have been presented at, published in or submitted to

� DASIP’11 conference [12]

� DATE’12 conference [13]

� IEEE Transactions on Circuits and Systems I [14]

� DSD’13 conference [15]

� Springer Circuits, Systems & Signal Processing [16]

3. In Chapter 4 a study on the early stopping of iterations for LDPC decoders is presented. Iterative

decoders typically fix a maximum number of available iterations for the decoding of a frame,

but a codeword might be corrected in less iterations, or the maximum number might not be

enough. For this reason, many decoders employ Early Stopping Criteria (ESCs) that try to

identify situations in which additional iterations are useless. In this chapter we propose a new
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criterion that observes the evolution of simple metrics and via on-the-fly threshold computation

outperforms the state of the art in terms of both iteration and energy saving.

The main contributions of the work presented in this chapter are:

� an early stopping criteria for LDPC decoding that is adaptive to both code parameters

and channel conditions, and identifies efficiently both correct codewords and impossible

decoding;

� the hardware implementation of the proposed criterion and evaluation of its impact on

performance and energy consumption under realistic channel conditions;

The obtained results have been presented at, published in or submitted to

� IET Communications [17]

4. Chapter 5 portrays a study on the resilience of LDPC decoders under the effect of memory errors.

Due to the soft nature of the stored values, LDPC decoders will be affected differently according

to the meaning of the wrong bits: ad-hoc error protection techniques can consequently be

applied to different bits according to their significance. The proposed Unequal Error Protection

(UEP) allows to recover from errors on most significant bits, limits the impact of errors on least

significant bits, and ensures the decoder performance also in presence of large numbers of errors.

The main contributions of the work presented in this chapter are:

� an extensive analysis of the sensitivity to errors of LDPC decoders, depending on decoding

algorithm, quantization, iterations, code size and rate;

� the proposal of the UEP method and the evaluation of its effectiveness;

� the design and implementation of the hardware structure of proposed method in a case of

study;

The obtained results are going to be submitted to IEEE Transactions on Computers.

5. In Chapter 6 the serial concatenation of LDPC and turbo codes is presented, set within the

framework of deep space communications. These are characterized by critical spacecraft-to-

Earth transmissions: the long distances and low power available require very good FEC schemes.

The proposed FEC joins the performance of turbo codes at low Signal-to-Noise Ratio (SNR)

with that of LDPC codes at high SNR, and outperforms both current deep-space FEC schemes

and concatenation-based FECs. A decoder for the proposed FEC scheme is designed and im-

plemented.
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The main contributions of the work presented in this chapter are:

� a novel FEC scheme based on the serial concatenation of LDPC and turbo codes, and its

comparison against current solutions;

� a low complexity, low power decoder design targeting the proposed FEC: it relies on a

shared datapaths and on a smart memory sharing structure that avoids the need for memory

interleaving when changing decoding mode;

The obtained results have been presented at, published in or submitted to

� SPACOMM’13 conference [18]

� IEEE Transactions on Aerospace and Electronic Systems [19]

6. Finally, Chapter 7 draws the conclusions. Additional contributions by the author are briefly

addressed [20–22], together with ongoing work and future perspectives.
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2.1 LDPC and turbo codes

Channel coding is a technique applied to most communication systems: the encoding of transmitted

information allows, at reception, to detect and correct errors introduced by a noisy channel. In this

section we introduce two powerful types of codes, employed in a variety of standards targeting different

applications: turbo codes and Low-Density Parity-Check (LDPC) codes.

2.1.1 Turbo codes

Turbo codes have been proposed for the first time by Claude Berrou in [1] in the early Nineties: they

are obtained from the parallel concatenation of two Convolutional Codes (CC), as shown in Fig. 2.1.

Information bits are fed to both encoders, but not in the same order, since an interleaver Π is placed

before the second convolutional encoder.

ui+1

ui

Si+1

Pi

Si

Pi+1Π

Encoder 1

Encoder 2

Figure 2.1: Turbo code encoder

The ratio between the number of information bits fed to the encoder and the number of encoder

output bits determines the code rate r. The number of concurrent bits injected in the turbo encoder,

i.e. the size of input symbols, determines if the turbo code is Single Binary (SB, one-bit symbols)

or Duo-Binary (DB, two-bit symbols). While turbo encoders can work with infinite streams of bits,

for practical purposes standards work with finite frame sizes, that effectively consider turbo codes as

block codes. The number of input symbols is identified by K, while the frame is constituted of N

symbols.

As the first practical codes with performance close to the Shannon limit, turbo codes have im-

mediately known widespread study and usage. Most of the standards that use turbo codes rely on

two Recursive Systematic Convlutional (RSC) encoders. This means that the information bits are
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explicitly present in the encoded sequence (Si and Si+1 in Fig. 2.1).

00
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1
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1

1

Figure 2.2: Turbo code trellis

According to the structure of the turbo encoder, a code can be pictured as a sequence of trellises,

a representation exploited during the decoding process. In Fig. 2.2, each node of the trellis graph is

a possible state of the encoder: the left ones are starting states, and the right ones are ending states.

Edges are linked to input symbols: so, it is possible to move from the starting state to the ending

state according to the received bits.

2.1.2 LDPC codes

LDPC codes are block error correcting codes explored for the first time by Robert Gallager in the

early Sixties [2]. LDPC codes were shown impractical to use until the late nineties, when they were

rediscovered by MacKay and Neal [23]. LDPC codes took hold thanks to the powerful computational

hardware available and to the advent of approximated decoding algorithms.

The key characteristic of an LDPC code is its binary parity check H matrix, constituted of N

columns and M rows: H specifies all the valid codewords of the code. These codewords are identified

by the set of vectors x of N bits for which H ⋅x′ = 0, where (⋅)′ is the transposition operator, meaning

that the M parity check constraints defined by the matrix rows must be all verified. The H matrix is

sparse: this means that, with respect to the dimensions of the matrix, very few non-zero entries are

present. Their placement is the main task in the construction of the code, since the achievable error

correcting performance is heavily influenced by the relative positioning of the ones among the zeros.

While H is used in the decoding process, the information bits u are encoded as x = u ⋅G, where G is

a K ×N generator matrix that can be obtained from H and K = N −M .

Many representations of the H matrix are possible, but the Tanner graph representation is com-

monly used in the decoding process. The Tanner graph identifies a bipartition of the H matrix, with

the Variable Nodes (VNs) representing the columns and the Check Nodes (CNs) representing the
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Figure 2.3: LDPC code H matrix and Tanner graph

rows. Consequently, VNs are associated to the N bits of the codeword, whereas CNs correspond to

the M parity-check constraints. An edge between CN l and VN k is present if a non-zero entry is

found in row l, column k of H. Fig. 2.3 shows an example H matrix, with seven VNs and four CNs,

with the relative Tanner graph.
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2.2 LDPC and turbo code decoding algorithms

Based on the aforementioned code representations, this section presents turbo and LDPC code de-

coding algorithms.

2.2.1 Turbo codes decoding algorithm

The turbo decoder is made of two constituent decoders, referred to as Soft-In-Soft-Out (SISO) or

Maximum-A-Posteriori (MAP) decoders connected in an iterative loop by the means of the interleaver

Π and the de-interleaver Π−1. Each constituent decoder performs the so called BCJR algorithm [24]

that starting from the intrinsic and a priori information produces the extrinsic information. Let

k be a step in the trellis representation of the constituent CC, and u an uncoded symbol. Each

constituent decoder computes λk[u] = σ ⋅ (λ
apo
k [u] − λaprk [u] − λk[c

u]) where σ ≤ 1 [25], λapok [u] is the

a-posteriori information, λaprk [u] is the a priori information and λk[c
u] is the systematic component

of the intrinsic information. According to [24] a-posteriori information is computed as

λapok [u] =
∗

max
e∶u(e)=u

{b(e)} −
∗

max
e∶u(e)=ũ

{b(e)} (2.1)

where ũ ∈ U is an uncoded symbol taken as a reference (usually ũ = 0) and u ∈ U ∖ {ũ} with U the set

of uncoded symbols; e is a trellis transition and u(e) is the corresponding uncoded symbol. Several

exact and approximated expressions are available for the
∗

max{xi} function [26]: for example, it can

be implemented as max{xi} followed by a correction term (Log-MAP), often stored in a small Look-

Up-Table (LUT). The correction term, usually adopted when decoding binary codes, can be omitted

with minor Bit-Error-Rate (BER) performance degradation (Max-Log-MAP). The term b(e) in (2.1)

is defined as:

b(e) = αk−1[s
S
(e)] + γk[e] + βk[s

E
(e)] (2.2)

αk[s] =
∗

max
e∶sE(e)=s

{αk−1[s
S
(e)] + γk[e]} (2.3)

βk[s] =
∗

max
e∶sS(e)=s

{βk+1[s
E
(e)] + γk[e]} (2.4)

γk[e] = λ
apr
k [u(e)] + λk[c(e)] (2.5)

where sS(e) and sE(e) are the starting and the ending states of e, αk[s
S(e)] and βk[s

E(e)] are the

forward and backward state metrics associated to sS(e) and sE(e) respectively. The term λk[c(e)]

represents the intrinsic information received from the channel.

For practical implementations, the size of a turbo codeword is fixed to limited values, but it can
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be quite large. The BCJR algorithm requires a forward (2.3) and a backward (2.4) recursion over

the codeword symbols to compute (2.1) and it can be unacceptable both in terms of latency and

of complexity. For this reason, decoding is usually constrained to a portion of the codeword, called

window, long enough not to cause performance degradation, that allows to meet the demanding

throughput requirements of most standards: it is the Sliding Window (SW) technique [27], that has

evolved in diverse methods to improve metric initialization and exchange. Bordering windows, in fact,

exchange information on the edge symbols in order to continue the decoding.

2.2.2 LDPC codes decoding algorithm

The most common algorithm to decode LDPC codes is the Belief Propagation (BP) algorithm. The BP

algorithm, also known as probability propagation and sum-product algorithm, uses iterative message

passing between the nodes to update bit error probabilities. It was invented by Gallager in 1963, and

reinvented by MacKay and Neal [28]. It is most commonly implemented in its logarithmic form: in

this version, the metrics on which is taken the decision on bits are Logarithmic Likelihood Ratios

(LLRs).

There are two main scheduling schemes for the BP: two-phase scheduling and layered scheduling

[29]. The two-phase scheduling relies on the Tanner graph representation of H: every iteration is

composed of a CN phase, in which the parity check constraints defined by H are computed, and a

subsequent VN phase, that takes in account the results of the CN phase to update bit LLRs. In

the layered scheduling, instead, a single type of node is present, and parity-check constraints are

grouped in layers so that there are no edges between nodes belonging to the same layer. Each layer is

associated to a component code: they are decoded in sequence by propagating LLRs from one layer

to the following one [29].

Let λ[c] represent the LLR of symbol c and, for column k in H, bit LLR λk[c] is initialized to the

corresponding received soft value, according to the estimated channel conditions. Then, for all parity

constraints l in a given layer, the following operations are executed:

Qlk[c] = λ
old
k [c] −Rold

lk (2.6)

Alk = ∑
n∈N(l),n≠k

Ψ(Qln[c]) (2.7)

δlk = ∏
n∈N(l),n≠k

sgn(Qln[c]) (2.8)

Rnew
lk = −δlk ⋅Ψ

−1
(Alk) (2.9)
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λnewk [c] = Qlk[c] +R
new
lk (2.10)

λoldk [c] is the extrinsic information received from the previous layer and updated in (2.10) to be

propagated to the succeeding layer. Term Rold
lk , pertaining to element (l,k) of H and initialized to 0,

is used to compute (2.6); the same amount is then updated in (2.9), Rnew
lk (the CN-to-VN message),

and stored to be used again in the following iteration. In (2.7) and (2.8) N(l) is the set of all bit

indexes that are connected to parity constraint l. The decoded vector y is obtained by observing the

sign of all λk[c] at the end of each iteration, and the syndrome SYN is consequently obtained as

SYN =
M

∑
l=1

Hl ⋅ y
′ (2.11)

The BP algorithm involves some complex computations, in particular Ψ(⋅) in (2.7) and (2.9) that

requires the calculation of a hyperbolic tangent. In [30] a possible approximation of the Ψ(⋅) function

causing limited performance loss is presented:

Rnew
lk ≈ −δ′lk ⋅ min

n∈N(l),n≠k
{∣Qnk∣} , (2.12)

where δ′lk = σ ⋅ δlk and σ ≤ 1. It is usually referred to as Normalized-Min-Sum (NMS) approximation.

The Self-Corrected-Min-Sum (SCMS) approximation [31], while based on the same concept, combines

(2.12) with a dynamic correction. When Qi
lk[c] is computed at the ith iteration, it is compared with

Qi−1
lk [c]. If their signs are different, Qi

lk[c] is substituted with zero for the current iteration, inducing

a conservative behavior in presence of the uncertainty represented by a sign change.

A particularly interesting exploitation of the similarities between turbo and LDPC codes has been

proposed in [32], that allows to use the same decoding algorithm for both types of code. Every row

of H is seen as a turbo code with trellis length equal to the row weight: a direct link between turbo

and LDPC codes is drawn, and turbo decoding algorithms like BCJR can be applied to LDPC codes

with minor adjustments. The BCJR-based LDPC decoding relies on the fact that binary LDPC codes

have a 2-state trellis: state metrics can consequently be expressed as differences ∆α[c] and ∆β[c],

reducing the quantization noise. Considering the Max-Log-MAP approximation [25], the CN-to-VN

message update becomes:

Φ(x, y) = max(x, y) −max(x + y,0) (2.13)

Rnew
lk = Φ(∆αk[c],∆βk[c]) (2.14)

∆αk = Φ(∆αk−1[c],Qlk[c]) (2.15)
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∆βk = Φ(∆βk+1[c],Qlk[c]) (2.16)

where ∆α[c] and ∆β[c] at the edge of the trellis are initialized as the minimum value of the dynamic

range.
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2.3 LDPC and turbo code decoders

This section gives an overview on current turbo and LDPC decoder solutions, focusing on both

separate and joint implementations.

2.3.1 Turbo code decoders

Since turbo codes are a well-established technology used in a wide variety of applications, the liter-

ature is ripe with many practical implementations of turbo decoders: successful solutions for turbo

decoding have been proposed in the past years [33,34]. The latest trends in the community have seen

an increased interest towards differentiation in high-performance decoders, low power decoders and

flexible decoders.

The parallel decoder presented in [35] targets the 3GPP-LTE standard, characterized by high

throughput requirements. They are met through the usage of 8 radix-4 SISOs, a common enough

choice for high-throughput designs. Communication among cores is enforced by means of shared

memory banks. The proposed architecture manages to avoid memory access contentions, and allows

to reduce the bottleneck usually associated with turbo code interleaving. The resulting decoder yields

a small area, and moderate to high throughputs, with very low power consumption when targeting a

100 MB/s throughput. A similar approach is employed in [36], where even higher performance peaks

are reached. The decoder is again tailored for the 3GPP-LTE standard. The described architecture

relies on 64 processing cores, internally structured as radix-4 SISOs: the decoder yields 1.28 Gb/s

at 400 MHz and 6 iterations. Obviously, the price for such outstanding results is payed in terms of

complexity (8.3 mm2 in 65 nm Complementary Metal Oxide Semiconductor, CMOS, technology) and

power consumption (845 mW).

A more flexible architecture is devised in [37], where a decoder targeting both 3GPP-LTE and

Mobile WiMAX standards is proposed. The different natures of the considered turbo codes (single-

binary in 3GPP-LTE and duo-binary in Mobile WiMAX) is tackled by means of bit-to-symbol and

symbol-to-bit conversions [38], addressed later in Section 3.2 and 3.4 of this manuscript, that allow

almost complete memory sharing. Moreover, a novel dual-mode interleaver is introduced that reduces

the overhead relative to the implementation of the native ARP [3] and QPP [5] respective interleavers.

The resulting multi-standard decoder can reach up to 186 Mb/s with moderate complexity.

The sliding window technique [27] is one of the most widely employed in turbo decoders. The SISO

proposed in [39] implements this technique in its standard form, with dummy state metric initialization

and sliding step of one trellis. Deeply pipelined architectures have been proposed in order to reduce

the memory requirements [40]. These have been improved thanks to the tailbiting technique: the
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WiMAX decoder proposed in [41] avoids the cumbersome initialization by considering the turbo code

as a circular structure, and allows for consistent throughput enhancement. The improvement of the

dummy recursion and an ad-hoc contention-free memory architecture allow the decoder presented

in [42] to yield low complexity and low power consumption. Moreover, smart initialization of the

dummy recursion results in faster decoding algorithm convergence, and consequently fewer necessary

iterations for correct decoding.

Flexibility and multi-standard support is achieved in [43] by means of partially parallel decoder

based on Application Specific Instruction-set Processors (ASIPs). Support is given for 3GPP-LTE,

WiMAX and DVB-RCS standards, reaching a maximum throughput of 170 Mb/s and yielding good

efficiency. Different ASIPs are used for the in-order and interleaved phases of the decoding process,

and the complexity and latency are kept in check via smart information exchange networks and

pipeline idle time minimization.

2.3.2 LDPC code decoders

The literature on LDPC code decoders, much like in the turbo case, has shown a trend towards design

specialization targeting a particular performance aspect.

The flexible LDPC decoder described in [44] is one the first work to consider a Network-on-Chip

(NoC) as a possible interconnection structure. Together with the design of processing elements,

the design of the application-specific NoC is carried out in detail: it is shown that many of the

characteristics of general purpose NoCs are not necessary, thus reducing the overhead commonly

associated with complex interconnections. The complete decoder is arranged on a toroidal mesh

topology.

An extremely low-power and high performance decoder is designed in [45], targeting the WiMAX

standard. Low power consumption is obtained through very low working frequency: a very high

throughput is achieved via a high internal parallelism, adaptable to the code thanks to the regular

structure of the WiMAX codes. Implemented in 65 nm CMOS technology, at 40 MHz, more that 1

Gb/s throughput is obtained, with a total power consumption of 29.5 mW. A similar design approach

is carried out in [46]: the decoder, however, targets high throughputs and low complexity. A higher

frequency of 110 MHz is used to obtain 1 Gb/s throughput, consuming 115 mW and occupying half

of the area of [45].

A decoder with extremely good error correction capabilities is shown in [47]. It is designed tar-

geting LDPC convolutional codes, that can be obtained from quasi-cyclic LDPC codes. Again, the

regular structure of these codes allows for easy design of largely parallel structure. Up to 2 Gb/s are
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obtained with a frequency of 100 MHz.

2.3.3 Turbo/LDPC decoders

Few recent works have focused on extending the concept of flexible decoders not only to multiple

codes, but also to multiple code types, providing complete support for whole standards.

The work in [48] describes the design of a multi-standard turbo/LDPC decoder based on ASIPs

and the sharing of memories between the two code types. Each ASIP has two separate datapaths,

one for each decoding mode: eight ASIPs are instantiated and connected via a simple but flexible

interconnection network, that can be reconfigured when switching decoding mode to adapt to the

different communication patterns. Also in [49] is presented an ASIP-based decoder, that includes

convolutional code decoding as well. This work is characterized by extremely small area occupation

and high achievable frequency, that helps to meet most throughput requirements for the considered

standards.

The works presented in [50–52] exploit commonalities between turbo and LDPC decoding to

design a unified architecture for multiple standards. By interpreting LDPC codes as a series of turbo

codes, as introduced in Section 2.2, the BCJR algorithm can be applied to both code types. The

shared datapath and memories result in an overall area much lower than separate dedicated decoder

implementations.
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Chapter 3

Flexible architectures for channel

decoding

With the term flexibility regarding channel decoding it is intended the ability of a decoder to support

different codes and types of codes, enabling its usage in a wide variety of situations. The degree of

flexibility of a decoder can be limited to a single standard, or even multiple ones. Much research has

been done in this sense after the great increase in number of standards, standard complexity and code

variety witnessed during the last years. Next generation wireless standards such as DVB-S2 [7], IEEE

802.11n (WiFi) [53], IEEE 802.3an (10GBASE-T) [54]. 3GPP-LTE [5] and IEEE 802.16e (WiMAX) [3]

often feature multiple codes (e.g. LDPC, Turbo) where each code comes with various code lengths and

rates. The necessity for flexible channel decoder intellectual properties (IPs) is evident: however, the

design of flexible decoders can be challenging due to the often unforgiving throughput requirements

and narrow constraints of decoder latency, power and area. Following these challenges, this chapter

presents extensive research in the field of flexible channel decoder architectures: the aim of this study

is to produce a flexible, reconfigurable architecture and to tackle its power consumption issues. A

study on NoCs and their application to a decoder design is carried out in Section 3.1 and 3.2, while

Section 3.3 and 3.4 address the decoder reconfiguration and improve on the previous design. An

ad-hoc simulation tool is presented in Section 3.5, and used in Section 3.6 to devise decoder power

reduction techniques.

37
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3.1 Topologies for NoC-based channel decoding

Even if the implementation of turbo and LDPC code decoders is a well studied problem in the litera-

ture, two critical needs emerged in the last years: i) achieving high throughput, ii) granting flexibility

and interoperability. The intrinsic differences between the turbo and LDPC decoding algorithms and

their iterative nature make the design of high throughput, flexible turbo/LDPC decoder architectures

a challenging task.

As said before, in both turbo and LDPC decoders high throughput is generally achieved by

employing parallel architectures [55,56], where several processing elements (PEs) perform the decoding

algorithm concurrently on different portions of the received frame. However, PEs require a large

communication bandwidth and an efficient interconnection structure to concurrently read/write data

from/to the memory. High throughput PEs able to support both turbo and LDPC decoding [48–52]

can be implemented as Application-Specific-Integrated-Circuits (ASICs) or ASIPs. In general, ASIC

solutions achieve higher throughput with lower complexity as compared to ASIP implementations.

However, ASIP architectures are usually more flexible than ASIC ones.

Stemming from the general NoC paradigm [57], Neeb et alii [58] proposed an interesting NoC-

based approach to enable flexible and efficient interconnection among the processing elements in

parallel turbo decoder architectures. According to [44] this approach, where the network structure is

used to connect PEs belonging to the same Intellectual Property (IP), is referred to as intra-IP NoC.

In [59] the intra-IP NoC approach is studied in the context of parallel turbo decoder architectures

investigating a number of direct and indirect networks. A similar approach has been employed for

LDPC decoder architectures [44, 60]. Few recent works [48, 51, 61] tried to exploit the intra-IP NoC

approach to design flexible turbo/LDPC decoder architectures. However, from these works it is not

clear how the design of the PEs and the design of the network influence each other. Moreover most

of these implementations are not fully compliant with the high throughput requirements of modern

wireless standards.

The work described in this section and published in [13] exploits the Turbo NoC cycle-accurate

simulation tool [62] described in [11], where an extensive analysis of the performance achieved by

various NoC topologies in the context of turbo decoder architectures is shown. The aim is to propose

a competitive intra-IP NoC-based ASIC architecture for flexible turbo/LDPC decoding with a clear

design flow.
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3.1.1 NoC architecture for channel decoding

Turbo and LDPC decoding have in common a complex message passing phase, which varies in terms

of duration and intertwining with the parallelism of the decoder. To achieve a high degree of flexibility,

ranging from multiple code to component reuse and scalability, the need of a suitable interconnection

structure is paramount. NoC-based interconnect architectures have been suggested and partially

explored in [63], [44] and [11]: NoC–based decoding is an emerging paradigm for partially parallel

solutions, due to the adaptive abilities of these structures. NoCs guarantee virtual connectivity

among all nodes, a key feature for tasks such as LDPC and turbo decoding, where complex graph

are deeply involved. The work in [11] provides an extensive analysis of performances of various

NoC topologies related to turbo decoding. The analysis is carried out via custom cycle–accurate

simulation tool [62]. This section analyzes the characteristics of NoC architectures requested to

support both turbo and LDPC decoding. To this purpose, the results presented in [11] act as the

starting point towards the inclusion of LDPC decoding. The assumed node architecture is detailed

in [11] and shown in Fig. 3.1: each node in the network is made of a Routing Element (RE), a

Processing Element (PE) and a memory (MEM) to store the incoming messages. In the following,

we indicate the j-th message received and generated by PE i as λ′i,j and λi,j respectively. The RE

is based on an F × F crossbar switch with F input First-In-First-Out (FIFO) buffers and F output

registers. t′i,j represents the memory location where λ′i,j will be stored. This section focuses on the

two most promising node architectures proposed [11]: the All-Precalculated (AP) and the Partially-

Precalculated (PP) architectures. The AP architecture makes use of off-line simulations to compute

the routing information of each node and to store it in a routing memory. Since the routing information

is precalculated, very complex routing algorithms can be employed to compute the routing information

and this allows to reduce the depth of input FIFOs. Moreover, this solution does not require any

kind of header in the packet structure, reducing the width of the input FIFOs. However, as pointed

out in [59], the AP architecture requires additional memories to store the routing information of all

supported codes. In PP architecture the routing is performed on-line by a routing algorithm: only

t′i,j sequences are precalculated, while destination node identifiers are included in the packet header.

The SystemC simulator developed in [11] is here used to extensively analyze the performance of

NoC-based LDPC decoder architectures, in terms of throughput and memory requirements. A set of

parameters is defined to take into account a large number of possible design choices including routing

algorithms, node architectures and packet structures. The simulator requires the description of the

NoC topology, i.e. the number of nodes and their links, then, it derives the communication pattern

among the nodes of the network.
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Figure 3.1: Node structure

In order to evaluate the performance of an NoC-based LDPC decoder, a pre-processing tool has

been developed to produce the complete communication pattern. Indeed H, the parity check matrix of

the LDPC code, can be expressed as a list of communication needs similar to a turbo code interleaver

once the decoding scheduling and the topology are chosen. The following flow has been employed to

analyze the performance of NoC-based LDPC decoder architectures.

� The first step is the definition of the graph representation of the H matrix. Size and structure of

this graph depends on the chosen scheduling. With the layered decoding approach, the resulting

graph has M nodes, and an arc between row–nodes i and j is defined when a non-zero entry is

present on the same column of both i and j.

� The second step is the choice of the NoC topology and its size, which corresponds to the

parallelism degree of the LDPC decoder. To this purpose, a set T of various topologies, including

mesh, toroidal mesh, spidergon, honeycomb, generalized De-Bruijn and generalized Kautz has

been considered.

� The problem of mapping the LDPC codes on a specific NoC is then formulated in terms of graph

partitioning and solved using the Metis bundle of graph–coloring algorithms [64]. Once graph

nodes are assigned to NoC-nodes, the communication pattern is constructed. The framework

built around the Metis package checks the produced patterns for minimum length and uniform
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message distribution, selecting the optimal one for each code–topology couple.

As a result of these analysis steps, LDPC check nodes are partitioned among the nodes of each

NoC: then, simulation is used to evaluate the number of cycles required to perform a decoding iteration

with each NoC in T . Simulations are repeated for several values of the following parameters:

� Processing element output rate (R): is the number of messages produced by a PE in a clock

cycle.

� Routing algorithm: three different routing policies are embedded in the available simulator [62].

They rely on the off-line computation of the shortest paths between nodes. This information is

stored in one or more routing tables. When only one shortest path is used (one routing table)

the routing algorithm is referred to as Single-Shortest-Path (SSP), whereas when more shortest

paths are computed (multiple routing tables) the algorithm will be named All-local-Shortest-

Paths (ASP). The first approach described in [11] is the SSP-Round-Robin (SSP-RR): it is

based on a circling serving policy. Similarly the SSP-FIFO-Length (SSP-FL) routing algorithm

is based on the current status of input FIFOs. The third approach, named ASP–FIFO-length-

with-Traffic-spreading (ASP-FT), takes in account all the possible different shortest paths. The

serving policy is a modified version of FL: it keeps a statistic of sent messages to spread the

traffic on the network [11].

� Delay/Send Colliding Message (DCM/SCM): this parameter activates a collision management

technique. A collision arises when two or more messages require to be routed to the same router

output port. In this case, if the DCM strategy is employed, the first message is routed according

to the selected routing algorithm, whereas the colliding messages are kept in their FIFOs. On

the contrary, if SCM is used, colliding messages will be randomly routed to one of the available

output ports. Namely, the configuration of the crossbar switch is chosen to route non-colliding

messages, whereas colliding messages are treated as “don’t-care”.

� Route Local (RL): this flag allows to choose if local messages, i.e. messages sent and received by

the same PE, are routed on the network (RL = 1) or are stored in an internal queue, bypassing

the routing (RL = 0).
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Table 3.1: Throughput [Mb/s]/Area[mm2] for WiMAX LDPC N = 2304, r = 1/2 code, for different
topologies, parallelism P , node degree D, routing algorithms and node architectures. Frequency is
300 MHz, technology is CMOS 90 nm. Results are obtained for parameters RL = 0, SCM , R = 0.5

D = 2, generalized De Bruijn

P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 37.77/2.02 41.19/3.16 50.16/3.68 50.31/4.02

SSP-FL (PP) 42.15/1.82 45.47/3.27 55.12/0.65 56.20/4.18

ASP-FT (AP) 42.15/0.40 45.47/0.59 55.12/0.65 56.84/0.71

D = 3, spidergon

P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 55.74/0.35 67.11/1.34 70.67/2.69 71.11/3.14

SSP-FL (PP) 55.47/0.30 69.82/1.11 75.62/2.59 75.79/3.20

ASP-FT (AP) 55.31/0.30 72.45/0.42 76.63/0.64 78.37/0.73

D = 4, rectangular honeycomb

P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 55.12/0.42 77.49/0.61 98.46/0.72 97.90/1.03

SSP-FL (PP) 55.47/0.39 78.01/0.53 98.18/0.63 106.67/0.87

ASP-FT (AP) 55.65/0.40 78.01/0.48 99.03/0.55 109.37/0.58

Table 3.2: Throughput [Mb/s]/Area[mm2] for WiMAX LDPC N = 2304, r = 1/2 code, for generalized
Kautz topology, parallelism P , node degree D, routing algorithms and node architectures. Frequency
is 300 MHz, technology is CMOS 90 nm. Results are obtained for parameters RL = 0, SCM , R = 0.5

D = 2, generalized Kautz

P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 38.10/2.05 49.23/2.79 48.20/3.67 55.47/3.84

SSP-FL (PP) 41.69/1.84 53.09/2.68 55.74/3.61 61.71/0.68

ASP-FT (AP) 41.69/0.40 53.09/0.51 55.74/0.64 61.71/0.68

D = 3, generalized Kautz

P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 55.74/0.29 78.37/0.47 93.66/0.96 92.65/1.22

SSP-FL (PP) 55.74/0.28 77.49/0.43 97.63/0.69 101.05/0.86

ASP-FT (AP) 55.74/0.29 77.49/0.35 97.08/0.42 101.05/0.46

D = 4, generalized Kautz

P = 16 P = 24 P = 32 P = 36

SSP-RR (PP) 55.74/0.31 72.45/0.60 70.10/1.06 104.73/0.76

SSP-FL (PP) 55.74/0.29 77.84/0.49 72.00/0.98 109.37/0.72

ASP-FT (AP) 55.74/0.39 78.01/0.47 100.47/0.54 108.68/0.58

3.1.2 Simulation tool for NoC analysis

3.1.3 Analysis of NoCs for LDPC code decoding

In order to show the potential of the NoC approach in the design of LDPC code decoders, the whole

set of WiMAX codes has been used as a design case. In Table 3.1 and 3.2 the most relevant results for

the WiMAX LDPC code with N = 2304 and rate r = 1/2 are shown. This code is the most demanding
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Table 3.3: Throughput [Mbits/s]/Area[mm2] for NoC based architectures supporting all WiMAX
turbo and LDPC codes

P = 22, D = 3, generalized Kautz, R = 0.5

turbo @ 75 MHz LDPC @ 300 MHz

N = 2400, r = 1/2 N = 2304, r = 1/2

SSP-RR (PP) 74.25/0.63 72.45/0.46

SSP-FL (PP) 74.26/0.60 72.30/0.39

ASP-FT (AP) 73.29/0.69 72.91/0.34

one within WiMAX specification in terms of PE resources. Given that D = F −1 is the topology node

degree, i.e. the number of router output ports connected to other routers, for each topology in T all

routing algorithms have been tested for D = 2,3,4 and P = 16,24,32,36. The throughput has been

computed as

T =
(N −M) ⋅ fclk

(latcore + ncycles) ⋅ Itmax
(3.1)

where fclk is the clock frequency, Itmax is the maximum number of iterations, latcore is the maximum

latency of the decoding core and ncycles is the number of cycles required to exchange all information

through the NoC according to the communication pattern. Results in Table 3.3 have been obtained

with (3.5), imposing fclk = 300 MHz, Itmax = 10 and latcore = 15 cycles.

The area occupation is the post synthesis result obtained with Synopsys Design Compiler on a 90

nm CMOS technology. These area results do not take in account the PE and the incoming message

memories.

Generalized Kautz topologies outperform all the other ones in terms of both throughput and

complexity in the case of LDPC codes. Moreover, D = 3 solutions give higher throughputs than D = 2

ones, whereas they are comparable to D = 4 topologies but with lower area occupation.

3.1.4 Analysis of NoCs for turbo and LDPC code joint decoding

To find the most suitable NoC for both turbo and LDPC decoding according to the WiMAX standard

the results shown in [11] for turbo codes and the ones presented in Table 3.1 and 3.2 for LDPC codes

have been analyzed. Generalized Kautz topologies show the best average throughput-to-area ratio

both for turbo and LDPC codes and D = 3 is a good throughput/complexity trade-off. For LDPC

codes the minimum value of P to achieve the 70 Mbit/s throughput required by the IEEE 802.16e

standard, with a 300 MHz clock frequency, is 22. On the contrary, turbo codes yield a higher than

required throughput with a 22-nodes NoC. Thus, the working frequency in turbo codes mode can be

lowered to 75 MHz and throughput is still above limit. For both codes, throughput and area show a

weak dependence on the routing algorithm. However, the SSP-FL routing algorithm guarantees the
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best average performances also with different topologies and non-WiMAX codes, thus being the best

choice in terms of flexibility. A choice of the obtained results are given in Table 3.3 for N = 2400

turbo code and N = 2304, r = 1/2 LDPC code.
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3.2 NoC-based turbo/LDPC decoder architecture

Based on the NoC design shown in Section 3.1, a complete flexible turbo/LDPC decoder is presented

in this section to prove that the flexibility achieved via the intra-IP NoC-based approach has a

limited impact on the area of the decoder architecture. As a case of study the WiMAX standard is

considered. The architecture has complexity comparable to the latest state-of-the-art proposed flexible

turbo/LDPC decoders, together with a higher worst-case throughput, and guarantees multi-standard

compliance and low power consumption. The presented work has been published in [13].

3.2.1 LDPC decoding core

Address
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 MEMORY

 MEMORY
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Qlk[c]
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λnewk [c]
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Figure 3.2: LDPC decoding core

For LDPC decoding, the PE must be structured so that all the block lengths and code rates

imposed by the standard are supported. A simple and effective architecture based on a sequential

processing has been designed. Fig. 3.2 shows the architecture of the LDPC decoding core, employing

the NMS approximation: λoldk [c] values are read from the λk[c] memory, used to store the incoming

messages received from the network. Similarly, Rold
lk , required to compute Qlk[c], is stored in a

dedicated memory. Then, Qlk[c] values are compared sequentially in the Minimum Extraction Unit

(MEU) to find the first two minimum values (2.12). A further comparison selects which of the two

minimum values is required to update λnewk [c] as in (2.10). Concurrently, Rnew
lk values are stored

in the Rlk memory for use during the next iteration. This architecture is completely independent

of the code, but it is limited by the size of memories. Both λk[c] and Rlk memories must have

enough storage capability to cope with the heaviest possible workload among the supported codes.

Simulations show that the worst case among WiMAX codes is given by the N = 2304, r = 3/4 code.

Given this sizing, not only all the other WiMAX codes, but any Quasi-Cyclic LDPC (QC-LDPC)

code with no superposition of vertexes between nodes and code with smaller size can be decoded.
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Figure 3.3: Turbo decoding core (SISO)

3.2.2 Turbo decoding core

The proposed solution for the turbo decoding core is the SISO architecture in Fig. 3.3.

Since the turbo code used in the WiMAX standard is double-binary each message λi,j is a vector of

three elements. According to [38], sending bit-level (BL) instead of symbol-level extrinsic information

reduces the NoC complexity of roughly 1/3. Resorting to the solution proposed in [65] this complexity

reduction comes at the expense of a 0.2 dB BER loss. A dedicated unit, the Bit-To-Symbol Conversion

Unit (BTS CU) converts the incoming a priori values from bit (BL λaprk [b]) to symbol (λaprk [u])

information, whereas, the Symbol–To–Bit Conversion Unit (STB CU), converts the processed extrinsic

values (λk[u]) before sending them on the network (BL λk[b]). The BMU, i.e. Branch Metric Unit,

is entitled the task of computing the γk[e] (2.5). Another unit handles, sequentially, βk[s], αk[s] and

b(e) as in (2.1). βk[s] values are stored in a set of registers for use during the calculation of b(e).

The Extrinsic Computation Unit (ECU) produces the updated LLR λk[u]. As in [51], the number

of bits to represent λk[c], αk[s], βk[s] and λk[u] is set to 7, whereas 5 bits are sufficient for Rlk and

λk[c(e)].

3.2.3 Decoder synthesis and comparison

As a case of study, a complete turbo/LDPC decoder for the WiMAX standard has been implemented.

Table 3.4 shows the pre–layout synthesis results (2nd row), obtained with Synopsys Design Compiler

on a 90 nm deep sub-micron CMOS technology, together with recent state–of–the–art dual code

decoders. Where possible, worst–case throughput and the relative code are reported. For the sake

of fairness it is worth noting that [49] and [48] support both WiMAX and LTE modes. Comparison

with [48] shows similar core area occupation, whereas our NoC contributes for 0.61 mm2, about the

20% of the total area occupation. The proposed NoC is larger than the interconnection used in [48],

mainly due to the more distributed topology and more complex node architecture. Both LDPC
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Table 3.4: LDPC/Turbo architectures comparison: CMOS technology process (TP), processing area
occupation (Acore), total area occupation (Atot) normalized area occupation for 65nm technology
(An), clock frequency (fclk), peak power consumption (Pow), data width (DW), maximum number
of iterations (Itmax), code length (N) and rate (r) and throughput (T )

Decoder P Tp Atot Antot fclk Pow DW Itmax Code N , r T

[nm] [mm2] [mm2] [MHz] [mW] [bits] [Mb/s]

Proposed 22 90 3.17 1.65
300 415 7 – 5 10 LDPC 2304, 1/2 72.00 (min.)

75 59 7 – 5 8 DBTC 2400, 1/3 74.26 (min.)

[48] 8 90 2.6 1.36 520 N/A
7 – 5 10 LDPC 2304,1/2 62.5 (min.)

8 – 6 6 DBTC N/A 173 (max.)

[49] 1 65 0.62 0.62 400 76.8
7 – 5 20 LDPC N/A 27.7 (min.)

8 5 DBTC N/A 18.6 (min.)

[51] 12 45 0.9 1.88 150 86.1
7 – 5 8 LDPC N/A 71.05 (min.)

7 – 5 8 DBTC N/A 73.46 (min.)

[50] 384 45 N/A 0.94 1.96 333 1000 25 LDPC N/A 333 (avg.)

[52] 12 90 3.20 1.67 500 N/A
9 – 6 15 LDPC 2304, 1/2 600 (max.)

9 – 6 6 BTC 6144, 1/3 450 (max.)

and turbo cases in this work show compliance with the WiMAX standard throughput requirements.

LDPC codes are considered with R = 0.5, and a clock frequency of 300 MHz for both the NoC and

the LDPC core. The worst case values, obtained for the N = 2304, r = 3/4 code, are still above 70

Mb/s: in [48], according to the provided formula, for the same code throughput is below the standard

requirement. The optimal working conditions for turbo decoding are with R = 0.33, and sufficient

throughput is obtained with fclk = 75 MHz: however, if the frequency is rescaled to 200 MHz, our

worst–case throughput overperforms the best–case value of [48] (198 vs. 173 Mb/s), despite the higher

number of iterations and the much lower fclk.

This characteristic, together with the lower memory accesses rate of turbo decoding, results in a

large power reduction w.r.t. LDPC decoding. It is worth noting that, in the turbo decoding mode

the proposed architecture achieves the lowest power consumption as compared with [48–52].

The architecture in [49] not only supports both WiMAX and LTE modes but it also features a

very small area occupation. However, it does not reach a high enough throughput for the WiMAX

standard, while our decoder has both smaller area and higher throughput than [51]. Area occupation

is smaller than [50], but throughput analysis is difficult, since standard compliance is stated but

no minimum values are reported. The architecture for WiMAX/WiFi LDPC codes and 3GPP-LTE

turbo code presented in [52] runs at 500 MHz and achieves the highest throughput among compared

architectures with the same complexity as the presented architecture. A fair comparison is not possible

as WiMAX turbo code is not addressed. The proposed decoder guarantees compliance with WiMAX,

but is not limited to its codes: the SISO can work with any 8 state Double-Binary-Turbo-Code

(DBTC), whereas the LDPC core can sustain any code smaller than 802.16e ones (e.g. WiFi).
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3.3 Reconfiguration of NoC-based channel decoders

A common trend in the implementation-centered works present in the state of the art is to neglect

corollary issues that, while not performing the core operations, are absolutely fundamental for the

correct functionality of the system. The reconfiguration in case of code or standard change is one of

those, and it is particularly critical in a decoder targeting flexibility. Most flexible decoders available

in the literature [11, 44, 48–52, 59, 61], though supporting a wide range of codes, do not address the

reconfiguration issue. A few recent works [66–68] have considered reconfiguration issues for ASIP-

based turbo decoders: however, given the much larger parallelism of NoC-based decoders and to the

differences between ASIPs and ad-hoc PEs, the proposed techniques can not be extended to our case.

Change of decoding mode, standard or code parameters requires not only hardware support, but also

memory initialization and specific controls: since in many standards a code switch can be issued as

early as one data frame ahead [3], a time efficient reconfiguration technique must be developed. The

work presented in this section, and published in [14], a detailed analysis of the reconfiguration issue

is carried out for a case of study, with different solutions and trade-offs.

3.3.1 Decoder Reconfiguration

The decoder described in Section 3.2 has been taken in account for the following reconfiguration anal-

ysis. The LDPC PE and the SISO core share the memories where the incoming data λ′i,j (representing

both λk[u] and λk[c]) are stored and the location memory containing the pre-computed t′i,j values,

i.e. the memory addresses to store λ′i,j . For such a decoder the reconfiguration task consists of i)

rewriting the location memory containing t′i,j values; ii) reloading the CN degree (deg) parameters

and the window size in the control unit of LDPC decoding cores and SISOs respectively. In the

following, the whole set of storage locations to be updated at reconfiguration time will be indicated

as “reconfiguration memory”. When possible, the decoder must be reconfigured while the decoding

process is still running on the previous data frame. This means that the reconfiguration data can be

distributed by means of the NoC interconnections only at the cost of severe performance penalties.

Consequently, we suppose that the reconfiguration data are moved directly to the P PEs via a set of

Nb dedicated buses, each one linked to P
Nb

PEs.

In the following the reconfiguration occurrence is estimated assuming mobile receivers moving at

different speeds and the carrier frequency fc = 2.4 GHz. This frequency is included in most standards’

operation range, and used in a variety of applications. In this scenario the communication channel

is affected by fading phenomena, namely slow fading, whose effects have very long time constants,

and fast fading. Fast fading can be modeled assuming a change of channel conditions every time the
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Figure 3.4: Memory reconfiguration process: (a) Decoding of C1; (b) Upload of reconfiguration
data required for C2 (phases Φ1 to Φ3 and Φ5); (c) First iteration of C2 and concurrent upload of
reconfiguration data (Φ4)

receiver is moved by a distance similar to the wavelength λ of the carrier. Being λ = 0.125 m, at

a speed v = 70 km/h the channel changes with a frequency fchng = 155 Hz (WiMAX, WiFi, 3GPP-

LTE), whereas, at v = 10 km/h (DVB-RCS, HPAV, CMMB, DTMB) changes occurs at fchng = 22 Hz.

These scenarios result in different reconfiguration probabilities, whose impact on BER performance

is addressed in Section 3.3.2.

The proposed reconfiguration memory is organized as a circular buffer: two sets of pointers are

used to manage reading and writing operations. The Start of Current Configuration (SCC) pointer

and the End of Current Configuration (ECC) pointer delimit the memory blocks that are currently

being used. A Read Pointer (RP) is used to retrieve the data during the decoding process, as shown

in Fig. 3.4.(a). The Start of Future Configuration (SFC) and End of Future Configuration (EFC)

pointers are instead used concurrently with the Write Pointer (WP) to delimit the locations that are

going to be used to store the new configuration data.

The reconfiguration of the considered decoder to switch from the code currently processed (C1)

to a new one (C2) can be overlapped with the decoding of both current and new code, provided

that enough locations are free in the configuration memories. In particular, part of the configuration

process can be concurrent with the decoding of one or more frames of C1; if necessary, another portion

of the configuration can be scheduled during the first iteration of the new code C2. Finally, in case the

overlap with decoding activity is not sufficient to complete the whole configuration, a further option

is pausing the decoder by skipping one or more iterations on the last received frame for C1 and using

the available time, before starting the decoding of the new frame encoded with C2.
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Let us define B as the size of the location buffer available at each PE to store configuration

data, tit1 and tit2 as the duration in clock cycles of a single decoding iteration for codes C1 and C2.

Moreover, lc1 and lc2 express the number of locations required to store configurations of codes C1 and

C2 at each PE, and nit1 and nit2 their iteration numbers.

In the considered architecture, the duration of one decoding iteration tit expressed in clock cycles

is directly proportional to the number of memory locations a PE has to read throughout the decoding

process, and consequently to the number of used locations in the reconfiguration memory (lc). Though

the actual relationship between tit and lc is affected by memory scheduling and ratio between PE

and NoC clock frequencies, this analysis is carried out with the worst-case assumption that the

reconfiguration memory is read at every clock cycle of each iteration, setting lc = tit for both C1 and

C2 codes.

We define five phases Φi, i = 1,2,3,4,5 in the configuration process and for each phase we identify

i) tΦi
a as the number of clock cycles available during phase Φi, and ii) lΦi

a = Nb ⋅ t
Φi
a /P as the number

of locations in each reconfiguration memory that can be written in tΦi
a clock cycles.

Φ1 In the reconfiguration from code C1 to code C2, lc1 words must be replaced with lc2 new words.

The first part of the configuration can be scheduled during the initial nit1−1 decoding iterations

on C1 and therefore the available time is tΦ1
a = (nit1 − 1) ⋅ tit1; in this range of time a maximum

of lΦ1
a =

Nb

P ⋅ (nit1 − 1) ⋅ tit1 words can be loaded into each buffer. However, assuming that

the buffer size is larger than lc1, we define B − lc1 as the number of unused memory blocks in

current configuration for code C1. Therefore, the actual number of locations written in Φ1 is the

minimum between B − lc1 and lΦ1
a . The SFC pointer is thus initialized as ECC (Fig. 3.4.(b)).

Φ2 During the last iteration on C1, every memory location between SCC and the current position

of RP is available for reconfiguration. This means that up to lc1 locations are available for

receiving configuration words for C2. However, this has to be done during a single iteration,

and therefore tΦ2
a = tit1 cycles are available. During these cycles, up to lΦ2

a =
Nb

P ⋅ tit1 words can

be loaded.

Φ3 As mentioned before, part of the configuration can be overlapped with the first decoding iteration

on C2 code. SCC is initialized as SFC, and RP will take the duration of a full iteration to arrive

to ECC (Fig. 3.4.(c)). The available time is tΦ3
a = tit2 and the maximum number of words that

can be loaded in this phase is lΦ3
a =

Nb

P ⋅ tit2.

Φ4 In the event that previously listed phases are not sufficient to complete the configuration, an

early stopping in the decoding of code C1 can be scheduled to make available additional cycles
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Table 3.5: Reconfiguration phases Φi: t
Φi
a , available clock cycles during Φi and lΦi

a number of locations
that can be written in tΦi

a

tΦi
a lΦi

a

Φ1 (nit1 − 1) ⋅ tit1
Nb

P ⋅ (nit1 − 1) ⋅ tit1
Φ2 tit1

Nb

P ⋅ tit1
Φ3 tit2

Nb

P ⋅ tit2
Φ4 tstop

Nb

P ⋅ tstop
Φ5 nit1 ⋅ tit1 ⋅Nf

Nb

P ⋅ nit1 ⋅ tit1 ⋅Nf

to be used for loading the remaining part of the configuration words. We indicate the number

of cycles available in this phase as tΦ4
a = tstop. The number of words that can be loaded in Φ4 is

lΦ4
a =

Nb

P ⋅ tstop. As one or more complete iterations are dropped in Φ4, tstop is a multiple of tit1,

which can be formalized as

tstop = nstop ⋅ tit1, nstop = 0,1,2,3,⋯ (3.2)

Differently from the other four phases, Φ4 affects the decoder performance, as if nstop > 0 the

number of decoding iterations is reduced for code C1. Evaluating the actual effect on BER and

Frame-Error-Rate (FER) curves is necessary to understand the feasibility of this approach.

Φ5 If necessary, the reconfiguration process can be overlapped with the decoding of a number Nf

of data frames encoded with C1, in addition to the last frame, which was already considered in

Φ1. The available time depends on the chosen Nf :

tΦ5
a = nit1 ⋅ tit1 ⋅Nf , lΦ5

a =
Nb

P
⋅ nit1 ⋅ tit1 ⋅Nf (3.3)

The five described phases are reported in Table 3.5, together with the corresponding tΦi
a and lΦi

a .

Thus, B, Nb, nstop and Nf are design parameters, and their values must be decided based on decoder

parallelism (P) and supported codes, which determine lc1 and lc2.

Two alternative cases can arise during Φ1: either this phase is limited by the available time, or it

is limited by the number of free locations in the reconfiguration memory:

(nit1 − 1) ⋅ tit1 ⋛
P

Nb
⋅ (B − lc1) (3.4)

Then, assuming tit1 = lc1 we define the threshold

lth =
P ⋅B

P + (nit1 − 1) ⋅Nb
(3.5)
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and distinguish between two cases:

1. lc1 < lth (small C1 codes),

2. lc1 ≥ lth (large C1 codes).

Let us study the two cases separately.

lc1 < lth: small C1 codes

When lc1 < lth, phase Φ4 is not useful at all, as dropping nstop decoding iterations has the effect of

reducing the time of Φ1 by the same amount that is gained in Φ4. Therefore, the following constraint

can be set:

P

Nb
lc2 < t

Φ1
a + tΦ2

a + tΦ3
a + tΦ5

a (3.6)

This constraint simply means that the overall available time through Φ1, Φ2, Φ3 and Φ5 must be

long enough to update lc2 locations in the reconfiguration memories. From the values in the second

column of Table 3.5 the constraint in (3.6) becomes

lc2 <
Nb

P
⋅ (nit1 ⋅ tit1 + tit2) +

Nb

P
⋅ nit1 ⋅ tit1 ⋅Nf (3.7)

Then, if tit2 = lc2, we have

lc2 <
Nb ⋅ nit1 ⋅ (1 +Nf)

P −Nb
⋅ lc1 (3.8)

A number Nf of preceding frames can be exploited only if enough locations are unused in the buffers

during Φ1 and Φ5. This condition can be expressed as

tΦ1
a + tΦ5

a ≤
P

Nb
⋅ (B − lc1) (3.9)

namely

(nit1 − 1) ⋅ tit1 + nit1 ⋅ tit1 ⋅Nf ≤
P

Nb
⋅ (B − lc1). (3.10)

Thus, given that tit1 = lc1, the maximum useful value of Nf depends on lc1 as

Nf(lc1) ≤

P
Nb

⋅ (B − lc1) − (nit1 − 1) ⋅ lc1

nit1 ⋅ lc1
≜ Nfmax (3.11)

Thus, (3.8) can be better written as

lc2 <
Nb ⋅ nit1 ⋅ [1 +Nf(lc1)]

P −Nb
⋅ lc1 (3.12)
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This means that the size of code C2 has an upper bound and this bound is proportional to the size of

code C1. Therefore, the most critical reconfiguration cases are those involving “small” C1 codes: in

such cases, there could be many C2 codes that violate condition (3.12). The bound is also proportional

to Nb, and can be consequently increased by rising the number of reconfiguration buses.

lc1 ≥ lth: large C1 codes

In this case, lc1 ≥ lth. Now the use of phase Φ4 makes sense as the duration of Φ1 does not depend on

the number of iterations, because it is limited by the number of free locations in the reconfiguration

memory. As a consequence, additional reconfiguration time can be gained if nit1 is reduced. On the

contrary, Φ5 is not useful for large C1, because Φ1 is limited by the available memory, whereas the

number of available cycles is sufficient. Thus, in this case Φ1 is completed in P /Nb ⋅ (B − lc1) cycles

(when all the available locations are written) and the constraints on lc2 is now written as

lc2 < B − lc1 +
Nb

P
⋅ (tit1 + tit2 + tstop) (3.13)

If tit1 = lc1 and tit2 = lc2, we have

lc2 <
P ⋅B

P −Nb
− (1 −

Nb ⋅ nstop

P −Nb
) ⋅ lc1 (3.14)

Also for this case, there is a limit to the size of code C2 that can replace C1 during phases from Φ1

to Φ4. However, this limit can be increased by increasing nstop or B.

3.3.2 Reconfiguration: cases and examples

The reconfiguration method detailed in Section 3.3.1 has been applied to a set of target standards,

in order to identify suitable design parameters (i.e. Nb, B, nstop, Nfmax) that enable reconfiguration

without pausing the decoder for most of code sizes. The following analysis has been performed with

nit1 = 10. As a first step, we considered all the intra-standard code combinations and we derived the

duration of each reconfiguration phase when switching from a code to another one.

As an example, Figure 3.5 shows the duration of the defined configuration phases (measured in

number of C1 iterations) when switching between WiMAX N = 2304, r = 3/4 and N = 2208, r = 3/4

LDPC codes, for different values of Nb and B. It is possible to see how, increasing B, Φ1 assumes a

leading role, while at the same time the necessary tstop is reduced. Increasing Nb reduces the overall

duration of the reconfiguration. It is worth noting that in this case, Φ4 is always necessary, except

for the large combinations of Nb and B.
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Figure 3.5: WiMAX LDPC reconfiguration case
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Figure 3.6: HPAV turbo reconfiguration case

A different trend can be noticed in the HPAV case (Fig. 3.6), due to the difference in memory

requirements between the two largest codes of HPAV standard. The reconfiguration can be completed

in Φ1 if B ≥ 1.4 ⋅ lc1, otherwise also Φ2 is necessary.

In most cases, intra-standard reconfiguration is possible using phases Φ1 to Φ4, with no need for

exploiting additional frames (Φ5). Only in a few cases the switch from a very small code to a very

large one requires Nf ≥ 1 (see diagonal of Table 3.8). This occurrence is much more frequent when

inter -standard reconfiguration is considered, due to the presence of small codes alongside very large

ones, as DTMB and CMMB LDPCs (see out of diagonal entries in Table 3.8).

Figures 3.7 to 3.11 plot the maximum lc2, as defined by (3.12) and (3.14), for a continuous set of

lc1 values. The × markers represent a subset of the considered intra- and inter -standard code changes:

markers below the curve identify reconfigurations that can be performed without pausing the decoder.

Figure 3.7 shows the maximum lc2 for different values of B: in this plot, B = 100% corresponds to

B = 1771, which is the size of the largest considered lc1, while 160% means B = 1.6 ⋅ 1771. It can be
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seen that in the cases of small C1 codes, increasing the buffer size does not affect the positive slope

portion of the curve.
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Figure 3.8: Maximum lc2 plot with varying Nb

On the contrary, in Fig. 3.8, the maximum lc2 is shown for different values of Nb: in this case,

an increase of Nb is reflected in all areas of the plot. A higher number of buses means a shorter

reconfiguration time, and a larger maximum lc2.

Variation in the maximum allowed tstop (Fig. 3.9) only affects the maximum lc2 in case of large C1

codes (negative-slope portion of the curve), as shown in (3.14). It can be noticed that with nstop = 3
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all the large codes are below the right side of the curve: later in this section it will be demonstrated

how these skipped iterations are negligible in terms of BER performance.
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Figure 3.10: Maximum lc2 plot with varying Nfmax

In Fig. 3.10, the effect of different choices of Nf is shown: from the plot it can be seen that Nf > 0

actually increases the maximum lc2 only for small C1 codes.

Finally, Fig. 3.11 plots some combinations of the analyzed parameters in order to allow dynamic

reconfiguration among most of considered codes. The represented combinations of Nb, B, tstop and
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Figure 3.11: Maximum lc2 plot, different solutions

Nfmax all yield very similar performance: the cost underlying every parameter choice consequently

becomes the decision metric. A 20% increase in memory, even if backed up by a smaller number of

buses, heavily affects the decoder area occupation, ruling out the solution represented by the thick

dashed line. Among the remaining three combinations, the one that makes use of 6 buses yields a

higher area occupation than the others. Since with Nfmax = 1 the thin dashed curve crosses one of the

lower × markers, the final choice falls on Nb = 5, B = 100%, tstop = 3 ⋅ tit1 and Nfmax = 2. Given that

P = 22, and consequently P
Nb

= 22
5 is not an integer number, every bus will be exclusively connected

to four nodes, while the reconfiguration of the remaining two nodes will be shared among all 5 buses.

The impact of the reconfiguration process on the decoder area is addressed in Section 3.4.

A set of BER simulations has been performed to evaluate the impact of different tstop, on WiFi,

DVB-RCS, WiMAX, CMMB, DTMB, 3GPP-LTE and HPAV codes. Considering the worst case for

each tested standard (i.e. the largest block length, the most unfavorable throughput/code rate ratios),

the reconfiguration probability can be expressed as the probability for each incoming frame to request

a code change, computed as the channel changing frequency fchng over the number of coded frames

received in a second:

PR =
fchng ⋅ r ⋅N

Tmax
(3.15)

where Tmax is the maximum throughput required by the standard for the N and r code choices. The

reconfiguration probability ranges between 0.25% and 0.3% in presence of the fast moving receiver,

while it remains under 0.15% in the other case. Simulation results show how the BER penalty is

negligible as long as nit − nstop ≥ ⌈navgit ⌉, with navgit the average number of iterations performed before
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a correct codeword is obtained and ⌈⋅⌉ is the next highest integer value.

Figure 3.12 shows the BER curves obtained with nit = 10 and nstop = 3, in the pessimistic as-

sumption that a reconfiguration requiring always nstop = 3 occurs with PR. As it can be observed, the

difference between the case when reconfiguration occurs (solid lines) and the no-reconfiguration case

(dashed lines) is completely negligible.
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3.4 VLSI implementation of a reconfigurable turbo/LDPC decoder

The work presented in this section and published in [14] stems from the results presented in Section

3.2, where a 22-PE NoC-based turbo/LDPC decoder is presented. With its 3.17 mm2 area and

multi-code support, it represents an important step towards flexibility: the design is improved in

this section through novel memory scheduling and addressing methods, reduced latency and simpler

control. As shown in [69], sharing the datapath of a min-sum based decoder architecture with a log-

MAP SISO does not provide significant advantages. As a consequence, in this work logic sharing is

not addressed. Experimental results show that the area of the architecture is dominated by memories

indeed. Deriving from the reconfiguration analysis of Section 3.3 three reconfigurable turbo/LDPC

decoder implementations are presented and compared to the state of the art.

3.4.1 Decoding Cores

The design of the decoding cores must yield the same degree of flexibility of the NoC, being as

independent as possible of the set of supported codes. In [13] a completely serial LDPC decoding core

has been designed, mostly independent of block length and code rate: an arbitrary number of CN

operations can be scheduled on it. The same holds true for the serial SISO decoder, where different

windows can be scheduled, regardless of the size of the interleaver.

Quantization and Memory Organization

Memory organization evolves from the idea presented in Section 3.2, in which in every decoding core

two memories are instantiated: a 7-bit memory and a 5-bit memory. Their usage is shown in the

left part of Fig. 3.13: LDPC VN-to-CN values are stored in the 7-bit memory, together with turbo

extrinsic information and state metrics. The 5-bit memory is instead used for CN-to-VN values in

LDPC decoding, while storing the intrinsic channel information in turbo decoding. The memories are

sized to the largest WiMAX codes (N = 2034, M = 576 for LDPC and K = 2400 for turbo). However,

according to post-layout synthesis results, memory access multiplexers suffer from excessive area

overhead for these particular cuts. To reduce this problem and at the same time the overall memory

area occupation, a novel memory organization technique is proposed, as shown in the rightmost part

of Fig. 3.13. Different colors highlight different metrics, while black-striped parts are unused.

Extensive simulations of WiFi, WiMAX, CMMB and DTMB have shown how, in LDPC decoding,

λk[c] and channel LLR quantization can be reduced from 7 to 6 bits without consistent performance

degradation. Fig. 3.14 shows the BER curves for some WiMAX, DTMB and WiFi LDPC codes with

the two quantization choices: the difference is smaller than 0.05 dB for all rates of medium and large
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Figure 3.13: Memory organization, WiMAX maximum usage percentages

code sizes. On the same graph, yielding similar results, a few turbo codes examples (WiMAX and

HPAV) are plotted, in which λk[b] and the channel LLR representation changes from 7 to 6 bits, and

λk[c(e)] from 5 to 4 bits (the meaning of λk[b] will be detailed later in this section). Also for turbo

codes, the performance loss introduced by the proposed quantization change is almost negligible. Very

small codes, like some of those included in 3GPP-LTE and WiMAX, suffer more from the quantization

reduction (Fig. 3.14). Curves obtained with floating point precision show improvements between 0.1

and 0.2 dB w.r.t. the selected precisions. Thanks to these changes, a single 6-bit wide memory

is instantiated, in which both λk[c] and Rlk values are saved. Storing all the Rlk values requires

M ⋅rowdeg

P = 576⋅15
22 locations in each decoding core. However, with the normalized min-sum algorithm

the number of necessary bits can be reduced by 21.2% by changing the addressing mode as follows.

For every CN in the H matrix deg metrics Rlk are updated. Since Rlk can take only two possible

values, for each CN we can memorize 576 ⋅ 2 magnitudes, and 576 ⋅ 15 2-bit indexes that identify the

correct Rlk magnitude and its sign.
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Figure 3.14: LDPC and turbo BER with quantization change, AWGN channel, BPSK modulation
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Figure 3.15: Turbo mode in-depth memory organization

The sizing of the 6-bit memory is determined by the DBTC decoding mode, since it must store

λk[b] and λk[c(e)] values. To limit the area overhead and speed up the loading process, four λk[c(e)]

values are stored in three memory locations, as portrayed in the left part of Fig. 3.15. Three 4-bit

λk[c(e)] are stored in three 6-bit locations: the remaining metric can be divided in two pairs of bits,

and stored in the leftover locations. Three clock cycles are used to read the four λk[c(e)] values

for a trellis step with minimal logic overhead. In case of SBTC, like those used in 3GPP-LTE, only

two λk[c(e)] and one λk[b] are necessary for a trellis step, and they can be read in two clock cycles

without impairing the throughput.
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Figure 3.16: LDPC decoding core

With a similar method the 2-bit memory is used in turbo decoding mode to store βk[s] and αk[s]

between iterations, as suggested in [70]. Six locations are used to store 2 βk[s] or αk[s] (Fig. 3.15):

since at most three 8-state windows initialization metrics, i.e. 24 βk[s] and 24 αk[s], are stored at

the same time, only 144 out of 400 locations are used. Multiple memory accesses are necessary to

read a single value: the issue is handled with appropriate scheduling (see Section 3.4.1) and does not

affect the throughput.

LDPC Decoding Core

The LDPC decoding core used in the decoder described in [13] relies on a serial architecture suited

for exclusive memory usage. The main drawback of this solution is the variable number of cycles

to produce the output. The average number of cycles–per–data varies between one and two. To

overcome this limitation and to share the memory with the SISO decoder a novel architecture with

limited area overhead is proposed.

The LDPC decoding core is detailed in Fig. 3.16.: this architecture supports all kind of LDPC

codes, as long as the memory requirements are met.

A Qlk[c] value (2.6) is produced at every clock cycle and fed to the Minimum Extraction Unit

(MEU) depicted in Fig. 3.17. Then, ∣Qlk[c]∣ is compared to the current first and second minimum

(min1 and min2), that are initialized as the maximum allowed value at the beginning of each CN

phase. The minimum of both comparisons (min1new and min2new) is passed on and sampled on the

rising edge of the clock signal, together with the previous first minimum (min1old) and a flag signaling

if min1≠min1new (min1update). If min1update = 0, min2new is substituted with min1old: min1 and min2

are finally updated on the falling edge of the clock, ready and stable for the next ∣Qlk[c]∣. Differently
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Figure 3.17: Minimum Extraction Unit

from the MEU used in [13], that could halt the pipeline in case both min1 and min2 had to be updated,

the negative–edge triggered registers allow both updates in a single clock cycle, leading to a constant

cycles–per–data rate close to one, after the initial deg+2 cycles latency. Concurrently, Qlk[c] signs

are XORed as in (2.8).

Once min1 and min2 have been successfully extracted, they are compared to all the Qlk[c] of the

CN, that are delayed by a number of clock cycles equal to the degree of the CN (deg), to compute Rnew
lk

as in (2.9). The CMP unit handles the comparison and produces the two flags (sign and identification)

to be stored in the Rlk index memory. The correction factor σ in (2.12) is applied before the final

addition in (2.10) and λnewk [c] are sent to the output buffer.

The length of the delay lines used for Qlk[c], R
new
lk magnitudes and indexes is initialized by the

control unit to deg.

Both 6-bit and 2-bit memories are implemented as dual port RAMs, allowing two concurrent

operations. At iteration n, for the j-th CN, two clock cycles are devoted to write on port 1 of the

6-bit memory. This allows the storage of the two Rnew
lk magnitudes of CN j and computed during

current iteration. On the contrary, port 2 is set to read mode, loading the two Rold
lk magnitudes of CN

j + 1 stored during previous iteration. In the 2-bit memory port 1 is always in write mode, storing

Rnew
lk indexes as soon as they are computed, while port 2 is constantly in read mode. During this first

phase, though, no data is loaded.

The second phase of the scheduling lasts for deg cycles. The ports on the 6-bit memory switch

functionality: port 1 is used to store λk[c] incoming from the network, while port 2 is used to read

deg λoldk [c] values of CN j + 1. The 2-bit memory is enabled, loading the Rold
lk indexes of CN j + 1 and
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storing Rnew
lk indexes of CN j.

Turbo Decoding Core

As for the LDPC decoding core, also the SISO decoder yields a very high degree of flexibility, limited

only by the size of the memories: any 8-state double-binary turbo code can be decoded as long as the

memory capacity is sufficient.

The overall structure of the core architecture is the same of Fig. 3.3. The SISO interfaces with

the NoC via two dedicated input and output blocks, i.e. the BTS CU and STB CU [38] already

mentioned in Section 3.2. The BTS-CU changes the received a priori BL λaprk [b] to SL λaprk [u], as

required by the algorithm, while the STB-CU reduces the number of messages to be sent on the NoC

by converting λk[u] extrinsic values into BL λk[b].

For every trellis step in a window, the Branch Metric Unit (BMU) and the Extrinsic Computation

Unit combine the two λaprk [b] converted by the BTS-CU with four λk[c(e)] values read from the 6-bit

memory to calculate γk[e] (2.5) and to update λk[u] respectively. The output of the BMU is used

by the main computation unit, that tackles the calculation of b(e), αk[s] and βk[s] (2.2), (2.3) and

(2.4). These metrics are computed in this exact order, thus storing βk[s] values in a dedicated set

of registers while αk[s] are being processed: the b(e) metric, that needs both βk[s] and αk[s], is

calculated last.

In turbo mode, each trellis step requires three clock cycles to be completed. However, up to five

cycles are needed to read all the necessary λaprk [b] and λk[c(e)]. Early simulation results presented

in [13] show that the SISO working frequency (f turbocore ) can be lower than the NoC’s one (f turboNoC ). By

timing the memories and their relative address generation circuitry with the faster clock signal, six

values (five memory locations) can be read from port 1 of the 6-bit memory in three SISO-cycles.

Port 2 is kept in write mode for the duration of the decoding, and used to store values coming from

the network.

The 2-bit memory is used in the same way, with port 1 in read mode and port 2 in write mode.

At the beginning of every new window 16 values are needed (8 αk[s] and 8 βk[s]) from this memory

to initialize the trellis. Due to the memory organization used for state metrics, see Fig. 3.15, one

αk[s] and one βk[s] are spread over 7 memory locations. Consequently, 7 ⋅8 clock cycles are necessary

to load the 16 values. The values must be loaded from the memory before the window is processed.

Thus, they are loaded during the processing of the previous window. Setting the minimum window

size to 20 trellis steps, the computations require 3 ⋅ 20 clock cycles, and there is enough time to load

βk[s] and αk[s] values to initialize the next window.
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3.4.2 Supported Standards

The 22-node architecture developed in the previous sections has been tested on a large set of commu-

nication standards. In particular, the whole set of turbo and LDPC codes included in [3–6, 8, 9, 71]

have been tested.

As explained in the previous section, if fcore is smaller enough than fNoC , communication time

between PEs is negligible. Taking in account the presented 22-node architecture, the maximum ratio

fcore/fNoC for which this assumption stands is 2/3 for LDPC codes and SBTC, while 3/5 is necessary

for DBTC. The maximum number of iterations Itmax has been set to 10 for LDPC codes, and to 8

for turbo codes.

Every standard has different throughput requirements: both fcore and fNoC can be adjusted

consequently.

� IEEE 802.16e: the WiMAX standard [3], is fully supported. A high enough throughput (> 70

Mb/s) can be obtained with fLDPC
core = 200 MHz and f turbocore = 80 MHz. Table 3.6 summarizes the

results.

Table 3.6: IEEE 802.16e standard throughput (T ), 10 iterations for LDPC, 8 for Turbo

CODE
fcore T

[MHz] [Mb/s]

DBTC 80 73

LDPC r = 1/2 200 70

LDPC r = 2/3 200 88

LDPC r = 3/4 200 88

LDPC r = 5/6 200 110

� IEEE 802.11n: IEEE 802.11n standard [4] requires a higher throughput than WiMAX, demand-

ing for the N = 1944, r = 5/6 code up to 450 Mb/s. The 22–node architecture can guarantee

it with fcore = 820 MHz. Taking in account the fcore/fNoC ratio constraint, this would mean

fNoC = 1.23 GHz. Both frequencies are over the decoder maximum working frequency, and two

alternatives have been devised. By increasing the size of the NoC to 35 nodes, the fcore/fNoC

still holds at 2/3, but fcore can be lowered to 520 MHz, and fNoC = 780 MHz. By choosing

fcore = 350 MHz, support still can be given for other WiFi transmission modes, requiring up to

300 Mb/s. The results are shown in Table 3.7.

� DVB-RCS : the return channel for DVB satellite communications [71], thought for multimedia

applications, employs 12 different payloads and 7 coding rates. The throughput required by this

standard is very small, and can go up to 2.05 Mb/s in case of corporate-driven applications.
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Table 3.7: IEEE 802.11n standard throughput (T ) with different fcore and NoC sizes, 10 iterations

T [Mb/s]

CODE
@520 MHz @350 MHz @200 MHz

35 nodes 35 nodes 22 nodes

LDPC r = 1/2 248 167 60

LDPC r = 2/3 364 245 88

LDPC r = 3/4 406 273 94

LDPC r = 5/6 455 306 110

Table 3.8: Reconfiguration cases in intra- and inter-standard combinations. Dark gray: percentage of
code combinations requiring decoder pausing. Light gray: percentage of code combinations requiring
0 < Nf ≤ 2. White: all code combinations reconfigurable with Nf = 0. Throughput obtained with 10
iterations for LDPC, 8 for Turbo

C2 WiMAX LDPC WiMAX turbo WiFi DVB-RCS HPAV CMMB DTMB 3GPP-LTE

C1

WiMAX LDPC 3.5% 8.2% 1.8% 2.4% 14.0% 21.0% 36.4% 5.2%

WiMAX turbo 10.1% 15.8% 4.4% 5.9% 17.6% 47.0% 54.9% 10.0%

WiFi 8.2% 13.2% 6.8% 4.0% 19.4% 33.3% 44.4% 6.8%

DVB-RCS 18.5% 0.3% 13.5% 8.5% 22.2% 55.9% 67.0% 13.5%

HPAV 14.4% 17.6% 11.1% 17.8% 33.3% 33.3% 77.7% 12.3%

CMMB

DTMB

3GPP-LTE 7.9% 10.0% 5.3% 4.2% 12.3% 31.6% 38.0% 6.8%

This throughput is easily sustained by the 22-node architecture with fcore = 3 MHz.

� HomePlug AV : the HPAV standard [6] makes use of a small set of DBTC, with interleaver sizes

of 64, 544 and 2080. The throughput requirements of HPAV demand at least 150 Mb/s: on the

22-node architecture, with fcore = 170 MHz, achieved throughput is 156 Mb/s.

� CMMB and DTMB : the CMMB [8] and DTMB [9] Chinese broadcast standards, though serv-

ing the same purposes as DVB, work with smaller LDPC codes. Like in DVB, also in CMMB

codes feature double diagonal submatrices, slightly limiting the concurrent number of row nodes

that can be instantiated on the proposed decoder. Both CMMB and DTMB codes demand an

increased memory capacity with respect to the aforementioned standards, requiring PE mem-

ories to be enlarged by 55% to support CMMB, and by 68% for DTMB. A working frequency

fcore = 60 MHz is sufficient to guarantee the 20.22 Mb/s throughput required by CMMB stan-

dard, while to comply with DTMB 40.6 Mb/s, frequency must be risen to fcore = 200 MHz, as

shown in Table 3.9.

� 3GPP-LTE : the LTE version of 3GPP [72] uses a set of 188 SBTC with coding rate 1/3,

thus being characterized by a range of widely spaced block lengths. The required 150 Mb/s

throughput can be obtained on the 22-node architecture with fcore = 330 MHz; however, if



3.4. VLSI IMPLEMENTATION OF A RECONFIGURABLE TURBO/LDPC DECODER 67

Table 3.9: CMMB and DTMB standard throughput (T ), 10 iterations

CODE
fcore T

[MHz] [Mb/s]

CMMB LDPC r = 1/2 60 22

CMMB LDPC r = 3/4 60 33

DTMB LDPC r = 2/5 200 42

DTMB LDPC r = 3/5 200 55

DTMB LDPC r = 4/5 200 68

we consider the extended 35-node architecture mentioned for the WiFi standard, compliance

with the throughput requirement is met at fcore = 200 MHz. This standard requires additional

41% memory capacity w.r.t. WiMAX, WiFi, DVB-RCS and HPAV standards, but can be fully

supported by the CMMB and DTMB memory sizing.

Table 3.8 summarizes possible switching among the selected standards, taking in account all possi-

ble code combinations. The dark gray cells represent the percentages of C1, C2 combinations between

two standards whose reconfiguration requires pausing of the decoder. A few cases arise between

DVB-RCS and WiMAX turbo codes and within 3GPP-LTE (due to its wide variety of codes), while

when C2 belongs to the CMMB, DTMB and LTE standards, it is more likely to encounter a critical

combination. On the contrary, if C1 belongs to CMMB or DTMB standards, any reconfiguration

can be completed with Nf = 0 (with Nf the number of additional frames on which to spread the

reconfiguration process): this is also the most common situation among the other standards. The

choice of maximum Nf = 2 allows to handle all the other reconfiguration cases: the light gray cells

show the percentages of code combinations in which 0 < Nf ≤ 2 is necessary.

3.4.3 Implementation Results

The results presented in Section 3.4.2 show a broad range of possibilities for implementation, and the

designed decoder can be scaled with very low effort. Three different complete decoders have been

synthesized with TSMC 90 nm CMOS technology: post-layout results have been obtained for all of

them, with accurate functional verification, area and power estimation. Synthesis has been carried on

with Synopsys Design Compiler, functional simulation with Mentor Graphics ModelSIM, and place

and route with CADence SoC Encounter.

Implementation A

The first decoder implementation has been devised to fully support WiMAX, HPAV and DVB-RCS

standards. The memory sizing and organization described in Section 3.4.1 is able to handle the
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addressed standards with 22 PEs. To comply with each standard throughput requirements, a single

fNoC = 300 MHz is sufficient in both LDPC and turbo mode, consequently identifying fLDPC
core = 200

MHz and f turbocore = 170 MHz, both under the fcore/fNoC constraint. Obtained throughput is presented

in Table 3.10.

Each reconfiguration bus is 18 bits wide: 3 bits are the node identifier, used to address one of the

connected decoding cores, 5 bits are assigned to the node degree or window size information, and the

remaining 10 bits carry the t′i,j .

These design choices have led to an overall area of 2.75 mm2 after place and route, taking in

account the reconfiguration additional hardware as well. The logic of the SISO cores occupies 15% of

the overall area, while the LDPC cores 11%. Core memories account for another 53%, while the NoC,

together with the reconfiguration buses and additional logic, constitute the remaining 21%. This area

overhead is due to two specific functionalities that have been introduced in the proposed decoder: (i)

full flexibility in terms of supported turbo and LDPC codes, and (ii) dynamic reconfiguration between

different standards.

Estimated power consumption, based on the switching activity in case of WiMAX LDPC code

N = 2304, r = 1/2 (for ease of comparison with the state of the art) is 87.8 mW; for WiMAX turbo

code with K = 2400 estimated power is 101.5 mW.

A screenshot of the final layout is portrayed in Fig. 3.18: the irregularity of the placement is due

to the large number of memories and their complex interconnections. However, two different areas

can be easily identified: a central zone in which most of the logic is found (black contour), and a

border area where the majority of memories have been placed, some of which are highlighted with a

white line.

Implementation B

The second implementation presented extends the set of standards supported by implementation

A to WiFi LDPC codes and 3GPP-LTE turbo codes. To limit the complexity of off-chip clock

generators, also in this case a single NoC working frequency has been chosen, fNoC = 780 MHz, while

fLDPC
core = 520 MHz is necessary to provide high enough throughput, f turbocore can remain set to 200 MHz.

The parallelism of the NoC is increased from 22 nodes to 35 nodes, the reconfiguration buses rise from

5 to 8, and the support of LTE requires an increase in the size of 6-bit memories. Throughput results

are reported in Table 3.10. The post place & route estimated area is 4.87 mm2, with 331.6 mW of

power consumption in LDPC mode, and 183.2 mW in turbo mode.
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Figure 3.18: Implementation A layout screenshot

Implementation C

This third implementation extends implementation A’s support to CMMB and DTMB. Neither fre-

quency nor NoC parallelism modification are necessary, but the core and reconfiguration memories

must be enlarged. Consequently, an extra bit is added to the reconfiguration bus data width. The

new post place & route estimated area is 3.42 mm2, while power reaches 120 mW for both tested

turbo and LDPC codes. This is because the LDPC consumption is calculated on a DTMB code, that

makes full use of the extended memories, while the memory usage percentages for DBTC remains low.

The enlarged memories allow also LTE codes to be decoded, but the SBTC fcore would need to rise

up to 333 MHz to meet the throughput requirements. Throughput results for CMMB and DTMB are

shown in the Implementation C column of Table 3.10.

Comparisons

Table 3.12 shows the detailed implementation results in comparison with recent related state of the

art flexible turbo/LDPC decoders. Even though A, B and C are the only decoders capable of dynamic

switching, area, power and efficiency figures prove the effectiveness of this approach.

In order to make a fair comparison, normalized area occupation has been included in the table,

Antot =Atot ⋅ (65/Tp)2, where Atot is the total area and Tp is the technology process. Throughput

and power consumption are also compared. Moreover, two further metrics have been introduced: the
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Table 3.10: Throughput (T ) results for each standard, with every implementation

T [Mb/s]

CODE Impl. A Impl. B Impl. C

STD, r fNoC 300 MHz fNoC 780 MHz fNoC 300 MHz

fcore T fcore T fcore T

[MHz] [Mb/s] [MHz] [Mb/s] [MHz] [Mb/s]

DBTC

WiMAX 170 156 200 292 170 156

HPAV 170 156 200 292 170 156

DVB-RCS 170 156 200 292 170 156

SBTC

3GPP-LTE N/A N/A 200 150 170 78

LDPC

WiMAX 1/2

200

70

520

289

200

70

WiMAX 2/3 88 364 88

WiMAX 3/4 88 364 88

WiMAX 5/6 110 455 110

WiFi 1/2

200

60

520

248

200

60

WiFi 2/3 88 364 88

WiFi 3/4 94 406 94

WiFi 5/6 110 455 110

CMMB 1/2
N/A N/A N/A N/A 200

73

CMMB 3/4 110

DTMB 2/5

N/A N/A N/A N/A 200

42

DTMB 3/5 55

DTMB 4/5 68

Table 3.11: Area efficiency (Aeff ) for different codes and implementations. N/A: code not supported.
Dash: results not available.

Aeff [ bits
mm2⋅kcycles

]

CODE A B C [48] [49] [51] [52]

LDPC (min)

2304, 1/2 2447 2188 1966 882 –
2013

–

2304, 5/6 3846 3445 3090 4412 9589 10779

1944, 5/6 3846 3445 3090 3719 10363 3484 8982

7493, 4/5 N/A N/A 1910 N/A N/A N/A N/A

Turbo (min)

DB 2400 5134 4598 4124 1468 750 2084 N/A

SB 6144 N/A 2362 2062 1468 375 N/A 3233

energy efficiency Eeff = Pow/(T ⋅ Itmax), where Pow is the peak power consumption, expressing the

energy spent for decoded bit, and the area efficiency Aeff = (T ⋅ Itmax/fclk) ⋅ (1000/Antot), reported

in Table 3.11, an efficiency figure that considers both throughput and area occupation.

Baghdadi et al. in [48] propose an ASIP decoder architecture supporting WiMAX and WiFi LDPC
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Table 3.12: LDPC/Turbo architectures comparison: Decoder parallelism P , CMOS technology process
(TP), processing area occupation (Acore), total area occupation (Atot) normalized area occupation for
65nm technology (Antot), clock frequency (fclk), peak power consumption (Pow), energy efficiency
(Eeff ), data width (DW), maximum number of iterations (Itmax), code length (N) and rate (r),
interleaver size (K) and throughput (T )

Decoder 2 A 2 B 2 C [48] [49] [51] [52]

P
LDPC

22 35 22 8 1 12 12
DBTC

Tp LDPC
90 90 90 90 65 45 90

[nm] DBTC

Acore LDPC
2.19 3.83 2.56 2.44 N/A N/A 1.18

[mm2] DBTC

Atot LDPC
2.75 4.87 3.42 2.6 0.62 0.9 3.20

[mm2] DBTC

Antot LDPC
1.43 2.54 1.78 1.36 0.62 1.88 1.67

[mm2] DBTC

fclk LDPC 2001 5201 2001

520 400 150 500
[MHz] DBTC 1701 2001 1701

Pow LDPC 87.8 331.6 118.6
N/A 76.8 86.1 N/A

[mW] DBTC 101.5 183.2 121.6

Eeff LDPC 0.125 0.073 0.174
N/A

0.032 0.151
N/A

[nJbit ] DBTC 0.081 0.078 0.097 0.826 0.147

DW LDPC 6 - 5 6 - 5 6 - 5 7 - 5 7 - 5 7 - 5 9 - 6

[bits] DBTC 6 - 4 6 - 4 6 - 4 8 - 6 8 7 - 5 9 - 6

Itmax
LDPC 10 10 10 10 10 8 15

DBTC 8 8 8 6 5 8 6

N , r LDPC 2304, 1/2 1944, 5/6 7493, 4/5 2304, 1/2 2304, 5/6 N/A 2304, 5/6

K DBTC 2400 2400 2400 2400 2400 N/A SBTC 6144

T LDPC 70 455 68 62.5 237.8 71.05 600

[Mb/s] DBTC 156 292 156 173 37.2 73.46 450
1 fcore
2 post–layout results

codes, and WiMAX, 3GPP-LTE and DVB-RCS turbo codes. The A, B and C implementations are

designed such that the minimum throughput is sufficient to comply with the supported standards.

On the contrary, worst case throughput in [48] is not high enough for WiMAX. Comparison reveals

similar area occupations, but very different frequencies. This leads to a better area efficiency in all

three proposed implementations for most of the codes: particularly evident is the difference for DBTC

(second last row of Table 3.11).

The work presented in [49] supports convolutional, LDPC and turbo codes, giving results for

WiMAX LDPC, WiFi and general binary and double-binary turbo codes. It yields a very small area

occupation with low power consumption and good maximum throughput for LDPC decoding. On
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the contrary, it features less interesting figures in turbo mode. This situation is reflected both on

Eeff and Aeff , with Implementation A, B and C having, when comparing the same codes, better

efficiencies in turbo mode (last row of Table 3.11), and worse in LDPC mode. However, under the

worst case conditions (N=672, r = 1/2, 20 iterations), A and B outperform [49] also in LDPC mode.

The multi-standard decoder designed in [51] supports 3GPP-HSDPA, WiFi, WiMAX and DVB-

SH. No specific information on the codes used is given, only minimum guaranteed throughput: for

this reason, results in Table 3.11 refer to the minimum throughput of each standard. Implementation

A and B have comparable minimum Aeff when working with WiMAX LDPC codes, and A, B and

C yield much better results in turbo mode. When comparing WiFi results [51] guarantees a higher

Aeff than A, B and C, even though aiming for a lower throughput than B. All three proposed

implementations yield better Eeff , and both A and C have a smaller area occupation.

Sun and Cavallaro describe in [52] a decoder working with 3GPP-LTE turbo codes and WiMAX

and WiFi LDPC codes. They obtain very high maximum throughput efficiency in both LDPC and

turbo mode: the range of supported codes is however quite limited w.r.t. all considered implementa-

tions, and the area occupation is larger than A. Since no power analysis is given, comparison based

on Eeff is impossible, although the difference in working frequencies would suggest a smaller power

consumption for at least A and C.
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3.5 Joint application and communication NoC simulator

In a general purpose System-On-Chip (SoC), one or multiple applications are mapped on a number of

PEs, and communication among them is handled by interconnects. Advanced interconnects use the

NoC concept, which potentially guarantees very high flexibility and better scalability with respect to

traditional bus based solutions. In the NoC design paradigm, processing is separated from commu-

nication, meaning that supported applications can be developed and optimized independently of the

underlying interconnect structure. On the other hand, NoC design choices are made with the purpose

of matching the communication requirements (e.g. latency, aggregate throughput, FIFO sizes, etc.)

of a large variety of applications. While this separation is still important to facilitate development

of new applications and reduce the time to market of new products, the original idea of general pur-

pose NoCs has evolved and new kinds of NoCs, like Application-Specific NoCs (ASNoCs) targeting

a single application, are today proposed with features fully optimized for a single or reduced number

of processing needs. In this context, the separation paradigm looses part of its meaning and proper

design methods and tools, involving both communication and processing sides must be proposed to

support the development of efficient ASNoCs.

In fact, some cases arise where cycle accurate joint simulation of PEs and NoC is necessary to

achieve efficient application specific NoC-based VLSI architectures. We distinguish three kinds of

developments, to clarify the possible use of such a joint simulation environment:

1. new NoC designed for an already existing set of PEs associated with a given application

2. new application with new PEs to be interconnected by means of an already available NoC

3. new NoC and a new application, supported by new PEs.

In the first case, the inter PE communication needs are extracted from the application and used to

drive the NoC design. Available simulation tools already support this kind of design flow, where effects

of application on NoC performance must be verified. We can symbolically represent this dependency

as: PEs → NoC. As an example, in [73] a complex digital TV SoC is extended by replacing the original

interconnect structure with a programmable NoC, which provides improved flexibility and extends

the lifecycle of the product. On the contrary, in case two, choices on the processing side depend on

the capabilities of the available NoC: in this case we have a NoC → PEs dependency. Finally, the

third case refers to the design of a new ASNoC, which is usually addressed exploiting the separation

principle: first PEs are developed to be able to run in a distributed way the application, then a proper

NoC is derived, starting from the specific communication needs coming from the PEs. In other words,
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the case three development is usually organized around a PEs → NoC dependency. We believe that,

in some cases, better results can be achieved if PEs and NoC are jointly designed, taking in account

both the effects of generated inter PE traffic on NoC performance [74], and the effects of NoC design

choices on the overall application performance. We can represent this inter dependency as PEs ↔

NoC. A key tool to support joint PE and NoC design is a high level simulation environment including

proper modeling capabilities of both PEs and NoC.

In this section, starting from the OMNET++ library [75], a new simulation environment, namely

JANoCS, is proposed, which allows for cycle-accurate joint simulations of both application and com-

munication in NoC-based SoCs. Simulations are run at high level and do not require RTL modeling.

Its usage is fit for early evaluation of design choices for all kinds of NoC-based SoCs, in particular

those with custom PEs, complete design of multiprocessor ASICs, and evaluation of feasibility in case

a new application is mapped on existing hardware. While an example design case is portrayed in this

section, the proposed simulator is applied to the turbo and LDPC cases in Section 3.6 in order to

explore and evaluate new power reduction methods for NoC-based channel decoders. JANoCS has

been presented in [15].

3.5.1 Proposed simulation environment

The proposed simulator has been built on the concept that the simulation of PEs and interconnects

must be handled at the same time, to be able to observe the impact of the network dynamic behavior

on the application mapped over the PEs. Regardless of the wide and diversified range of possible

applications, common characteristics allow to draw a list of features that the simulator should have:

� a high-level language must be used to simplify the modeling of the system and to improve design

productivity;

� the overall structure should be as modular as possible, allowing fast and easy changes to the

model, and guaranteeing a high degree of reusability and flexibility;

� hardware characteristics should be modeled with functional behavior and timing details only,

to keep simulations fast without sacrificing precision.

An effective starting point for these purposes is the OMNET++ simulation library [75], an open-

source C++ based environment targeting network simulation. It is composed of two different parts:

1. a set of C++ classes used to represent network elements (both computational hardware and

data structures) and useful methods, which can be used to model the behavior of the network

itself;
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2. a description of the structure through a NEtwork Description (NED) language; here modules

are interconnected, specifying channel types, data rates, topologies.

An initialization file serves as a parameter definition method.

The OMNET++ information exchange method is one of its key features: thanks to the cMessage

class, modules can trigger behavioral responses when different kinds of messages are received. These

are moved between modules through NED-defined channels: statistical data can be easily obtained

and plotted by tweaking a set of customizable parameters. Cycle-accurate behavioral simulations and

detailed analysis of the status of the network can easily be obtained by joining the inset message-

triggered responses to models of the channels’ timing details. It is consequently possible to evaluate

latencies, congestion, data loss and many other dynamics.

With OMNET++ as a foundation, a Joint Application and Network-on-Chip Simulator (JANoCS)

has been proposed, targeting the above listed characteristics. A completely parameterized NED

structure of the NoC has been developed, with the definition of the topology, the number of nodes,

the direction of the channels and their delays occurring in the initialization file. An example of

JANoCS parametrized network definition is shown in Figure 3.19. The topology of the NoC is passed

as first parameter: each construction file is associated to a different supported topology, defining the

connection among nodes accordingly. Once the topology has been specified, variables common to all

topologies are given to the construction file, like the number of nodes, the number of connections

(degree) and the type of channels to be used for each connection.

The nodes of the NoC are instantiated as generic JANoCS blocks, i.e. compound modules con-

stituted of a Routing Element (RE), a PE and a network interface (NI). Another set of user-defined

parameters is passed to these compounds, in which the modules to be used are specified. In Fig.

3.19 a router implementing XY routing is chosen, while a further set of parameters clarifies charac-

teristics that can either be common to all routers or particular to the selected module, like collision

management policies or the definition of the size of the input buffers. The same happens for the NI

block. The simulated application is defined in the PE module: according to the type of processing

performed, each possible PE requires a dedicated set of parameters.

A clock generator module with user-defined period has been created: it relies on the cMessage

class, and triggers responses in all the clocked modules. One or more latency parameters are defined

in each instantiated module, and are expressed in number of clock cycles. These latencies are used

to simulate the hardware structure within the models and to take in account packet communication

latencies, with no need for a more detailed datapath description.
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Figure 3.19: JANoCS network definition via parameters

This extremely modular structure of the system makes very simple the introduction of new modules

and their customization. Each block within a compound module is instantiated as a generic class,

and consequently identified by the user as a subclass of the instance. For example, both XYRouter

and ShortPathRouter classes are subclasses of RoutingElement, with inherited parameters common

to all REs, and new ones specific of their subclass.

The potential of JANoCS can be better explained through an example. For this purpose, an

optimization task based on a genetic algorithm has been mapped on a NoC with NoCSize=16. This

example situation, named barrel construction, is very simple, but does not alter the generality of the

concept.
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Figure 3.20: Performance of genetic algorithm based barrel construction

The goal of the optimization task is building the largest barrel possible, using a fixed number

of planks and wasting as little material as possible: having very long planks when a short plank is

present is considered a waste of resources. In genetic algorithms the fitting function expresses how

good each member of the current population is: in this particular problem it has been defined as

ffit =

p

∑
i=0
li

lmax − lmin
(3.16)

where li is the length of the ith plank in the barrel, the numerator is the whole size, while the

denominator expresses the wasted wood.

Each PE is modeled to hold a small randomly generated initial population of PopulationSize bar-

rels: new barrels are created through crossover and mutation (with probabilities CrossoverProbability

and MutationProbability). Then the PEs broadcast a few of the best barrels to all the others PEs,

speeding up the improvement process. The PEs are coded to wait StallingTime cycles after the

last barrel has been sent, to allow the delivery of the barrels: when they have expired, another iter-

ation (crossover - mutation - broadcast) starts. Iterations are stopped when a solution with fitting

value higher than FittingThreshold is found: for this example, FittingThreshold=1000. A man-

ager module can conveniently control the status of the application and order the start of iterations:

dedicated cMessage subclasses can be used as control messages.

Communication is enforced via a 4 × 4 square mesh NoC with XY routing: NodeDegree is auto-

matically set to 5, while ChannelType is set to Ideal. Routers can easily be built from basic cQueue

blocks representing FIFOs, with functions implementing the actual routing decisions, timed by latency
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parameters. Change of routing algorithm or arbitration method implies minimal changes to the code.

Joint simulations allow to evaluate the importance of inter-PE communication and possibly to

improve the design towards a faster convergence to a good solution. In Figure 3.20 the number of

algorithm iterations required to reach the fitting threshold is shown for different design choices. The

first three histogram bars refer to a NoC implementing a Round-Robin Collision Management policy

(RRCM), barrels built out of 12 planks, StallingTime=10 clock cycles, CrossoverProbability=30%,

and MutationProbability=0.5%. The black bars refer to a population size of 100 elements, while

the gray and white bars are for 200 and 300 elements respectively. Larger populations usually lead to

larger room for improvement through crossover and mutation, thus explaining the faster convergence

towards the desired fitting threshold: on the downside, they require additional PE resources and longer

iterations. The second block of solutions considers an extended StallingTime of 50 cycles: it can be

seen that although small improvements can be noticed, the congestion of the network is too severe,

and would require a much longer time to be drained. In the third block, a 10-cycle StallingTime is

assumed again, but priority is introduced in the handling of packets (priority CM), particularly in the

management of collisions at the routers. The convergence is faster of averagely a 25% factor thanks

to the higher number of best barrels reaching destination, and improving the population of each PE.

These results are meaningful for both the interconnection and the processing parts of the MP-

SoC: the interdependence between the application and the network is evident, and joint simulation is

necessary for both validating the design and reducing its overhead.
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Figure 3.21: NoC-based parallel decoder structure

3.6 Power reduction methods for NoC-based channel decoders

General power reduction techniques, like clock gating and dynamic voltage scaling, can be applied

to channel decoders. Additionally, specific features of LDPC and turbo decoding can be exploited to

reduce power dissipation. As an example, since LDPC and turbo decoding are iterative processes,

early stopping of iterations criteria have been proposed over the years [76, 77]: these techniques rely

on the observation of a metric to decide if it is worth or not to perform additional iterations, avoiding

unnecessary energy consumption. The power consumption of NoC-based decoders is usually much

higher than that of dedicated channel decoders: moreover, the solutions presented in this chapter

make use of high NoC frequencies, that increase the power consumption gap even more.

This section describes new power reduction techniques for flexible channel decoders. These tech-

niques reduce and optimize the traffic due to messages exchanged among PEs, which account for

a significant percentage of the consumed energy. Therefore the proposed methods are particularly

effective with NoC-based decoders. Preliminary contributions in this direction have been made in [78]

for turbo codes, and in [12] for LDPC codes, both dealing with the evaluation of the usefulness of

exchanged information. The performance of the proposed techniques has been extensively evaluated

and compared to alternative methods, while the most promising one has been implemented as an

application example on one of the decoder implementations presented in Section 3.4. The presented

work has been submitted to Springer Circuits, Systems & Signal Processing [16].

3.6.1 NoC-based decoding: practical issues

In parallel decoders, the decoding process of the received frame is typically partitioned among P

PEs. Messages are exchanged among PEs by means of an interconnection structure, that is usually
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deterministic, and guarantees fixed and uniform latency. To increase the degree of flexibility of the

decoder, recent works have proposed NoCs as interconnection structures [11, 14, 60, 79]. Fig. 3.21

shows the basic structure of a NoC-based decoder. While in turbo decoders the PEs are concurrent

SISOs executing (2.1) on different sub-blocks, in LDPC decoders each PE updates the LLRs involved

in a certain set of parity check constraints. Consequently, the task array of each PE, i.e. the sequence

of processes to be performed within an iteration, is a continuous set of trellis steps in the turbo

case, and a uniform selection of parity checks from all H layers in the LDPC case. Each PE is

connected to a Routing Element (RE), which in turn is linked to a number of other routers, with

input buffers at every port. If every RE has an attached PE the NoC has a direct topology (like the

2-D mesh and the generalized Kautz [80] shown in Fig.3.21), while in indirect NoCs (e.g. Benes [81])

some REs are only used as intermediate communication nodes. The NoC traffic is constituted of

λk[u] (2.1) and λk[c] (2.10) values for turbo and LDPC codes respectively, as shown in Fig. 3.21:

messages are injected in the NoC directly by the PEs, while information received from the channel

is stored in a memory for further use. The communication pattern with a NoC is deterministic, but

the delays introduced are nonuniform and can vary consistently from code to code and with time.

This nonuniform distribution of delays is basically due to the uneven distance among PEs. Choices

like number of PEs, NoC topology and routing algorithm have a significant impact on achievable

throughput and implementation complexity, as extensively studied in [11, 14]. In general, a NoC

used to support turbo and LDPC decoding is a particular type of NoC, characterized by very low

complexity and reduced functionalities in comparison to usually considered NoCs. For example, since

exchanged messages are usually six to ten bit values, NoC packets are single phits, sent using source

routing. Moreover, the inter-PE communication patterns exhibit a pseudo-random nature, because of

the limited adjacency of both interleavers used in turbo codes and parity check matrices associated to

LDPC codes. Thus, the optimal mapping of processing tasks onto PEs does not provide any relevant

benefit in terms of NoC traffic [82].

Additional techniques to optimize the NoC traffic are available. In particular, Quality-of-Service

(QoS) oriented networks can be considered for turbo and LDPC decoding. In [83], an area- and energy-

wise breakdown of different router architectures is presented, providing a comprehensive overview of

NoC designs. The CS network and the GuarVC network [83] both target QoS improvement: the first

one is a circuit-switched network that relies on simplicity and static allocation of resources, while the

second makes use of multiple virtual channels and flow control: priorities are assigned to packets and

the traffic flow is optimized. However, CS networks are not effective for channel decoding, because

the traffic pattern between PEs is not regular enough. Moreover, both circuit-switched and virtual
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channel-based NoCs tend to introduce large area and power consumption overheads: based on the

results in [83], the GuarVC and CS network have been applied to our case. A 22-PE NoC (the

same choice made in Section 3.6.5) implemented as a CS network would be slightly larger than the

whole flexible decoder in [51] and its power consumption would be higher by a 2.4 factor. The same

NoC, implemented as a GuarVC network, leads to 1.3 times larger area and 2.9 times higher power

consumption. Therefore, usual techniques to reduce traffic in NoCs are not effective in the case of

NoC-based decoders and dedicated solutions are required.

The complex interactions between the topology of the NoC, the number of PEs, the code and the

performance of the decoder have been analyzed with JANoCS 3.5, for which LDPC and turbo PEs

were modeled along with a custom NoC.

The LDPC PE is constituted of a processing module and two memory modules: the data memory

is used to store the incoming messages, while the interleaving memory is initialized at startup, and

contains the destination of the outgoing messages. The memories are parametrized blocks that load

and store cMessage objects and their subclasses. In LDPC decoding modules, the LDPCMessage class

represents the packets traveling on the NoC. Since the user can decide the width and depth of the

memories at initialization time, a single model can be used in very different implementations, and in

both turbo and LDPC codes PE. Thus, the LDPCMessage and turboMessage classes can be modified

without requiring a remodeling of memories.

The processing module of the LDPC PE simulates the implementation of the serial pipelined

structure similar to the architecture described in Section 3.4. The data needed for the processing of a

task are loaded from the data memory: concurrently, the messages computed within the former task

are injected in the NoC. The actual computation itself is seen as instantaneous from the simulator

point of view, occurring just after the last message has been retrieved from the memory: however,

latency parameters are used to model the memory access and the processing hardware. In particular,

a set of latencies are used to build the outgoing message’s queue, while another is used to simulate

the memory access requests.

The turbo codes decoding module is characterized by two operating modes (fw/bw and butterfly),

the selection of which is handled at initialization time via parameter. Each of them supposes different

hardware resources, resulting in diverse packet injection rates and achievable throughputs [84].

� fw/bw: this operating mode models the presence of a single core in each SISO. Each mapped

task is divided into two halves, and will take 2×W cycles to be completed, while messages will

be injected in the network only during the last W cycles, one every clock cycle.

� butterfly: supposing the presence of two cores within each SISO, this operating mode allows
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both halves of each task to be run concurrently. Every one can be completed after W steps:

messages begin to be ready for sending after W /2 cycles, two every clock cycle. The shortened

task duration is a big step towards higher throughput, but the higher packet injection rate can

cause more critical traffic patterns in the NoC.

The SISO module makes use of three memory modules. Together with those used by the LDPC

PE, a separate intrinsic memory is necessary to store channel intrinsic information, that cannot be

overwritten by extrinsic information as in LDPC decoding.

Three additional modules are necessary for both decoding tasks:

� Initialization module: at the start of a simulation, this module handles the mapping of the tasks

over the topology and the consequent initialization of the interleaving memories. Throughout

the decoding, it handles the channel simulation: source bits are created, encoded and sent

through a channel according to the selected SNR. Data and intrinsic memories are initialized to

the resulting LLRs. This process is repeated for all the SNR points and all the frames considered

by a simulation.

� Global decision module: this module, at the end of every iteration, gathers the latest information

about each bit of the frame from the local PE memories. The resulting received frame is

consequently compared with the sent frame, provided by the initialization block: errors are

counted and notified to the decoding management module.

� Decoding management module: by monitoring the status of the network and of the PEs, it

detects the end of an iteration, and warns the global decision block. In case of correct decoding

or reached iteration limit, the BER is updated.

The NoC modeled for this case of study is inspired to the ASNoC implemented in Section 3.4

for a flexible turbo/LDPC code decoder. REs are constituted of an F × F crossbar switch, with F

input FIFOs and F output ports: control logic or routing tables implement the routing algorithm,

and no additional network interface is present, since packet construction is handled by the PE. The

REs modeled for this case of study consider the shortest paths among the nodes, internally storing

the information during the initialization phase of the simulation. As with the PE, a set of latencies

is passed as parameters by the user to provide correct timing information.

From extensive simulations it has been possible to observe how the on-time delivery of messages

is of fundamental importance for the decoding process: to analyze this concept, let us define the

Normalized Delivery Time (NDT) as

NDT =
td − t0
tu − t0

(3.17)
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Figure 3.22: Message normalized delivery time distribution - all messages reach the destination on
time

where t0 is the sending time of a message, td the arrival time at its destination PE, and tu the

instant when the considered message has to be used at the destination PE. Given a certain decoder

architecture, tu depends on the target throughput while td is related to the NoC clock frequency.

Messages that are delivered on time, i.e. that reach their destination before tu, are characterized

by NDT≤ 1. Late messages have td > tu, leading to NDT> 1. The condition NDT< 1 tends to be

very restrictive for codes used in current standards, because of the already mentioned low degree of

adjacency in typical inter-PE communication patterns [44]. As a consequence, also a smart mapping

of tasks on PEs does not allow for any useful clustering and td values have a strongly nonuniform

distribution. In order to guarantee NDT< 1 for the totality of messages, either the throughput must

be reduced (which means reducing the PEs clock frequency) or the NoC clock frequency should be

increased (without altering the PEs clock frequency) [14].

An ideal situation for a decoder is shown in Fig. 3.22, that plots the number of messages with

respect to the NDT for a WiMAX code of block size 2304 and rate 1/2, decoded with a 16-PE decoder

mapped on a Kautz network: in this decoder, to have NDT< 1 for all messages, the NoC frequency is

420 MHz, while the PEs only run at 280 MHz.

Fig. 3.23 gives the message delivery time distribution for the same code, with the difference that

both PE and NoC frequency are 280 MHz. Here, a consistent percentage of messages has NDT> 1.

Late messages are extremely disruptive for the performance of the decoder. In case a message has not
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been delivered at tu, the destination PE can use the value computed at the previous iteration, but

this leads to additional errors. Fig. 3.24 plots the BER curves of WiMAX turbo code of size 960, rate

1/3 and WiMAX LDPC code of size 2304, rate 1/2 under different percentages of late messages for

illustration. These are obtained by changing the frequency of the 16-PE Kautz NoC used in Fig. 3.22

and 3.23. Simulations have been performed on an AWGN channel, with Binary Phase Shift keying

(BPSK) modulation and fixed point precision (10 bits, 3 of fractional part). It can be seen that very
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small amounts of late messages (< 1%) degrade the decoder performance, while larger percentages

completely compromise the decoder error correction capabilities. It is clear that late messages can

not be simply discarded, however efficient methods to reduce and optimize the traffic are introduced

in the Section 3.6.2.

3.6.2 Traffic reduction and optimization

Reducing the number of messages traveling on the NoC is bound to speed-up the delivery of those

remaining, with shorter queues and fewer collisions. Two techniques have been devised and tested

towards these goals: they are based on the general concept that not all information messages (which

are of a probabilistic nature) traveling on the network are essential for the success of the decoding.

Two additional methods are instead set towards the optimization of the NoC traffic.

Hard importance

The Hard Importance (HI) method allows to refrain from sending messages that are estimated to be

of low impact on the decoding process. In the LDPC decoding case, the messages traveling on the

NoC are different updates of λk[c]. The HI checks are performed once per iteration to each of them.

Consider the following comparisons:

sgn(λnk[c]) = sgn(λn−1
k [c]) (3.18)

∣λnk[c]∣ ≥ ∣λn−1
k [c]∣ (3.19)

∣λnk[c]∣ ≥ Thr
HI

⋅max(λk[c]) (3.20)

where n expresses the nth iteration and max(λk[c]) is the maximum possible value of λk[c] given

the number of bits assigned to its representation, while 0 ≤ ThrHI ≤ 1 expresses the percentage of

max(λk[c]) involved in the comparison. If all above three conditions are verified, λk[c] is flagged as

unimportant and the bit LLR is not updated anymore for the rest of the decoding process. The first

two comparisons check the presence of a monotonic divergence from zero in the LLR value, while the

third requires a large enough absolute value to be satisfied. Compliance with all three checks confirms

that the information is already reliable, and that a change of sign (and consequently a bit flip) is

extremely unlikely. Since with layered scheduling a λk[c] is updated many time within each iteration,

a single unimportant LLR will result in a traffic reduction of several messages.

For turbo decoding, the choice of stopping or not a message can be made by modifying the Symbol



86 CHAPTER 3. FLEXIBLE ARCHITECTURES FOR CHANNEL DECODING

Reliability Difference (SRD) criterion proposed in [78]. Defining

δ(i)m (dk) = L
(i)
m (dk = d

1
k) −L

(i)
m (dk = d

2
k) (3.21)

as the difference between the logarithmic extrinsic probabilities of the first and second most probable

symbols, the original SRD criterion proposes, for each symbol dk

φ
(i)
m,m′(dk) = ∣δ(i)m (dk) − δ

(i)
m′ (dk)∣ (3.22)

where m′ refers to the metrics at the input of the SISO, coming from the previous half-iteration, and

m at the output. If condition

φ
(i)
m,m′(dk) ≤ Thr

HI
Abs ⋅max(φ

(i)
m,m′(dk)) (3.23)

is satisfied, the message can be stopped. Applying this method as is, however, led to unsettling results.

This is due to the fact that it is not taken in account that (3.22) could give very low φ
(i)
m,m′(dk) also

if both δ
(i)
m (dk) and δ

(i)
m′ (dk) are very close to 0. In this case φ

(i)
m,m′(dk) expresses just uncertainty

about symbols, instead of agreement between SISOs, and the message should not be stopped. For

this reason, an additional control has been added for the message to be stopped:

∣δ(i)m (dk)∣, ∣δ
(i)
m′ (dk)∣ ≥ Thr

HI
Diff ⋅max(δ(i)(dk)) (3.24)

where ThrHI
Diff assures a degree of reliability on the symbol.

The performance of HI is of large interest, since this method can be applied also to other types of

decoders beside NoC-based ones. HI acts on messages by deciding if it is worth updating a value or

not, and can be effective also in absence of a NoC. It can consequently be exploited in decoders that

rely on shared memory banks: in this case, energy is saved by reducing the number of memory write

operations.

Soft importance

The Soft Importance (SI) technique evaluates the state and the evolution of the information exchanged

through the NoC, flagging non-essential messages as expendable. In case of collisions, i.e. messages

that need to be routed through the same output port, the router arbiter will forward a message and

discard all the expendable messages that were not granted priority. In LDPC decoding, (3.18)-(3.20)

are applied in SI with a more relaxed ThrSI , while the metrics considered are not λnk[c] and λn−1
k [c],
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Table 3.13: Percentages of late messages (% late) and stopped or not sent messages (% stop) for no
traffic handling (No TH) and combinations of the proposed methods on 16-PE and 32-PE generalized
Kautz and 2D-Mesh NoCs, at BER= 10−5

NoC Code, length, rate No TH HI SI HI + SI U U+ BR HI+SI+U+BR

% % % % % % %

late late stop late stop late stop late late late

16-PE

LDPC 2304, 5/6 9.2 4.8 17.5 8.0 12.3 1.6 23.8 8.5 0.8 0.1

LDPC 576, 5/6 28.8 19.4 16.9 24.3 12.4 15.4 22.3 25.1 11.1 8.2

LDPC 1440, 1/2 14.5 6.3 19.5 10.9 13.0 5.5 27.0 12.0 2.6 1.1

Kautz LDPC 864, 1/2 22.3 14.2 18.4 19.2 12.6 11.5 26.1 20.7 4.1 3.0

SP routing

Turbo 2400, 1/3 3.3 2.0 20.7 2.8 13.9 1.7 22.8 3.0 0.2 0.0

Turbo 960, 1/3 5.2 2.9 18.3 4.3 12.8 2.6 23.4 4.6 0.3 0.1

Turbo 6144, 1/3 4.8 3.0 20.1 3.4 12.9 2.1 22.2 3.2 0.2 0.0

32-PE

LDPC 2304, 5/6 13.6 7.2 17.4 10.3 14.3 3.7 25.1 9.5 1.1 0.3

LDPC 576, 5/6 42.6 30.0 16.7 35.3 14.5 25.9 24.3 37.5 18.8 16.8

LDPC 1440, 1/2 19.9 10.1 19.3 14.8 16.0 8.0 28.3 17.1 6.2 2.9

Kautz LDPC 864, 1/2 31.5 22.2 18.7 27.0 15.8 20.1 27.3 26.2 9.9 8.0

SP routing

Turbo 2400, 1/3 6.1 4.2 20.7 5.0 15.5 3.5 23.8 4.8 0.8 0.2

Turbo 960, 1/3 9.7 5.9 18.3 6.9 15.0 4.4 25.2 7.1 1.2 0.4

Turbo 6144, 1/3 8.8 6.2 20.0 7.1 14.4 4.6 24.9 6.9 0.8 0.1

16-PE

LDPC 2304, 5/6 10.2 5.4 17.3 8.7 12.8 3.3 23.9 8.8 1.4 0.3

LDPC 576, 5/6 32.6 21.0 17.0 26.0 13.1 18.2 24.4 25.8 12.6 8.9

LDPC 1440, 1/2 16.0 6.9 19.5 11.5 13.3 6.1 28.1 13.2 2.6 1.1

2D-Mesh LDPC 864, 1/2 24.1 15.5 18.4 20.2 13.1 12.4 26.8 22.1 4.1 3.0

X-Y routing

Turbo 2400, 1/3 3.9 2.3 20.7 3.3 14.4 2.1 23.6 3.4 0.5 0.1

Turbo 960, 1/3 6.2 3.4 18.3 4.7 13.0 3.2 23.9 5.9 0.9 0.3

Turbo 6144, 1/3 5.9 3.8 20.1 3.8 13.6 3.0 23.7 3.8 0.4 0.2

32-PE

LDPC 2304, 5/6 15.5 9.4 17.4 11.3 14.7 4.2 25.6 9.8 1.1 0.3

LDPC 576, 5/6 44.8 30.4 16.8 37.7 15.1 27.5 25.3 38.4 18.8 16.8

LDPC 1440, 1/2 22.3 11.0 19.6 16.0 16.3 9.0 29.1 18.0 6.2 2.9

2D-Mesh LDPC 864, 1/2 33.2 23.3 18.5 27.9 16.0 21.3 27.7 26.9 9.9 8.0

X-Y routing

Turbo 2400, 1/3 7.3 5.3 21.0 5.4 16.1 3.8 25.0 5.0 0.9 0.3

Turbo 960, 1/3 10.4 7.0 18.4 7.1 15.4 4.7 26.4 7.5 1.5 0.6

Turbo 6144, 1/3 10.1 6.8 19.9 7.6 15.0 5.0 26.2 7.2 1.0 0.3

but λnewk [c] and λoldk [c]. Each PE monitors the evolution of the LLR locally, before and after the

processing: if all three comparisons are verified, the message is expendable. Since in turbo decoding

the HI method already affects each message separately, the SI method can be efficiently implemented

with exactly the same mechanism as HI. The expendable flag is applied to messages satisfying the

modified SRD conditions with more relaxed thresholds ThrSIAbs and ThrSIDiff .

Urgency and Buffer reordering

Smarter and more efficient communication on the NoC can be obtained through the identification of

urgent and less urgent messages: traffic optimization deals with the late message issue by prioritizing

the former against the latter. Priority-based routing is a well-explored path to guarantee QoS: multiple

virtual channels are often assigned different priorities to differentiate traffic flows [82,85]. The concept

of priority is applied here in an original way, by using a single channel with a reordering buffer.

The Urgency technique (U) implements a priority-based collision management policy. In case
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of collision, priority is given to the most urgent message, i.e. the message which is needed by its

destination PE sooner. To allow this kind of decision, an urgency field must be added to the message

during sending, initialized with an estimate of the number of clock cycles available before the message

is needed by another PE. The field must be updated by the routers, taking in account the wait cycles

spent in input buffers, and a message is discarded if its urgency reaches zero, avoiding unnecessary

switching activity for late messages. With the LDPC case, each PE can perform an estimation based

on local knowledge of the instant in which the outgoing message is going to be needed. The precision

of the estimate strongly depends on the regularity of the partitioning of the H matrix among the PEs.

On the contrary, in the turbo case, since the interleaving rule is known to all PEs, the measure can

be exact.

In Buffer Reordering (BR) a fast lane can be created by arranging the messages in the input

buffers not in arrival order, but according to the urgency field. The most urgent message in a buffer

will consequently always be the first one to be pulled out, increasing its chances of arriving on time.

3.6.3 Performance results

The impact of each of the proposed techniques, alone and in combination with one another, has been

evaluated with the JANoCS tool described in Section 3.5. Extensive simulations have considered a

wide range of codes, NoC topologies, number of PEs, routing algorithms, PE and RE architectures.

Table 3.13 lists the percentages of late and stopped messages for a set of LDPC and turbo codes

taken from WiMAX [3] and 3GPP-LTE [72] standards, considering a decoder implementing different

combinations of the proposed techniques. The codes have been mapped on 16-PE and 32-PE NoCs

with generalized Kautz [80] and two-dimensional mesh topologies. Meshes are a common topology

for middle-sized NoCs, and the simple X-Y routing algorithm [86] joins good performance with ease

of implementation. Kautz networks have been proven effective for turbo and LDPC decoding in [11]

and [13] respectively also in presence of REs of degree three: routers implement a shortest path

routing algorithm [11]. With all the considered NoCs, each PE produces one λk[c] message per clock

cycle in the LDPC case, and one λk[u] message in the turbo case. While with single-binary turbo

codes λk[u] consists of a single value, three values are necessary in double-binary turbo codes: the

width of the simulated channel is adapted accordingly.

HI and SI show high percentages of stopped messages (up to 29%), with substantial reduction in

late messages (down to 1.6%), especially for HI and HI+SI. Results for HI and SI were obtained at

the SNR point for which BER= 10−5 with 10 maximum iterations for LDPC codes and 8 maximum

iterations for turbo codes. Iterations are stopped as soon as the codeword is correct, and the number of
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Figure 3.25: Impact of the proposed techniques and their combinations - LDPC codes

stopped messages is averaged over all performed iterations. When this kind of early stopping criterion

is not present, HI can work as a valid substitute. In fact, if a codeword is correct and its decoding

continues, the magnitude of all LLRs keeps growing and HI effectively prevents all messages from being

sent. HI and SI inherently introduce some BER degradation, for which careful threshold calibration

is necessary: if set too low, the stopped messages can still carry information about uncertain bits,

introducing new errors. A wide range of possible threshold values have been considered and simulated,

with the final choice representing a good tradeoff between method effectiveness (i.e. number of stopped

messages) and BER degradation. The decoder can incur in additional errors in case a metric update is

stopped too early by HI or SI: however, threshold calibration allows for results similar to those shown

in Fig. 3.27, where the impact of HI on BER for an LDPC code and a turbo code are presented.

The percentages of stopped messages assumed in these simulations are consistent (17% and 18%

respectively), but both the LDPC and the turbo code show negligible performance losses. In the

plots of Fig. 3.25 the thresholds have been set as ThrHI = 0.2 and ThrSI = 0.1, while in Fig. 3.26 as

ThrHI
Abs = 0.25, ThrHI

Diff = 0.15, ThrSIAbs = 0.15 and ThrSIDiff = 0.05. These thresholds are also used to

derive the “Ideal THR” curves in Fig. 3.28 and 3.29, that show how variations in the threshold values

affect the BER performance.

The results given by the urgency U method alone are not satisfying: since its effects are mostly

appreciated in case of collisions, which can involve also non-critical messages, its effectiveness alone

is limited. However, as soon as a message is identified as late it is discarded: this means that the

percentage of stopped messages for which U contributes is equal to the percentage of late messages.

The U+BR urgency-based buffer reordering, which allows non-urgent messages to be delayed in
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Figure 3.26: Impact of the proposed techniques and their combinations - turbo codes
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Figure 3.27: Impact of HI on BER

favor of critical ones, drastically reduces the occurrence of late messages (from 11.1 % to 0.2%).

Its effectiveness can be improved further by combining the two traffic reduction methods with the

traffic optimization ones. The joint application of all four techniques (HI+SI+U+BR) guarantees a

late message percentage close to zero in most cases, while substantially reducing their impact in the

remaining cases.

From Table 3.13 it is possible to make some important observations. As expected from previous

analysis [11,13], the Kautz topology performs better than 2D-mesh when targeting LDPC and turbo

codes. Moreover, turbo codes suffer less from late messages w.r.t. LDPC codes (No TH column),

thanks to their less critical communication phase. It can also be noticed how the size and the rate
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Figure 3.28: Impact of different threshold choices on HI+SI+U+BR - LDPC codes
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Figure 3.29: Impact of different threshold choices on HI+SI+U+BR - turbo codes

of the code affect the number of late messages, especially when related to the size and topology of

the NoC. A small LDPC code has small H layers and a small turbo code has short half-iterations:

consequently, the available message delivery times are limited. Moreover, small codes mapped on a

large NoC suffers from a large number of late arrivals, since the distance between PEs dominates the

transmission times. This is the case of the WiMAX LDPC 576, rate 5/6 in Table 3.13: similar effects

are encountered with larger codes when mapped on the 32-PE NoCs. On the contrary, queues and

collisions are the main sources of delay in case of large codes mapped on small NoCs. These limit cases

(e.g. LDPC 576, rate 5/6 in Table 3.13) cannot be completely solved with the implementation of the

proposed traffic handling techniques, and need to work in conjunction with alternative techniques:
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for example, the code can be mapped on a smaller portion of the NoC, and the unused part of the

decoder can be deactivated to save energy.

The percentage of late messages is directly reflected on the decoder performance, as shown in

Fig. 3.25 and 3.26. The effects of the different combinations considered in Table 3.13 on the BER

of an LDPC and turbo code are plotted, using the same NoC and PE architectural choices. As an

example, Fig. 3.25 shows the BER results for a WiMAX LDPC code of rate 1/2 and block size 1440,

with 10 maximum iterations; the duo-binary WiMAX turbo code in Fig. 3.26 has an information

block size of 2400 symbols and rate 1/3, decoded with 8 iterations. However, the behaviors observed

in Fig. 3.25 and 3.26 do not depend on the choice of the codes, but only on the percentage of

late messages. In both plots, the “ideal network” curve represents an ideal decoding process, where

the interconnection structure does not introduce any latency (lower bound), while the “no traffic

handling” curve shows the BER in case of a real decoding process in which no one of the methods is

applied (upper bound). It can be noticed how all the performance curves of the proposed solutions

span the interval between the upper and lower bound. HI, SI and HI+SI curves do not provide

substantial performance improvement, though giving interesting results in terms of traffic reduction,

and consequently reducing the switching activity. The U curve is still very close to the “no traffic

handling” one, reflecting its limited effectiveness shown in Table 3.13. The U+BR curve shows the

performance in presence of the powerful buffer reordering, with a further step towards the reference

curve made by the HI+SI+U+BR curve, that combines all four methods. Though the proposed

techniques behave coherently in both cases, they yield slightly better results in the turbo case, as

expected from Table 3.13.

Fig. 3.28 and 3.29 show the impact of different threshold values on the BER performance of

HI+SI+U+BR applied under the same conditions and to the same codes of Fig. 3.25 and 3.26.

As mentioned earlier in this section, the “Ideal THR” curves have been obtained by simulating an

extensive set of possible threshold values. The final choice has been made by selecting the threshold

values that maximize the number of stopped messages without degrading the BER performance, and

the obtained percentages of stopped messages are those reported in Table 3.13. The choice of the

threshold is not very critical, as shown by curves labeled as “Similar THR” in Fig. 3.28 and 3.29, which

have been derived by rising each “Ideal THR” threshold by 10%: it can be seen how the curves are

almost superimposed, and similar minor fluctuations are observed in the number of stopped messages

as well. Larger threshold variations have much more influence the BER: the thresholds used in the

“High THR” curves are obtained by tripling the “Ideal THR” thresholds. Very high threshold values

result in a very small percentage of stopped messages, and in the ineffectiveness of both HI and SI. In
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Figure 3.30: HI implementation for LDPC codes - STOPPING message

fact, “High THR” BER curves are very similar to the U+BR curves of Fig. 3.25 and 3.26, where HI

and SI are not applied. On the contrary, very low thresholds as the ones used in “Low THR” curves

(half of “Ideal THR” thresholds) dramatically increase the number of stopped messages. However,

a large number of messages carrying useful information are stopped as well, causing consistent BER

degradation.

3.6.4 Hardware architecture

The similarity of the calculations involved in HI and SI, and the necessity for controls at each RE

for SI, U and BR allow for efficient resource sharing. The multi-mode decoder described in Section

3.4 and [14] has been taken as reference architecture: among the different implementations, the one

denoted A has been selected and called here Aref . It relies on a 22-PE Generalized Kautz NoC, and

complies with WiMAX, HPAV [6] and DVB-RCS [71] standards, with limited support for WiFi [4].

The HI method can be easily implemented in the SISO. At the beginning of each trellis step

one or more read operations from the data memory are required, and they provide the data needed

to calculate the δ
(i)
m′ (dk) member of (3.22). At the end of the trellis steps, also the data needed to

calculate δ
(i)
m (dk) are ready, thus making it possible to compute (3.22), (3.23) and (3.24). A memory

bit is required for each trellis step to signal if the outgoing messages are unimportant and must not

be sent. For LDPC codes, since the considered metrics are λnk[c] and λn−1
k [c], implementation of HI

is less straightforward.The main issue is the fact that the storage of λnk[c] is performed by replacing

λn−1
k [c]. (3.18) to (3.20) can however be executed without any additional memory for the storage

of λn−1
k [c] by configuring the data memory as Read-Before-Write. When a message is flagged as

unimportant, the corresponding memory bit is set, and the unimportant flag must be propagated

to all other PEs. A dedicated STOPPING message is sent in place of the unimportant message. Fig.

3.30 shows the circuit responsible for the HI check and eventual creation of the STOPPING message:
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Figure 3.31: Urgency-based buffer reordering

the PROCESSING block executes the computations necessary to update each λk[c]. When a STOPPING

message is received, the unimportant memory bit is set in the destination PE, and the STOPPING

message is propagated. If a PE receives a STOPPING message when the unimportant memory bit has

already been set, the STOPPING message is not sent anymore. The STOPPING message is mapped to

the lowest negative value that can be represented with the allocated number of bits: for example,

with 9 bits, the data dynamic range is mapped to the interval (-255, +255), and the value -256 is

recognized as a STOPPING message.

The HI method can also be applied to save energy by simply reducing the number of memory

write operations at the destination PEs. When a given message is received by its destination PE, the

writing into the internal memory can be avoided if the message is recognized as unimportant. The

implementation of this functionality still exploits the STOPPING message, which is used to control the

write enable signal of the memory and prevent write operation. However, in this case, the STOPPING

message must be sent to the memory at every iteration.

The implementation of SI follows that of HI in the turbo case, only requiring two additional

comparators for the different thresholds in (3.23) and (3.24). It is instead much simpler than HI for

LDPC codes, since both λnewk [c] and λoldk [c] are available during each parity check computation, and

there is no need for flag propagation. Together with the simple computational logic in the PEs, a flag

bit signaling if a message is expendable or not must be added also in all NoC FIFOs and channels,

while changes in the write and read pointers (WPTR and RPTR) of each FIFO are forced by the RE

arbiter in case of collisions.

The U method requires, for the initialization of the URGENCY field of outgoing messages, the
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estimation of the available delivery time. This measure can be obtained, in the turbo case, thanks to

the current trellis step together with the globally known interleaving rule. Since each SISO processes

a sequential set of trellis steps, the destination memory address is a precise identifier of the time

instant a message will be needed. The URGENCY field of each outgoing message can be initialized as

Uturbo = Thalf − tsend + tneed (3.25)

where Thalf is the duration of a half iteration, tsend is the time stamp of the sending instant and tneed

equals to the destination memory address multiplied by the number of cycles needed to complete each

trellis step. The destination address is also used in the initialization of U in the LDPC case. By

multiplying it by the minimum row degree of H, a lower bound of tneed is obtained, thus leading to

the following equation:

ULDPC = tneed − tsend (3.26)

The urgency field requires additional bits in all the NoC FIFOs and channels, together with the simple

initialization logic at each PE. Moreover, each FIFO of length F needs F adders to update U at each

clock cycle, while WPTR and RPTR must be updated in case the urgency field reaches zero, and the

corresponding message discarded. All the FIFO memory elements must be available for writing at

each clock cycle: the FIFO consequently must be implemented with registers, and not with a RAM.

Finally, the priority of the RE arbiter is changed from being FIFO-length-based [14] to urgency-based.

The implementation of BR requires all the modifications described for U, plus a novel method for

the update of WPTR and RPTR. The RE input buffers in fact lose their FIFO nature, since the input

order is not guaranteed to be the output order. Fig. 3.31 shows the simplified structure of the proposed

buffer reordering mechanism; white blocks represent registers, while gray blocks indicate additional

computation elements. Along with the URGENCY field, each buffer element requires an additional VALID

field. Read and write operations on the buffer take in account external signals (PUSH, POP) and the

internal state of the buffer (IS EMPTY, IS FULL). Every time a write operation is performed, the VALID

field of the corresponding buffer element is set, while it is cleared with a read operation. The VALID

fields are necessary to keep track of the free and occupied elements, since the irregular input and

output orders prevent WPTR and RPTR from being used for this purpose. During write operation, the

urgency field from the incoming message URGENCYIN is substituted according to WPTR to one of the

stored URGENCYX during the U update process. Thus, the updated value of URGENCYX is URGENCYIN −1

instead of URGENCYX − 1. In a concurrent read operation a URGENCYX value is selected as the buffer

output URGENCYOUT according to RPTR. The SEL module chooses the update value of WPTR among
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Table 3.14: Effect of traffic handling on area occupation (CMOS 90 nm technology, post-layout results)

Aref Area Anew Area Overhead

[mm2] % [mm2] % %

Core Memory 1.46 53% 1.53 49% 4.8%

SISO Logic 0.42 15% 0.45 15% 7.1%

LDPC PE Logic 0.31 11% 0.38 12% 22.6%

NoC 0.56 21% 0.75 24% 33.9%

Total 2.75 100% 3.11 100% 13.1%

Table 3.15: Effect of traffic handling on power consumption (CMOS 90 nm technology, 1.0 V supply)

Aref Anew Power Gain
Pow fclk Pow fclk

[mW] [MHz] [mW] [MHz] %

PEs 68.0 200 70.1 200 +3.1%

NoC 48.6 333 29.1 200 -40.2%

Total 116.6 333-200 99.2 200 -15.0%

the elements with cleared VALID field with fixed priority. The MIN module, instead, updates RPTR as

the pointer to the minimum URGENCYX among the VALID ones. The whole operation occurs within a

single clock cycle, and correct functionality of the circuit has been tested in 90 nm CMOS technology

for up to 10 buffer elements, with 200 MHz as target throughput. The area overhead introduced by

the additional operations in the reordering buffer has been evaluated with respect to a typical FIFO

buffer. For example, using 90 nm CMOS technology, a reordering buffer with five buffer elements

accounts for a little more than 2000 µm2, against the 850 µm2 of a regular FIFO, with a ×2.35 area

increment factor.

3.6.5 Implementation

To help a fair comparison with the state of the art, all proposed optimization techniques have been

applied to the Aref decoder, creating a new implementation Anew, targeting 90 nm CMOS technology:

starting from VHDL models designed after the exploration performed with JANoCS, synthesis has

been carried out with Synopsys Design Compiler, functional simulation and validation with Mentor

Graphics ModelSIM, and place and route with CADence SoC Encounter. Table 3.14 dissects the

post place and route area occupation of various components of the decoder before and after the

implementation of the proposed methods. The small increase in memory occupation is due to the

extra memory bit for the unimportant flag related to HI, shared between SISOs and LDPC PEs.

The simple logic required for both HI and SI in the turbo case results in an additional 7.1% area

occupation for SISOs, while the more complex operations involved in the LDPC PE for HI lead to a

higher area overhead. The widths of NoC buffers and channels have been increased to accommodate
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the URGENCY field (five bits), the VALID bit of BR and the expendable bit of SI. This, together with the

additional logic for U and BR, heavily affects the NoC area, with an overhead exceeding 30%. With

a total area of 3.11 mm2, the modified decoder is 13.1% larger than Aref . However, as mentioned

in Section 3.6.1, Aref deals with the late message issue with a NoC clock frequency higher than

the PE clock frequency: with the introduction of the traffic reduction and optimization techniques,

however, this is not necessary anymore, and the decoder can be clocked with a single frequency. Table

3.15 details the worst case power consumption Pow for Aref and Anew architectures: in the original

decoder the clock frequency fclk is set to 200 MHz for the PEs and to 333 MHz for the NoC. The

global power consumption is 116.6 mW, with the NoC accounting for 41.7% of the total. Total power

consumption in Anew is reduced of 15% w.r.t. Aref , while the power gain on the NoC alone reaches a

very consistent reduction of 40.2%. This result basically derives from the lower clock frequency of the

NoC with respect to architecture Aref , but the clock frequency reduction is made possible thanks to

the adoption of the described traffic reduction techniques. A final measure of the ratio between costs

and advantages in reducing the NoC power consumption can be obtained as

(PowNoC
Anew

+ PowPE
∆ − PowNoC

Aref
)/PowNoC

Aref
= −35.8% (3.27)

where PowPE
∆ is the power consumption increment in PEs due to the contribution of HI, SI and U

initialization. The implementation of HI+SI+U+BR, taking in account all the introduced overheads,

brings a power reduction on the NoC equal to 35.8% of PowNoC
Aref

.

The actual impact of HI on the energy consumption of centralized decoders can also be estimated.

In [87] the energy breakdown of a decoder based on memory banks sharing is given. The energy

consumption of the γ-memory accounts for 70% of total dynamic energy for WiMAX LDPC code of

size 576 and rate 5/6. For this particular code if HI is applied the percentage of stopped messages,

and consequently of avoided write operations, is around 17% (Table 3.13). Since write operations

contribute for approximately 50% of the energy expenditure, the implementation of HI leads to a 6%

reduction in the total decoder energy consumption.

A simple direct way to reduce the traffic on the NoC is to reduce the number of iterations of

the channel decoder. Table 3.16 compares the impact of such method with respect to the proposed

techniques in terms of energy efficiency and BER degradation. In this table we consider the BER

performance and energy consumption of Ared, i.e. Aref with a reduced number of maximum iterations,

and compares it with Anew and the original Aref , for two code examples. The number of performed

iterations is represented by Itmax, Eframe expresses the energy spent per decoded frame and ∆SNR

shows the performance degradation with respect to Aref when BER=10−5. In Ared the reduced
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Table 3.16: Performance and energy consumption comparison (CMOS 90 nm technology, 1.0 V supply)

Code Aref Anew Ared

LDPC Itmax 10 10 9

2304 ∆SNR @ BER=10−5 [dB] 0.0 0.02 0.09

5/6 Eframe [µJ] 2.03 1.73 1.83

Turbo Itmax 8 8 7

6144 ∆SNR @ BER=10−5 [dB] 0.00 0.00 0.15

1/3 Eframe [µJ] 7.82 6.65 6.84

Table 3.17: LDPC/Turbo architectures comparison: CMOS technology process (Tp), total area oc-
cupation (Atot, normalized area occupation for 65nm technology (Antot), clock frequency (fclk), peak
power consumption (Pow), energy efficiency (Eeff ), maximum number of iterations (Itmax), code
length (N) and rate (r), interleaver size (K) and throughput (T ), Area efficiency (Aeff )

Decoder 1Aref
1Anew [49] [51] 1 [45] 1 [35]

Tp LDPC
90 90 65 45

65 -

[nm] CTC - 130

Atot LDPC
2.75 3.11 0.62 0.9

2.32 -

[mm2] CTC - 3.57

Antot LDPC
1.43 1.62 0.62 1.88

2.32 -

[mm2] CTC - 0.89

fclk LDPC 2333-200 200 400 150
40 -

[MHz] CTC - 302

Pow LDPC
116.6 99.2 76.8 86.1

29.5 -

[mW] CTC - 788.9

Eeff LDPC 0.166 0.141 0.032 0.151 0.003 -

[nJbit ] CTC 0.079 0.067 0.826 0.147 - 0.367

Itmax
LDPC 10 10 10 8 10 -

CTC 8 8 5 8 - 5.5

N , r LDPC 2304, 1/2 2304, 1/2 2304, 5/6 N/A 2304, 5/6 -

K CTC 2400 2400 2400 N/A - 6144

T LDPC 70 70 237.8 71.05 1152 -

[Mb/s] CTC 183 183 37.2 73.46 - 390.6

Aeff LDPC 2447 2160 9589 2013 124137 -

[ bits
mm2⋅kcycles

] CTC 5119 4519 750 2084 - 7993
1post–layout results
2fNoC

clk

number of iterations (by only one iteration) leads to a proportional reduction of Eframe, but non-

negligible performance degradation is present. It is especially noticeable in the turbo case, that relies

on a smaller Itmax. The proposed implementation outperforms the iteration reduction in terms of

energy savings, while at the same time affecting the BER performance only marginally.

Finally Table 3.17 compares the results of Anew with Aref and few recent related state-of-the-art

LDPC and turbo decoders. The energy efficiency has been introduced to help a fair comparison, and

is defined as Eeff = Pow/(T ⋅ Itmax), where T is the achieved throughput and Itmax is the maximum
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allowed number of iterations. This measure expresses the energy spent for each decoded bit. The

area efficiency, instead, relates the area occupation normalized to the CMOS 65 nm process (Antot)

to T and the clock frequency fclk, and is defined as Aeff = (T ⋅ Itmax/fclk) ⋅ (1000/Antot), where

the 1000 multiplication factor changes the unit of measure from [ bits
mm2⋅cycles

] to [ bits
mm2⋅kcycles

]. The

+13.1% in Atot that Anew exhibits w.r.t. Aref leads to a lower Aeff . The effects of the proposed

methods, though, can be really appreciated by observing Pow and Eeff . The reduction of the NoC

clock frequency to 200 MHz overcompensates the increased peak power consumption caused by the

additional logic, leading to improved Eeff values.

The multi-standard LDPC and turbo presented in [49] has a very small area occupation, with

uneven throughput between LDPC and turbo mode. This situation leads to very high Aeff and Eeff

in LDPC mode. Anew, instead, is far more efficient in turbo mode, and yields better results also

in [49] LDPC mode worst case operating conditions (N=672, r = 1/2, 20 iterations). The flexible

LDPC/turbo decoder designed in [51] and Anew achieve comparable throughputs when decoding

LDPC codes, with [51] having a larger Antot. This leads to Anew having slightly better Aeff and

Eeff : the gap is much larger in turbo mode.

The high parallelism, single-standard WiMAX LDPC decoder presented in [45] guarantees very

high throughput with a 40 MHz frequency, that allows for reduced power consumption (51.6 mW)0

and great efficiencies. Though [45] has been designed for ultra-low power consumption, and Anew

targets multiple code types and standards, the power gap between them is 47.6 mW only. This work

fares even better when compared to the dedicated ASIC targeting 3GPP-LTE turbo codes in [35],

that yields good Aeff and throughput. The provided normalization results allow to estimate a Pow of

278.8 mW with the 90 nm node: power consumption is still higher than Anew, with lower efficiency.

0Power normalized from 65 nm to 90 nm technology, with a 1.75 normalization factor obtained from [45]
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Chapter 4

Early stopping of iterations for LDPC

decoding

The energy expenditure of any LDPC decoder is directly linked to the iterative nature of the decoding

algorithm. A maximum number of iterations Itmax is usually set: however, a lower number of iter-

ations is often sufficient to correctly decode a frame, while in other cases additional iterations after

Itmax might be necessary. Early Stopping Criteria (ESCs) aim at identifying such situations where

further iterations are not useful, consequently interrupting the decoding and reducing the energy

consumption. This chapter proposes an innovative multi-standard early stopping criterion for LDPC

decoders: its effectiveness is evaluated against existing techniques both in terms of saved iterations

and, after implementation, in terms of actual energy saving.

101
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4.1 Early stopping criteria

Incorporation of ESCs in an iterative LDPC decoder enables energy saving by limiting the average

number of decoding iterations [76, 88–91]: the evolution of a certain metric is analyzed over the

iterations and a proper stopping rule is set. Quite a large number of ESCs have been described in

the open literature: however, in most cases, the real potential of these methods in a multi-standard

decoder has not been shown. The performance of ESCs is often provided only in terms of saved

number of iterations, for a limited set of codes, and over the AWGN channel.

The hardware implementation of ESCs in a real decoder introduces overheads in terms occupied

area and energy dissipated by the additional logic and memory. Therefore, the actual benefit offered

by the incorporated ESC needs to be evaluated by taking into account these overheads and accurate

post-layout information is required to this purpose. Moreover, ESC performance often depend on

code features and channel conditions. Therefore, in the context of multi-standard implementations, it

is important to show the obtained performance for a wide set of codes and assuming realistic channel

models.

This chapter describes a novel ESC that has been integrated in a complete multi-standard decoder

and tested on a wide range of LDPC codes, with both AWGN and Rayleigh fading channel models.

First, the Multi-Standard Early Stopping Criterion (MSESC) for LDPC decoding is introduced: it

outperforms existing ESCs in terms of number of iterations and energy consumption, and it is adaptive

to various LDPC codes and channel conditions, thanks to on-the-fly threshold computation. Then,

the MSESC is incorporated into an already available decoder and post-layout accurate evaluations

of occupied area and consumed energy are derived. The presented work has been submitted to IET

Communications [17].

ESCs allow to evaluate, after each iteration, if it is worth to proceed with the decoding process

or not. In case the conditions of the ESC are met, the decoding is stopped, either interrupting

the already initiated iteration or not even starting it. The Genie ESC is an unrealizable technique

commonly utilized as reference for comparisons: using foreknowledge of the information bits, the

decoding is initiated only if the outcome is going to be successful. Practical ESCs can be classified

into two subgroups: ESCs identifying successful decoding of a frame, and ESCs identifying impossible

decoding.

An efficient successful decoding ESC is the parity check method [92]. Since a received vector y

is a valid LDPC codeword if and only if H ⋅ y′ = 0, the syndrome calculation unfailingly identifies

correct codewords. The parity check is performed after each iteration: if the codeword is correct the

decoding is stopped, if not it proceeds until success or until the maximum number of iterations has
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been reached.

Much more varied is the pool of impossible decoding ESCs. With “impossible” we refer to the

decoding processes that are not going to be successful within the maximum number of allowed iter-

ations. In [76] the Convergence of Mean Magnitude (CMM) method is presented. It measures the

slope or changing ratio of the a posteriori LLR mean magnitude. In case of impossible decoding, this

measure converges to and fluctuates around zero. If this situation is detected for long enough, the

decoding is interrupted. In [89] the proposed ESC monitors the evolution of the syndrome SYN of

the decoder. The decoding is stopped if SYN is larger than a certain threshold for three consecutive

iterations, showing no sign of convergence. Two metrics are observed in the ESC described in [90]:

the Check Node Mean Magnitude (CNMM) monitors the average value of Qlk[c] messages, while

the Check Node Mean Checksum (CNMC) calculates the syndrome substituting λk[c] with Qlk[c]

(for the symbol definition and corresponding equations, please refer to Section 2.2). If CNMM keeps

decreasing and CNMC increasing for a set of ItESC consecutive iterations, the codeword is deemed

undecodable, and the process is interrupted. The ESC proposed in [91] is tied to the SCMS algorithm,

since it keeps track of the number of erased messages (Erased Messages ESC, EMESC). In case of

impossible decoding, this number does not converge to zero and the decoding process shows a high

degree of unreliability.

4.2 Multi-Standard Early Stopping Criterion

The proposed Multi-Standard Early Stopping Criterion (MSESC) relies on the computation of two

metrics whose behavior over different iterations can be observed to detect an impossible decoding. The

two considered metrics are defined as follows:

CNMMi
≡

M

∑
l=1

min
k∈N(l)

∣Ri
lk∣ (4.1)

SYNi
≡

M

∑
l=1

⊕
k∈N(l)

(HD (λik[c])) (4.2)

where i is the iteration number, Ri
lk is the value obtained in (2.9) at the current iteration, HD(λik[c])

stands for the Hard Decision on bit k based on the λik[c] metric, and ⊕ is the XOR logic operation.

The CNMM metric [90] is a measure of the reliability of the codeword as estimated by the parity

checks. The CNMM is compared to the previous iteration’s value to evaluate its slope. The syndrome

computation SYN at ith iteration as expressed in (4.2) is equivalent to (2.11), but highlights the simple

operations involved. MSESC exploits CNMM and SYN to detect both impossible and successful
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Algorithm 1 MSESC

1: CNT← 0, Calculate T1, T2, T3
2: Activate IDD (Impossible Decoding Detection)
3: for all iterations 1< i < Itmax do
4: Decode, Calculate SYNi

5: if SYNi = 0 then
6: Stop Decoding (successful decoding)
7: else if IDD is active then
8: Calculate CNMMi

9: if i ≥ 2 and (CNMMi > T2 or SYNi < T3) then
10: Deactivate IDD
11: else if CNMMi < CNMMi−1 and SYNi > SYNi−1 then
12: CNT← CNT + 1
13: else
14: CNT← 0
15: end if
16: if CNT = ItESC then
17: Stop Decoding (impossible decoding)
18: end if
19: if i ≥ 0.6 ⋅ Itmax and SYNi > T1 then
20: Stop Decoding (impossible decoding)
21: end if
22: end if
23: end for

decoding.

The complete MSESC flow within the decoding process is described in Algorithm 1. The Im-

possible Decoding Detection (IDD) mode is initially activated. At the end of each iteration SYNi is

evaluated. The parity check ESC is then run (lines 5 - 6 in Algorithm 1) to see if a successful decoding

is reached. The second ESC check (lines 8 to 21), aimed at detecting impossible decoding, is only

run if IDD is active (line 7). The counter CNT is incremented at the end of the current iteration if

CNMM is decreased and SYN is increased w.r.t. previous iteration (lines 11 - 15). When CNT reaches

threshold ItESC , impossible decoding is detected and the decoder is stopped (lines 16 - 17). Moreover,

a stopping criterion has been introduced to identify slow convergence behavior, i.e. a codeword that

is decodable per se, but not within the currently allowed maximum iterations of the decoder Itmax

(lines 19 - 20).

In case the decoding is going to be successful within Itmax iterations, it is desirable to deactivate

IDD to avoid unnecessary power consumption. For this reason, an adaptive deactivation function has

been devised. If after few iterations (for example two) CNMM is larger than a threshold T2 or the

syndrome SYN is smaller than T3, unsuccessful decoding is a very low probability event, and IDD is

deactivated for the current codeword, avoiding further computations (lines 9 - 10).

To allow the decoder to dynamically adapt to the used code, on-the-fly computation of T1, T2
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Figure 4.1: Average SYN for WiMAX N=864 r=3/4 in case of successful and impossible decoding
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Figure 4.2: Average SYN for DTMB N=7493 r=3/5 in case of successful and impossible decoding

and T3 has been devised:

T1 =M ⋅ 2−6 (4.3)

T2 =M ⋅ 2bitsf (4.4)

T3 =M ⋅ 2−5
= T1 ⋅ 2 (4.5)

where bitsf is the number of bits assigned to the representation of the fractional part of λk[c].

Threshold T3 sets an upper limit for SYN, and expresses a percentage of wrong parity checks that

is low enough to be likely corrected in case of successful decoding, i.e. 1/32 of M , where M is the

number of rows of the LDPC parity check matrix. Fig. 4.1 and 4.2 plot the average SYN for a short

WiMAX code and a long DTMB code. With successful decoding, SYN is monotonically decreasing

and very steep in the first iterations: the number of wrong parity checks quickly descends below T3,

while it is confined at much higher values in presence of impossible decoding. The choice of T3 scales

well with the frame size N : long codes have high error correction capabilities and are able to sustain

large T3 values, while short codes are less performing and require consequent T3 reduction. The same
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Figure 4.3: Average CNMM for Wifi N=1944 r=2/3 in case of successful and impossible decoding
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Figure 4.4: Average CNMM for DVB-S2 N=16200 r=1/3 in case of successful and impossible decoding

concept as T3 applies to T1, that identifies a percentage of M (1/64) not likely to be corrected within

Itmax due to slow convergence. As shown in Fig. 4.1 and 4.2, at high SNR also impossible decoding

cases can manage to satisfy the condition in line 9, but this occurrence is taken care by T1 (line 19).

The trajectories plotted in Fig. 4.1 and 4.2 show how both T1 and T3 depend on N and M . On

the contrary, when min-sum decoding is adopted, the CNMM metric does not depend on the degree

of check nodes, since only the minimum of ∣Ri
lk∣ is considered for every parity check. Finally, T1 and

T3, as well as T2, are independent of the considered channel mode, since different models only result

in SNR shifts at reception [93].

T2 is compared in line 9 of Algorithm 1 to the value of CNMM at each iteration. The ∣Ri
lk∣

elements that are summed in (4.1) are quantized with bitstot = bitsint + bitsf : to take in account the

initial left-shift of the integer part, in (4.4) also the value of M is left-shifted by the same number of

positions bitsf . Consequently, for CNMM> T2 to be verified, the average value of min ∣Ri
lk∣ must be

> 1. This is a condition verified early in case of successful decoding, while ∣Ri
lk∣ values in impossible

decoding tend to float much closer to zero. Fig. 4.3 and 4.4 show the average CNMM for a WiFi

and a DVB-S2 code respectively, under different channel conditions. At low SNR, it can be seen how
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Figure 4.5: Activation percentages of MSESC for WiMAX 2304, 1/2

the average CNMM stays below T2 in case of impossible decoding, while it quickly rises above it in

case of successful decoding. At high SNR, where also impossible decoding cases have CNMM> T2, the

decoding is stopped by the condition in line 19.

The curves in Fig. 4.1 to 4.4 have been obtained with bitstot = 10 and bitsf = 3. Typical internal

quantization of bit LLRs, that does not cause signicant BER degradation, can be reduced to bitstot = 7

and bitsf = 1, or even to bitstot = 6 and bitsf = 0. The effectiveness of the proposed MSESC has been

validated for various quantization parameters. The chosen thresholds maintain their validity with

different quantizations: changes in bitsf are taken in account by T2, while bitsint will only impact

the upper bound of the CNMM metric.

4.3 MSESC performance

In Fig. 4.5 statistics are plotted for the activation and deactivation of MSESC with SCMS. Results

have been averaged over several millions frames. At each simulated SNR, the black bars indicate

the percentage of frames for which an impossible decoding has been detected at some point within

Itmax, i.e. an effective early stopping. The white bars, on the contrary, show the percentage of frames

for which IDD has been deactivated (line 10 in Algorithm 1). This happens when the algorithm

decides that the impossible decoding event will not occur for the current frame: in this case, a possible

decoding is detected and a successful decoding will be reached in a later iteration. It is possible to see

how, when the SNR increases, the impossible decoding detection percentages decrease while the IDD

deactivation percentages increase. However, there is a third possible situation, in which IDD is not

deactivated but no early stopping is enforced. This case is represented by the gray no detection bars,
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which only cover a small range of SNRs.

The proposed stopping criterion has been compared to existing ESCs in terms of BER and FER

degradation and iteration reduction capabilities. Fig. 4.6 and 4.7 present simulation results for

WiMAX code with N = 2304, r = 1/2 on an AWGN channel, with Itmax = 10. For the threshold

T2, we considered in these simulations bitsf = 3 as the number of quantization bits to represent the

fractional part of the bit LLR λk[c].

The internal quantization of the decoding algorithm is 10 bits, including bitsf = 3. However,

MSESC is affected only by the number of bitsf (taken in account by T2) and not by the total number

of bits: its effectiveness is consequently guaranteed for all quantizations.

Fig. 4.6 plots the BER (dotted lines) and FER (continuous lines) curves for the impossible decoding

ESCs analyzed earlier in this chapter: minor performance degradations are present early in the

waterfall region.
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Fig. 4.7 shows the average number of iterations (ItAV G) performed by various ESCs: the Genie

ESC curve is used as a reference plot. All ESC are supposed to work in conjunction with parity check

ESC for the sake of a fair comparison. Most of the curves join the “parity check” curve at around

SNR=1.6 dB, where the number of detected undecodable frames is close to zero. The [89] ESC and

EMESC show similar performance, with two saved iterations at zero SNR, while CMM performs much

better at low SNR. A large number of saved iterations can be observed for MSESC and [90] ESC.

The dynamic correction in SCMS can in fact result in sudden changes in the CNMM measure, that

can occasionally lead to additional errors (Fig. 4.6). However, these rapid metric variations allow

for early detection of impossible decoding, with consistent saving of iterations. MSESC is the most

effective method, with three average iterations performed at low SNR.

In order to illustrate the potential of the on-the-fly threshold computation incorporated in MSESC,

in Fig. 4.8 the average iteration number for two codes A (N = 576, r = 5/6) and B (N = 2016, r = 1/2)

are evaluated with different T1, T2 and T3 management policies.

� Stored THR: in this case, thresholds are individually optimized for each code, via extensive sim-

ulations. These thresholds are pre-computed, stored, and read according to the code currently

in use, allowing for the best MSESC average iterations results.

� On-the-fly THR: in this case, thresholds are computed on-the-fly according to (4.3), (4.4) and

(4.5). The differences observed with respect to the stored threshold methods are negligible, and

no memory has to be allocated to store the thresholds required for each supported code.

� Fixed THR: these curves show the effect on MSESC performance in case thresholds are fixed for

all considered codes. In particular, the effects of strongly suboptimal thresholds are reported:

to code A are applied thresholds fine-tuned for code B, and vice versa. Since size and rate are
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Table 4.1: Effect of MSESC on complexity (A), average power consumption (P) and energy per
decoded frame (EF ) ( Itmax = 10, CMOS 90 nm technology, 1.0 V supply, post-layout)

CODE SNR AREF APC+CMM AMSESC

A [mm2] - - 2.40 2.49 +3.8% 2.43 +1.3%

P [mW] - - 90.2 95.5 +5.9% 92.9 +3.0%

EF [µJ]

2304
0.0 dB

1.49

0.69 -53.7% 0.46 -69.2%

1/2
1.0 dB 0.79 -47.0% 0.75 -50.4%

2.0 dB 1.10 -26.2% 1.05 -29.5%

960
0.0 dB

0.66

0.31 -53.1% 0.20 -69.7%

2/3
1.0 dB 0.35 -47.0% 0.33 -50.0%

2.0 dB 0.49 -25.8% 0.46 -30.3%

1944
0.0 dB

1.32

0.61 -53.8% 0.41 -68.9%

3/4
1.0 dB 0.70 -47.0% 0.66 -50.0%

2.0 dB 0.97 -26.5% 0.93 -29.6%

1440
0.0 dB

0.98

0.46 -53.1% 0.30 -69.4%

5/6
1.0 dB 0.52 -47.0% 0.50 -49.0%

2.0 dB 0.73 -25.5% 0.69 -29.6%

substantially different for the two codes, the optimal thresholds can vary consistently, causing

severe performance degradation.

Similar behavior has been observed for a wide analyzed range of LDPC codes (WiFi, WiMAX,

DTMB, CMMB, DVB-S2). The results illustrate how the proposed on-the-fly computation of thresh-

olds combines both high flexibility and high accuracy.

4.4 MSESC Hardware Structure and Implementation

In order to evaluate the benefits of an ESC in terms of energy consumption, it is necessary to integrate

it in a real hardware channel decoder and to compare the overheads related to its integration against

the benefits related to the reduced number of decoding iterations. To that purpose, we applied the

proposed MSESC to a fully characterized multi-standard channel decoder [14]. The implementation

referred in [14] as A has been considered after adaptation to support only LDPC codes and to use

the SCMS decoding algorithm. This version of [14].A has been named AREF and has been used as

a reference in the following comparisons. It relies on 22 Processing Elements (PEs) connected by

means of a Kautz [80] network-on-chip, with routing elements of degree three. The decoder supports

all LDPC codes in WiMAX and WiFi standards.

All of the operations required by the proposed MSESC can be implemented with a very low

hardware cost. On-the-fly thresholds computation, which is required only when switching from a

code to a new one, simply implies shift operations. Therefore, its contribution to power consumption
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is negligible. On the contrary, power consumption overhead related to the implementation of parity

check ESC is not negligible, although it is rarely reported in existing papers on ESC methods. The

great majority of current decoders relies on multiple PEs, and the data need to be gathered from all

of them to compute SYN, thus usually implying non negligible overheads. Partially parallel decoders

can exploit the idea behind the on-the-fly syndrome calculation proposed in [91]: after the execution

of (2.10), the sign bits of the λnewk [c] involved in the current parity check are XORed. These values

are concurrently available to the PE without requiring additional memory accesses. During each

iteration, the resulting bit in every PE is summed to the bits of the preceding parity checks through

an adder modulo ⌈M/P ⌉, where P is the number of PEs. At the end of an iteration, each PE holds

a partial syndrome value: these are gathered through dedicated connections and summed one at a

time to obtain the global syndrome value. Since the number of PEs is typically much smaller than

M , such architecture achieves good compromises in terms of complexity and latency. CNMM can be

implemented with the same on-the-fly approach by accumulating Rnew
lk of every parity check as soon

as they are computed. As with SYN, partial CNMM values are retrieved and summed together.

Table 4.1 reports area, power and energy consumption of different implementations: AREF is

the reference architecture mentioned above, APC+CMM implements both CMM [76] and parity check,

AMSESC includes the proposed multi-standard ESC. These three architectures have been implemented

targeting 90 nm CMOS technology. The simple additional logic required in AMSESC results in +1.3%

area occupation and +3.0% average power consumption after layout, while the area and power con-

sumption overheads are higher with APC+CMM. In fact, in [76] it is described how a single CMM

threshold value can be used for all codes, leading to small differences in performance. While this is

true for the SNR intervals considered in [76], a single threshold causes large differences in the number

of performed iterations at low SNR, as it has been shown in Fig. 4.8. Moreover, BER degradation can

be observed at all SNR when very different codes use the same CMM threshold. It is consequently

necessary a memory to store a threshold value for every code supported, and in a multi-standard de-

coder like the one considered the cost of such memory is not negligible. Between WiFi and WiMAX,

a total of 131 different LDPC codes are specified: thus, thresholds are calculated off-line and stored

in a dedicated memory at least 131 words deep and with width greater or equal to the number of bits

assigned to the representation of LLRs. This memory and the more complex CMM computations are

the main contributions behind the +3.9% area and +5.9% power consumption in the APC+CMM case.

This overhead is avoided in AMSESC thanks to on-the-fly threshold computation.

The benefits of ESCs can be appreciated only over the whole decoding process: EF expresses the
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average energy spent in the decoding of a frame for different codes and SNR points. It is defined as:

EF =
P ⋅ cyclesit ⋅ It

f
(4.6)

where P is the average power consumption, cyclesit the clock cycles needed to complete an iteration,

f the clock frequency and It the number of performed iterations. In AREF no ESC is present, and

It = Itmax = 10 for all the considered codes. Consequently, the consumed energy does not vary with

the SNR, but only with the code change. The situation is different in case of AMSESC, in which the

performed iterations follows a pattern close to that of Fig. 4.7. Moreover, thanks to the activation

and deactivation function (line 9 of Algorithm 1) the contribution of MSESC to EF must be weighted

according to the percentages displayed in Fig. 4.5. EF is calculated as

EF =
(PREF +PPC) ⋅ It ⋅ cyclesit

f

+
cyclesit ⋅PIDD ⋅ (ItD ⋅DP% + It ⋅ (1 −DP%))

f

(4.7)

where PREF + PPC is the power consumption of AREF and the parity check part of MSESC, PIDD

is the power consumption due to the IDD part of MSESC, DP% is the deactivation percentage at

the considered SNR point, and ItD the average deactivation iteration. Note that at high SNR DP%

is close to 1, leading to a very small PIDD. Table 4.1 displays EF for four codes taken from the

supported standards, considering three SNR points for each code. At SNR=0.0 dB MSESC manages

to reduce by around 70% the energy consumption with respect to AREF, while at SNR=1.0 dB the

gain is reduced to 50%. At higher SNR the IDD is mostly deactivated, while the parity check part of

MSESC allows for an average 30% gain. The gains are less significant for APC+CMM. At low SNR,

CMM implies higher average number of iterations than MSESC, with AMSESC saving around 16%

more energy than APC+CMM, while the increased power consumption due to the threshold memory

and the absence of a deactivation function leads to larger EF (4-5%) also at high SNR.

Another interesting assessment can be done by considering application-specific operational con-

ditions in terms of SNR probability distribution. In fact, real world applications place their SNR

working point taking in account large variation margins, in order to have very low probabilities of

SNR that prevent the correct functionality. For example, for a typical indoor WiFi connection the

industry suggests a minimum of 20 dB SNR to guarantee a very good level of connectivity [94]. As-

suming a Rayleigh fading channel model that remains stable for the duration of a frame, it is possible

to correlate the corresponding BER curves with those obtained with an AWGN channel [93]. This

property can be joined with the instantaneous SNR probability density function (p.d.f.) of a Rayleigh
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Figure 4.9: SNR probability distribution for WiFi 1944, 1/2

Table 4.2: Implementations comparison on average iterations (ItAV G) and energy (EF ) for Wifi N =

1944, r = 1/2 code SNR probability distribution (CMOS 90 nm, 1.0 V, post-layout)

ItMAX ItAV G EF [µJ] AMSESC gain

AREF
10 10 1.285 -77.7%

20 20 2.571 -87.2%

APC
10 2.47 0.321 -10.6%

20 3.13 0.407 -19.4%

AMSESC
10 2.20 0.287 -

20 2.52 0.328 -

channel to map an equivalent SNR p.d.f. over the AWGN channel. For example, using the WiFi code

with block N = 1944 and r = 1/2, at 10 dB on a Rayleigh channel the BER is 10−5, and the same

level of BER is obtained at 2.2 dB on AWGN. Since on the Rayleigh channel there is a 10% proba-

bility of SNR< 10 dB when the average SNR is 20 dB [93], there is an equal probability of SNR< 2.2

dB on the equivalent AWGN. Fig. 4.9 shows the probability distribution of SNR for a WiFi LDPC

code [93,94]. It is possible, at this point, to weigh the average number of iterations at each SNR point

with the probability for the decoder to work under said conditions, in order to get an ItAV G valid

for all considered SNR points. Table 4.2 shows the energy consumption and ItAV G obtained for the

aforementioned WiFi code with Itmax=10 and Itmax=20. The implementation labeled as APC was

obtained from AREF by including the parity check ESC. AMSESC yields very good EF figures, with a

gain ranging from 77.7% to 87.2% with respect to AREF, and decreasing the energy consumption of

10.6% and 19.4% compared to APC.
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Chapter 5

Error resiliency in LDPC decoders

LDPC code decoders heavily rely on memories for their computations: they constitute the majority of

the occupied area and account for most of the power consumption. Consequently, the correct behavior

of memory elements is of great importance for such an application. Energetic particles hitting memory

cells can induce soft errors, i.e. faults in the stored data that are not caused by permanent hardware

damage: the probability of their occurrence has known an upward trend within the latest technology

nodes. On the other hand, aging and usage can compromise the physical integrity of memories,

causing hard errors like stuck-at bits. Given that the purpose of channel decoders is to correct errors,

LDPC decoders are intrinsically characterized by a certain degree of resistance to hardware faults.

This characteristic, together with the nature of the information typically stored in LDPC decoder

memories, allows for ad-hoc error protection techniques. In this chapter, a novel Unequal Error

Protection technique is proposed and applied to an LDPC decoding case of study. Its implementation

cost is evaluated and compared to existing techniques.

115



116 CHAPTER 5. ERROR RESILIENCY IN LDPC DECODERS

5.1 Unequal Error Protection of memories in LDPC decoders

The characteristic error resilience of LDPC decoders has been exploited in past fault tolerant designs.

One of the few works on the topic is [95], where the error resilience of a complete LDPC decoder

architecture is analyzed. Different techniques are applied to the decoder modules according to the

level of criticalness, and the relative overheads evaluated. Memories obviously result to be some of

the most critical modules, and they are protected according to their role in the decoding process.

Doubling or tripling of the MSB is employed together with dynamic corrections. A different approach

is instead exploited in [96], where statistical error compensation is used to overcome the performance

loss brought by voltage overscaling.

The work presented in this section focuses on providing error resilience to LDPC decoder memories

in presence of large soft error probabilities or severe physical degradation. An analysis of the impact

of errors on the decoding performance is carried out, and the level of criticalness of each bit is deter-

mined. Different degrees of protection are employed, leading to the development of an Uneven Error

Protection (UEP) methodology. The presented work has originated a collaboration with professor

Paolo Montuschi and the targeted publication is IEEE Transactions on Computers.

5.2 Error analysis

Almost all practical implementations of LDPC decoders make use of memories to store LLRs between

iterations or, in case of multi-core decoders, to exchange informations between processing elements.

The number of memory read and write accesses can be extremely high both considering the total

lifetime of the decoder and each decoding process alone. For example, a small WiMAX LDPC code

requires around 7000 memory accesses between read and write operations for a single iteration, but

this number can surpass the million in case large codes are employed, like in DVB-S2.

The two quantities usually stored in LDPC decoder memories are λk[c] and Rlk, that are read in

(2.6) and updated in (2.9) and (2.10). Depending on the involved quantities, errors in read and write

operations impact differently on the decoding process. For example, a wrong Qlk[c] (2.6) does not

necessarily result in an incorrect Rnew
lk . As (2.12) shows, only the first and second minimum among the

Qlk[c] involved in the check node computation are considered for the selection of Rnew
lk : consequently,

the error might not be propagated to other λnewk [c]. Moreover, since the LDPC decoding process

relies on soft information, the performance degradation caused by a flipped bit in λoldk [c] or Rold
lk

depends on the position of the error, as shown in the following analysis. Supposing a quantization

on b bits, let us call MSB1 the Most Significant Bit, and MSBb the Least Significant Bit. As a case
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Figure 5.1: FER - errors on different MSBs

of study, both λoldk [c] and Rold
lk have been quantized with b = 7 (7 bits for the integer part and 0 for

the fractional part): it is a common choice, since a smaller b will cause non-negligible performance

degradation, while in most cases additional bits do not bring sensible improvements.

5.2.1 Variation of MSB

The curves in Fig. 5.1 show the FER for the WiMAX code of size N = 2304 and rate r = 1/2 on the

AWGN channel. The decoding has been performed with the SCMS approximation. The “no error”

curve plots the FER under ideal hardware conditions, i.e. without any error in the read and write

operations. The other curves have been obtained by allowing errors on a single bit of λoldk [c] and Rold
lk

with a probability equal to P(e)=0.0005. Errors injected on the sign bit (MSB1) are disruptive at

every Signal-to-Noise Ratio value (SNR), and cause unrecoverable errors. The criticalness of the sign

bit in LDPC decoding is well documented and protection has been employed in the past [95]. The

MSB2 and MSB3 error curves show severe degradation with respect to the ideal one. Both MSB2 and

MSB3 account for a considerable percentage of the total dynamic, and can cause strong variations

in both Rnew
lk and λnewk [c]: particularly disruptive occurrences can easily lead to sign bit flips. Less

critical is the impact of MSB4 errors, while errors injected in MSB5, MSB6 and MSB7 result in

similarly small performance degradations.

5.2.2 Variation of Itmax

The bit-per-bit error analysis has been extended to different values of Itmax. The increased correction

capability brought by additional iterations can in fact be dampened by the introduction of new errors.

Fig. 5.2 plots the FER for three different error bits and three Itmax values. While the effect of errors
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Figure 5.3: FER - errors on different MSBs and variation of code size

is almost the same with Itmax=10 and Itmax=15, the degradation caused by erroneous bits is more

evident when Itmax=20: a larger gap can be noticed between the “no error” curve and the MSB7

curve w.r.t. the other two cases, while the MSB5 and MSB3 curves are shifted proportionally.

5.2.3 Variation of code rate r and size N

Code rate and code size play a major role in the criticalness of errors. Fig. 5.3 considers three

codes with different sizes and the same rate. The error injection probability has been maintained at

P(e)=0.0005 for all the codes: this means that smaller codes will lead to a lower number of wrong

bits per frame. However, it can be noticed how smaller codes are more sensitive to faults, regardless

of the fewer injected errors. At FER= 10−4, MSB7 errors cause a loss of 0.05 dB to the N=2304 code,

while 3.5 dB are lost with N=576.

Fig. 5.4 is complementary to Fig. 5.3, with fixed code size and varying rate. The codes are taken
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Figure 5.4: FER - errors on different MSBs and variation of code rate

from the WiMAX standard: increasing the code rate, the total number of λoldk [c] and Rold
lk is kept

almost constant, since the rows of the H matrix increase their weight. However, the employment of

SCMS can often mask errors on Rold
lk : increments in code rate consequently lead to a lower number of

potentially dangerous bits per frame. Rate and error injection variations do not scale proportionally,

as it has been already observed with changes in code size: high rate codes are more sensitive to faults.

The performance loss caused by MSB7 errors at FER= 10−4 is 0.05 dB for code rate 1/2, and 2.5 dB

for code rate 5/6.

5.2.4 Variation of quantization and decoding algorithm

Fault tolerance of LDPC decoding has also been analyzed also in terms of quantization. The results

meet our expectations, as errors affect the decoding performance in proportion to the weight of

the erroneous bit on the overall dynamic range, regardless of the quantization, and FER curves are

similar to those in Fig. 5.1. A final experimentation has been carried out by comparing different

decoding algorithms. The decoding performance of the SCMS approximation is intrinsically more

resistant to hardware errors than more common approximations of the BP algorithm like the NMS

approximation [30]. Fig. 5.5 shows the the FER degradation due to P(e)= 0.0005 for a code decoded

with both NMS and SCMS, and the inherent resilience of SCMS can be easily noted. This is due to

the puncturing of Qi
lk[c] in presence of a sign change, that introduces an additional barrier to the

propagation of disruptive errors.
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5.3 Unequal Error Protection

The analysis on the impact of the different errors carried out in Section 5.2 highlighted that not all

errors on the bits have the same influence on the FER of LDPC decoders. This is an important result,

as it identifies a characteristic of LDPC decoders that can be used to increase the reliability of the

decoding process. In particular, based on the study of Section 5.2, we observe that it is possible to

apply distinct error protection techniques to each bit or groups of bits depending on their importance

and influence on the FER. For this reason we have devised an UEP subdivided into four tiers of

possible error protections.

For each Tier we are proposing a corresponding protection choice. Clearly, stronger or weaker

protection schemes as well as identification of different ”bounds” for each Tier, are possible. However,

as we will see in Section 5.4 the proposed choices represent a good solution with a balances tradeoff

of performances, costs, computation time & latency, and hardware requirements.

5.3.1 Tier 1 - full recovery

The highest level of protection is applied to bits which reliability is mandatory for a correct decoding

i.e. the sign bit and possibly the magnitude MSBs. LDPC decoders base their hard decision on

bits on the sign of their respective LLRs. Corrupted sign bits will consequently have catastrophic

effects on the decoding, since they may cause an avalanche of undesired bit flipping. The same can

happen in case errors occur on bits representing a large part of the total dynamic; sudden increments

or decrements in LLRs will be interpreted as changes in the reliability, that will tip the evolution of

LLRs towards misleading directions. To provide a high level of reliability and recovery, our choice has

been that bits falling within the Tier 1 protection level are tripled during write operations: at load
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time, a majority voter selects the most probable output.

5.3.2 Tier 2 - recovery of critical errors

It has been observed through simulations that a very large percentage of cases in which a wrong

bit leads to an incorrect λnewk [c] (2.10) within the same iteration falls within a distinct output bit

pattern. These abrupt value changes cannot be handled by the inherent error correction of LDPC

decoders. It is however possible to observe the occurrence of these patterns in case of errors to be

able to determine their impact on the overall decoding process. We have chosen to add a parity bit

to the Tier 2 bits, and in case of discrepancy during load operations the pattern recognition system

is activated. If the output λnewk [c] matches the critical bit pattern, recovery is possible by observing

how λnewk [c] varies if the Tier 2 bits at the input change. The distinctive bit pattern is dependent on

the total quantization of the LLRs and on the position of the wrong bit, while the Tier 2 bits must be

chosen with care to obtain the maximum effectiveness: thus, every case must be analyzed separately.

More details are given in Section 5.4.

Tier 2 is not able to give the same level of protection as Tier 1, but gives a very good percentage of

identification and recovery of errors that have been observed to be the main cause for LDPC decoder

performance loss.

5.3.3 Tier 3 - error impact limitation

Since the magnitude of an LLR is a measure the information reliability, we have chosen to exploit this

concept to the third tier of protection, designed for bits of medium-to-low significance. A parity bit is

added to the protected bits during write operations. When the LLR is loaded, parity is recomputed

and in case of discrepancy the contribution of all the bits falling within Tier 3 is nulled or reduced.

With a 2’s complement representation bit puncturing can require bit flipping among Tier 2 and Tier 1

bits as well: to avoid complex operations, depending on Tier 2 and Tier 1 values, a partial puncturing

can be employed.

Tier 3 protection does not allow to recover from errors, but reduces their impact by decreasing

the LLR magnitude, that in turn induces a conservative behavior in the decoder. This method can

not be applied to bits expressing large percentages of the total dynamic, since the LLR magnitude

change would be too large and cause errors.
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5.3.4 Tier 4 - no protection

As shown in Section 5.2, errors on the least significant bits seldom affect the overall decoding per-

formance. We have chosen to leave a set of low-importance bits unprotected without incurring in

degradation.

5.4 A practical case of study

This section presents the performance evaluation of the proposed UEP under the same conditions of

the error analysis carried out in Section 5.2. Both Rlk and λk[c] are represented in two’s complement

and quantized with b = 7, all assigned to the representation of the integer part. The SCMS algorithm

is considered, for its enhanced error resiliency w.r.t. other min-sum approximations. Figures have

have been obtained for a WiMAX N = 2304, r = 1/2 LDPC code, with a maximum of 10 iterations

per frame.

The decoders in [97] and [14] present similarities with many other decoders in the state of the

art (serial core, min-sum-based layered decoding, partial parallelism, shared or dedicated memories,

high-throughput or flexible design). They are representative examples of the current literature on

the subject, and have been considered for the following performance evaluation. The LDPC code

decoder architecture described in [97] has been thought for QC-LDPC codes as the ones in WiMAX,

and relies on a partial parallelism structure in which as many cores as the H matrix layers com-

municate via shared memory banks. Each core is constituted of a single serial pipelined datapath

implementing one of the min-sum modifications, while the overall decoder makes use of the layered

scheduling approach. This particular architecture has been implemented in 65 nm CMOS technology,

and yields high throughput working at more than 1 GHz frequency. On the contrary, the decoder

in [14] targets flexibility: each core makes use of a dedicated memory bank, while being connected

to the others through a Network-on-Chip. Implemented in 90 nm CMOS technology, reaches a much

lower throughput at 200 MHz, providing support for a wider range of codes.

Errors in memories and logic are mostly identified by the Mean Time Between Failures (MTBF,

[s]) or Failure In Time (FIT, number of errors in 109 hours). The effect of errors in an LDPC decoder,

however, is strongly dependent on the speed of the decoder. For example, a small MTBF will have

little effect on the performance of a fast decoder like [97]: the same MTBF could be disastrous for [14],

that works at less than 1/5 of the frequency and has a lower degree of parallelism, thus requiring a

higher number of clock cycles to complete an iteration. A fair error measure can consequently be the

average number of errors encountered by the decoder during each iteration, here defined as Average



5.4. A PRACTICAL CASE OF STUDY 123

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1.6  1.8  2  2.2  2.4  2.6  2.8

F
E

R

SNR [dB]

FER - WiMAX N=2304, R=1/2, SCMS algorithm, 10 iterations max, No error protection

AFPI=248.9
AFPI=24.9

AFPI=2.5
AFPI=8.7
AFPI=0.9
AFPI=0.1

Figure 5.6: FER with different AFPI - No error protection

Failures Per Iteration (AFPI). Their frequencies and memory structure of [97] and [14] have been

used to provide three error scenarios each (low, medium and high error probability), resulting in six

AFPI values.

Performance

Fig. 5.6 shows the FER of the considered code under the influence of six AFPI values: each bit of

the stored Rlk and λk[c] has an equal probability of being flipped in presence of a soft error. While

it is understandable how high AFPI irremediably degrade the FER, a lower failure rate should be

sustained by a system designed to correct errors: however, it can be seen how also low AFPI values

greatly affect the decoder.

Tier 1 protection gives a high degree of reliability, but requires two additional bits for every

protected bit. In works like [95], it is shown how the correctness of the sign bit is the minimum

requirement to attempt a correct decoder functionality. By applying Tier 1 protection on both Rlk

and λk[c] sign bits, the curves shown in Fig. 5.7 have been obtained. A definite improvement can

be noticed for all the AFPI values except AFPI=248.9, and no degradation can be observed at all

for the AFPI=0.09 case, at the cost of a 28.6% increase in memory bits. It has been observed that

errors on Rlk are less critical than those on λk[c] and less prone to propagating, thanks to the local

nature of Rlk and the masking capabilities of the min-sum algorithm already addressed in Section 5.2.

Consequently, Tier 1 on the MSB is sufficient for Rlk values.

As mentioned in Section 5.3.2, the pattern recognition and error recovery involved in Tier 2

protection must be evaluated in every situation. In this case study, with b = 7 and Tier 1 protecting

the MSB, Tier 2 has been chosen to include MSB2 and MSB3. The precision of the identification
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Figure 5.7: FER with different AFPI - Tier 1 on MSB1

of critical errors through output bit patterns is inversely proportional to the number of protected

bits: however, a minimum of two bits must be included in Tier 2 to be able to recover from errors.

Moreover, limiting Tier 2 to two bits reduces the complexity of the error recovery system, that

rises with the number of bits. Let us define λnewk [c]C the correct result of (2.10), and λnewk [c]I the

incorrect one. λnewk [c]C is obtained in case all the λk[c] involved in (2.6) are devoid of errors, while in

the computation of λnewk [c]I there is an error in the MSB2 or MSB3 of one of the λk[c] in (2.6). From

simulation it is revealed that regardless of the channel conditions, the majority of errors on MSB2 or

MSB3 that result in uncorrectable codewords are characterized by the following relations:

λnewk [c]C →MSB1 = MSB2 = MSB3 (5.1)

λnewk [c]I →MSB1 = MSB2 = MSB3 (5.2)

MSB1(λnewk [c]C) ≠ MSB1(λnewk [c]I) (5.3)

where k is the same also for the wrong λk[c] in (2.6). Eq. (5.1)-(5.3) indicate that λnewk [c]C and

λnewk [c]I have opposite sign and that they have both relatively small magnitude. This pattern is

observed either in case a single error is introduced in MSB2 or MSB3 of λk[c], or in case both MSB2

and MSB3 are wrong: this characteristic is exploited to recover from the error.

1. A parity bit considering MSB2 and MSB3 is added to λk[c] at storage time.

2. When λk[c] is loaded from the memory, MSB2-3 are XORed: if the result is different from the

parity bit, an error is signaled.

3. In case of error, three different versions of λk[c] are produced: λk[c]1 is the one read from the
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memory, while in λk[c]2 and λk[c]3 the MSB2 and MSB3 are respectively flipped. Two of them

are wrong (one has a single wrong bit, the other has two wrong bits) and one is correct, but it

is not possible to tell which is which at this stage.

4. Eq. (2.6)-(2.10) are performed with λk[c]1, λk[c]2 and λk[c]3 separately. Three sets of results

are produced, containing λnewk [c]1, λnewk [c]2 and λnewk [c]3 respectively, two of which are λnewk [c]I

and one λnewk [c]C .

5. If at least one among λnewk [c]1, λnewk [c]2 and λnewk [c]3 does not follow (5.1) and (5.2) there is a

high probability that the error is not critical or that the wrong bit was the parity bit, and the

set containing λnewk [c]1 is selected.

6. If λnewk [c]1, λnewk [c]2 and λnewk [c]3 follow (5.1) and (5.2) then two of them (λnewk [c]I) will have the

same sign and the other (λnewk [c]C) will have an opposite sign (5.3). The set of results containing

the λnewk [c] with the discordant MSB1 is the correct one, and is consequently selected.

The described technique can handle a single Tier 2 error in every parity check computation, that

usually involves between five and a few tens of LLRs depending on the LDPC code. While the

probability of two Tier 2 errors within the considered LLRs is already very low, it can be reduced

even more by protecting memories against burst errors as described in Section 5.4. The curves plotted

in Fig. 5.8 have been obtained by joining Tier 1 on MSB1 with Tier 2 on MSB2-3. Error protection

is complete for AFPI=(0.1, 0.9, 2.5), and consistent improvements are observed for AFPI=(8.7, 24.9)

with respect to Fig. 5.7. However, degradation is still strong for AFPI=248.9. To evaluate the

effectiveness of Tier 2 protection against alternative solutions, in Fig. 5.9 Tier 1 is instead applied

to both MSB1 and MSB2. It can be seen how Tier 1 on MSB1 and Tier 2 on MSB2-3 gives worse

performance than Tier 1 on MSB1-2, while at the same time requiring 42.9% memory increment

instead of 57.1%. It is much more effective in presence of severe error conditions, with one order of

magnitude smaller FER at SNR=2.9 dB for AFPI=248.9.

To limit the impact of errors on the least significant bits of the representation of λk[c], the

remaining four bits have been divided between Tier 3 and Tier 4: while MSB4-5 are worth considering

for error protection and included in Tier 3, MSB6-7 are expendable and left in Tier 4. It does not

mean that they do not contribute to the decoding: sporadic error events on these bits, however, do

not affect the overall performance. The complete UEP has been employed to obtain the curves in

Fig. 5.10. All lower AFPI values are completely taken care of, with the effects of AFPI=248.9 being

dramatically attenuated. The memory cost of UEP is the same of Tier 1 on MSB1-2, but shields

from errors five bits instead of two: the impact on the decoder architecture and the additional logic
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Figure 5.8: FER with different AFPI - Tier 1 on MSB1, Tier 2 on MSB2-3
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required are discussed in Section 5.5.
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Figure 5.11: UEP performance in presence of stuck-at bits

Table 5.1: UEP - Sustainable single stuck-at bits

Code MSB MSB2-3 MSB4-5 MSB6-7

N , r Tier 1 Tier 2 Tier 3 Tier 4

2304, 1/2 ∞ 24 190 256

1152, 1/2 ∞ 21 175 223

576, 1/2 ∞ 19 152 206

2304, 5/6 ∞ 17 138 191

1152 5/6 ∞ 15 119 152

576, 5/6 ∞ 12 107 136

Stuck-at bits

The performance of the proposed UEP against stuck-at memory bits is evaluated in Fig. 5.11, where

each curve is affected by 45 stuck-at bits affecting different groups of bits. Tier 1 gives total protection

from single stuck-at bits, and Tier 3 is sufficient to protect relatively critical MSB4 and MSB5. As

with soft errors, MSB6 and MSB7 can be expended without performance degradation. Forty-five

stuck-at bits, however, are equivalent to a minimum of AFPI=45, a rate of failures that can not be

withstood by Tier 2 when all errors are on MSB2. This is reflected also in the results presented in

Table 5.1, where the number of stuck-at bits that can be withstood without performance degradation

by different codes on every bit shown. It can be noticed how the number of sustainable stuck-at bits

is influenced not only by UEP, but also by the inherent characteristics of the code. Small codes and

high-rate codes are more unstable, and prone to stronger degradation. However, small codes have a

generally lower probability of incurring in memory errors, due to the lower number of stored LLRs.
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Tier 1 Tier 3 Tier 4 Tier 3 Tier 2 Tier 1 Tier 4 Tier 3 Tier 2 Tier 2 Tier 1 

LSB MSB 

Figure 5.12: LLR rearranged bits for burst error protection

Burst errors

With the level of integration brought by the latest technology nodes, the problem of burst or multi-cell

errors has gathered increased interest [98, 99]. All tiers of the proposed UEP are able to detect and

possibly recover from single-bit errors, and do not take in account burst errors per se. However, it is

possible to greatly limit the impact of burst errors by rearranging the order of bits in the stored LLRs:

the rearranged order for the case of study is shown in Fig. 5.12. By interleaving the bits belonging

to the same tier with those from other tiers, multiple errors are spread over the different protection

techniques and can still be handled. Every bit is placed as far as possible from those pertaining to the

same tier, with priority being Tier 1 > Tier 2 > Tier 3 > Tier 4. With this order, Tier 1 can sustain

up to 9-bit burst errors depending on the involved bits, while it guarantees immunity to burst errors

as large as 5-bit. Tier 2 has a maximum resiliency of 8-bit burst errors, and guaranteed immunity

to 3-bit bursts, while Tier 3 sustains up to 6-bit bursts and guarantees protection from 2-bit bursts.

Bust errors can affect various LLRs concurrently: to avoid multiple wrong LLRs within the same

parity check computation (2.6), it is sufficient to store the LDPC codeword λk[c] in order from the

MSB to the LSB. Indeed, the sparse structure of the parity check matrix acts as an interleaver and

does not require loading consecutive LLRs.

5.5 Hardware structure, implementation and comparisons

The logic flow of the operations needed by UEP in the conditions portrayed in Section 5.4 is shown

in Fig. 5.13. After reading the LLR from the memory, the tripled MSB1 value is obtained through

majority voting. The parity of Tier 3 bits is then computed and compared to the parity bit from

memory. In case of mismatch, total or partial puncturing is applied to obtain MSB4-5. Three

datapaths are necessary to implement the Tier 2 operations: however, they can be used effectively

even when no error is detected. The parity comparison is performed on the Tier 2 bits, and if an

error occurred, each datapath receives a different version of the LLR (λk[c]1, λk[c]2 and λk[c]13).

The outputs are checked according to (5.1)-(5.3) to identify whether the error is critical or not and

to select the correct λnewk [c]. However, if no error is detected by the parity comparison, all datapaths

work with the same set of data. The three outputs can be used to recover from possible errors in the
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Figure 5.13: UEP logic flow in the considered case of study

datapath logic, and the value of every LLR is decided with a majority voter.

Based on the logic flow of Fig. 5.13, the hardware structure depicted in Fig. 5.14 has been

designed. The light gray blocks identify functions pertaining to the different UEP tiers, while an

hypothetic LLR is shown at the top of the picture. The three T1 bits enter the Tier 1 block, that

implements a simple majority voting to decide on MSB1. The output of Tier 1 block is used, along

with the rest of the LLR as read from memory, within the Tier 3 block to decide on what kind

of puncturing to apply, if any. The OR operation is applied to bits belonging to the same tier to

identify the relative positions of 1s within the LLR. MSB4-5 are either cleared or set, depending on

MSB1, the ORed bits, and the parity bit comparison. The dark gray Datapath blocks implement

the serial datapath depicted in [14]. The computed MSB1 and MSB4-5 are given as inputs to the

standard Datapath and to the Tier 2 block, that comprises the two additional Datapath blocks. If

no discrepancy is detected in the parity comparison among T2 bits, the three datapaths run the same

calculations: at the output, majority voters add another layer of reliability to the system against

errors within the logic. Two inverters flip MSB2-3 that are fed to the additional datapaths in case
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the parity comparison presents a mismatch: the output majority voters are cut off, and the pattern

recognition system chooses the correct output.

The described architecture for UEP has been implemented in 90 nm CMOS technology with a

target frequency of 200 MHz. Table 5.2 reports the area occupation of the different tiers, of a single

datapath and of a UEP-protected datapath. It can be seen that while the complexity of Tier 1 and

Tier 3 is negligible, Tier 2 introduces a consistent overhead due to the two additional datapaths, that

dominate the UEP logic area overhead. The total power and area overhead introduced by UEP over a

complete decoder architecture has been reported in the last part of Table 5.2. The considered decoder

is the one presented in [14] as A, after adaptation to support only LDPC codes and to use the SCMS

decoding algorithm, while the quantization of LLRs has been changed to b = 7. This version of [14].A

has been named AREF and has been used as a reference in the following comparisons. It relies on

22 Processing Elements (PEs) connected by means of a Kautz [80] network-on-chip, with routing

elements of degree three. The decoder supports all LDPC codes in WiMAX and WiFi standards.

Between additional logic and extra memory bits, the implementation of UEP requires an additional

36.3% in area occupation, while a 43.9% increment is noticed in power consumption.

The resilient LDPC decoder designed in [95] protects both memories and logic from errors. The

decoder works at a frequency of 400 MHz, obtaining a throughput of 333 Mb/s with 30 iterations

and the WiMAX code with N=2304 and r=1/2, and implements the λ-min algorithm, that gives

better performance than traditional min-sum approximations, since more than two minimums are

considered. A dedicated 9-bit RAM is used to store λk[c] values, and protected with MSB1 tripling
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Table 5.2: UEP - area occupation, power consumption (90 nm CMOS, 200 MHz)

Area Power

Tier 1 8 µm2 102.0 nW

Tier 2 13655 µm2 503.5 µW

Tier 3 102 µm2 12.7 µW

Datapath 6667 µm2 278.1 µW

UEP+Datapath 19468 µm2 659.1 µW

AREF 2.59 mm2 97.1 mW

AUEP 3.53 mm2 139.8 mW

(+22% memory increment), while the initial LLRs received from the channel are stored in a 6-bit

RAM and protected with MSB1 duplication and puncturing in case of discrepancy (+23% memory

increment). The 6-bit Rlk values are not protected. The maximum memory error resiliency obtained

with this method is MTBF=2 ms, corresponding to AFPI=0.0017. Our solution is more expensive

in terms of memory (+57% for 7-bit λk[c] and +28% for 7-bit Rlk), and the tripling of the whole

datapath foreseen by Tier 2 adds more complexity than the MSB1 duplication with algorithmic

puncturing employed for the datapath in [95]. On the other hand, the proposed UEP targets much

more degraded environments, since total error protection is achieved in presence of AFPI four orders

of magnitude greater than those in [95]: moreover, this work tackles permanent errors as well, together

with burst errors, both neglected in [95].

The two-level UEP devised in [98] splits each codeword in an important partition, where burst

errors can be corrected, and a less important partition, where only single errors can be corrected.

Supposing to fit our case of study into [98], MSB1-3 are assigned to the important part, while MSB4-

7 are left in the other. The number of redundancy bits required by the encoding is linked to the size

of the sustained bursts: five bits (a +71% memory increment in our case) are necessary to correct

2-bit bursts, while much larger bursts are considered in our case. The work in [98] can potentially

reach performance similar to this work’s, but at a much higher complexity cost.
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Chapter 6

Channel coding for deep space

communications

The world of communications is characterized by a continuous strive for better performance: com-

munication systems are usually pushed towards higher throughput, lower BER and lower power con-

sumption with every generation. A particular application is deep space communications: due to the

limited number of complete developments, their evolution in this domain is slower than in other ap-

plication fields. Moreover, their requirements and constraint can differ substantially from all other

communication environments. Transmission between spacecrafts and Earth are supposed to be spo-

radic events, but the limited amounts of available power and the long distances make failed reception,

and consequent retransmission, an unacceptable event. For this reason, deep space missions do not

require a high throughput, while at the same time they demand very strict BER and FER perfor-

mance. This chapter proposes the serial concatenation of turbo and LDPC codes, targeting very

high error correction capabilities. The performance of the presented FEC scheme is evaluated against

alternative solutions. A unified decoder for the concatenated scheme is subsequently proposed: smart

memory and datapath sharing allow for low complexity and low power consumption.

133
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6.1 Concatenation of turbo and LDPC codes

Concatenation between different codes has been frequently considered in order to improve communi-

cation performance. “Guaranteed-performance codes” like RS or BCH codes are often used as Outer

Codes (OCs) thanks to their measurable error correction capabilities, and joined to Inner Codes (ICs)

such as convolutional or LDPC, used in WiMAX and DVB-S2. The same RS+convolutional FEC

scheme devised in the CCSDS standard [100] for deep space communications allows these codes to rival

with the more powerful LDPC and turbo codes. However, concatenation comes at a usually high im-

plementation cost: decoding support for sometimes very different codes must be provided, increasing

area and power consumption. Low-complexity decoders have been designed for many codes [101,102]

but steps have been recently taken towards flexibility, with area efficient multi-code decoders [14,49].

This section details a novel deep space oriented FEC scheme by serial concatenation of LDPC and

turbo codes, which has been published in [18] and has been awarded as the best paper. Performance

of the proposed concatenated scheme is compared with the CCSDS standard requirements [100],

together with a set of recent works both on deep space communications and on concatenated codes.

6.1.1 Proposed FEC scheme

In the CCSDS recommended standard [103] transmission data rates of up to 2.048 Mb/s are foreseen

for the next missions: FEC schemes need to be powerful enough so that retransmission is not necessary,

due to the low power available on spacecrafts. The need for effective coding schemes, alongside simple

decoding algorithms, makes code concatenation one of the smartest solutions. The powerful Turbo

and LDPC codes have been considered for concatenation before [104] but the low level of details

provided and the unsatisfying results leave room for further investigation.

The devised FEC scheme is shown in Fig. 6.1: an LDPC code is serially concatenated to a turbo

code. The outer encoder encodes the input bits, and the resulting codeword is used as input for the

inner encoder. Being responsible of the first, rough decoding, the IC should work well also in presence

of a large number of errors. Since turbo codes have better performance than LDPC at low SNR [3],

they have been chosen as IC. On the contrary, receiving the updated information from the inner

decoder, the OC decoder, that is an LDPC code, can fully exploit its deep waterfall region and low

error floor. An interleaver scrambles the output of the OC encoder before the second encoding, while

the inverse function is inserted between the decoders. Since, depending on the rate and characteristics

of the chosen codes, the block sizes may not be compatible, an optional padding block has been placed

after the interleaver: zeros are added to the scrambled codeword to fit the required number of bits.

This reduces the coding efficiency but allows for flexible concatenation. The padding bits are removed
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Figure 6.1: Serial concatenation of LDPC and turbo codes FEC scheme

after the IC decoding, before the deinterleaver.

The decoding process starts in the IC decoder, which performs up to ItICmax iterations. After ItICmax

the codeword is stripped of the padding bits, descrambled and passed to the OC decoder. Both

turbo and LDPC code decoding algorithms involve soft information: while the IC decoder receives

measures of bit error probabilities from the channel estimator, the OC decoder must rely on the

metrics updated by the IC decoder. In particular, the LDPC decoder receives as intrinsic information

for the initialization of λk[c] the bit-level extrinsic output of the turbo SISO λk[u]. These metrics

are passed through the deinterleaver along with the codeword.

The CCSDS suggests three FEC schemes for space communications in [105]: a RS-convolutional

codes concatenated scheme, turbo codes and LDPC codes. Deep space communications requiring very

low bit error rates address turbo codes in particular, allowing four code rates ranging from 1/6 to

1/2, and four information block lengths in the range 1784-8920. The WiMAX standard relies on both

LDPC and turbo codes. The two code types are mutually exclusive options in the standard: their

proven effectiveness and implementation-friendly structure, however, make them ideal candidates

for concatenation towards deep-space applications, regardless of the relatively low performance of

WiMAX LDPC codes w.r.t. CCSDS LDPC codes. Thanks to the wide variety of available codes,

it has been possible to experiment with different code combinations consisting of both WiMAX and

CCSDS codes. Though CCSDS SBTCs employ 16 states, it is proven in Section 6.1.2 that also the

eight-state DBTCs used in WiMAX guarantee very good results while keeping the decoding complexity

low.

6.1.2 Simulations and performance comparisons

To evaluate the effectiveness of the proposed approach, simulations have been run on a proprietary

tool. Its deeply customizable structure allows to select codes, channel model, SNR and result reli-
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ability level, together with decoding algorithms and related choices (number of iterations, stopping

criteria). Moreover, it is possible to tweak a set of implementation-oriented characteristics, like dif-

ferent approximations of the chosen algorithms and number of bits assigned to the representation of

the metrics.

In order to comply as much as possible with the requirements of CCSDS, the turbo codes suggested

in [105] have been used as ICs in a first batch of simulations, and concatenated with WiMAX LDPC

codes. The relatively high rate of the OC results in a concatenated rate that is very close to the CCSDS

specifications. Block size compliance is guaranteed by using, if needed, multiple LDPC codewords

as a single turbo information block, together with padding bits. The maximum allowed number of

iterations has been set to 10 for both IC and OC decoder, and following most of the state of the art

on deep space communications, the AWGN channel model has been chosen.

Moving towards a hardware implementation of the proposed FEC scheme, some limitations have

been inserted in the simulation environment. To correctly evaluate the impact of soft information

quantization on the BER and FER, the dynamic range of all metrics involved in the decoding process

has been limited to 10 or 9 bits, with 3 bits of fractional part. For the same reason, both the LDPC

and turbo codes have been decoded with the BCJR algorithm [24], thus leading to low decoding

complexity.

Early experimentations have shown that the gain that can be obtained with the insertion of a

bit interleaver between the two encoders is negligible w.r.t. the additional complexity, and it has not

been considered in the plotted curve. This limited effect is mainly due to the sparse structure of the

H matrix, that acts as an interleaver by itself [104].

Fig. 6.2 and 6.3 plot a set of meaningful BER and FER curves respectively. The “+” marker

indicates the curves provided by CCSDS in [105] for SBTCs with r = 1/3 (continuous) and 1/4

(dashed). They are obtained with 10 decoder iterations, QPSK modulation and AWGN channel. The

×-marked curves show the performance of these codes when concatenated with a WiMAX r = 5/6

LDPC code. It can be seen that both concatenated BER and FER follow very closely the standard’s

curves: FER results are particularly encouraging, thanks to aggregated error distributions that are

addressed later in this section. Moreover, plots in [105] show error floors as early as BER=10−6 (block

length 8920): the minimum BER simulated with the concatenated scheme is slightly above 10−10,

with no signs of error floor.

The continuous, ∎-marked curves have been obtained by substituting to the SBTC of CCSDS in

the concatenated scheme a WiMAX DBTC of comparable size and same rate. The difference between

the two curves is negligible, while the complexity of an 8-state DB turbo decoder is lower than a
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Figure 6.2: Concatenated LDPC and turbo BER, AWGN channel, BPSK modulation
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Figure 6.3: Concatenated LDPC and turbo FER, AWGN channel, BPSK modulation

16-state SB one.

To evaluate the influence of IC and OC respective rates on the decoding performance, a second

set of simulations has been run: the IC rate has been fixed to 1/3 and by changing the OC rate it has

been possible to obtain concatenated rates equal to those of CCSDS turbo codes. In both Fig. 6.2

and 6.3, the dashed, ∎-marked curve has a concatenated rate of 1/4, obtained by CTC 1/3 + LDPC

3/4. It can be noticed how the lower rate of the OC fails to deliver the same BER and FER results
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lation
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Figure 6.5: LDPC and DB turbo FER, concatenated and single-code, AWGN channel, BPSK modu-
lation

as CTC 1/4 + LDPC 5/6: this behavior, observed also in the CTC 1/6 + LDPC 5/6 against CTC

1/3 + LDPC 1/2 case, reveals how the IC turbo rate is more critical than for the LDPC OC.

Fig. 6.4 plots a set of BER curves to compare the performance of WiMAX concatenated codes

against single LDPC and turbo codes. The curves showing the “+” marker refer to the concatenated

FEC scheme: both use a WiMAX turbo code of rate 1/3 and 960 two-bit input symbols. The



6.1. CONCATENATION OF TURBO AND LDPC CODES 139

Table 6.1: Performance comparison among FEC schemes
A B [106] [107] [108] [109] [110] [104] [111]

Application Deep space 3D HDTV Satellite Deep space Deep space – Mobile

Inner SB CTC LDPC NB-LDPC
QC-LDPC

LT Parallel SB CTC

Outer QC-LDPC BTC LT NBLDPC RSC/LDPC LDPC

rin 1/4 1/3 1/2 2/3

1/3

25/49 1/2 1/3

rout 5/6 5/6 467/500 9/10 49/50 1/2 7/8

r 5/24 5/18 467/1000 3/5 1/2 1/3 7/24

Inputin 3568 16 K 1000 sym.
2379

32 K 504 2048

Inputout 1920 15 K 900 sym. 16 K 504 1792

Inner Alg. BCJR BP FFT-BP
BP N/A

Log-MAP BP

Outer Alg. BCJR CHASE MP LLR-BP Log-MAP

ItICmax 10 50 20
15 N/A

8 5 5

ItOC
max 10 N/A N/A 10 50 100

Quant. 10-9 bits Float Float Float Adaptive Float Float

Channel AWGN Rayleigh AWGN AWGN AWGN AWGN AWGN

Eb/N0 0.43 0.65 4.4 1.85

N/A N/A

2.35 1.75 1.55

FER 8 ⋅ 10−6 8 ⋅ 10−6 4 ⋅ 10−4 N/A 2 ⋅ 10−5 N/A N/A

∆SHN 1.38 1.43 4.50 1.55 2.90 2.43 2.23

min BER 2 ⋅ 10−9 < 10−10 2 ⋅ 10−7 8 ⋅ 10−7 3 ⋅ 10−6 N/A 1.2 ⋅ 10−7 4 ⋅ 10−7 2 ⋅ 10−7

min FER 6 ⋅ 10−8 1.1 ⋅ 10−8 8 ⋅ 10−5 N/A N/A 10−8 6 ⋅ 10−6 N/A N/A

Eb/N0 0.6 0.9 4.6 2.0 0.3 1.05 2.5 1.9 1.6

continuous line has been obtained using a rate 1/2, codeword length 1920 LDPC, while the dashed

one with a rate 5/6 LDPC. The higher rate LDPC results in a less steep curve: this degradation

can be addressed by rising ItICmax, with the two curves superimposed at ItICmax=20. These plots are

compared to the constituent rate 1/3 CTC and rate 1/2 LDPC with different numbers of allowed

iterations. Since the concatenated scheme has at its disposal up to 20 iterations (10 CTC + 10

LDPC), single-code curves are plotted with both 20 and 10 iterations maximum. The concatenated

BER shows very good performance at low Eb/N0, crossing the 10−6 threshold at Eb/N0=0.9 dB when

using the rate 5/6 LDPC OC. At higher Eb/N0, its performances are even more remarkable: a total of

2 ⋅108 frames have been simulated for all the shown Eb/N0 points, for a total of 1.92 ⋅1011 information

bits, and no errors were counted for Eb/N0 higher than 1.0 dB when using the rate 1/2 LDPC code.

The curves show no sign of error floor and constant BER decrease. At low Eb/N0, the 20-iterations

single CTC outperforms the concatenated schemes of up to 0.15 dB: the difference is smaller than

that reported in [104] with much more favorable conditions, and the crossing point occurs at a higher

BER and much lower Eb/N0.

Fig. 6.5 shows the FER curves for the same parameters as Fig. 6.4: the concatenated FER reaches

very low values (7 ⋅ 10−8 with r = 5/6 LDPC code). The difference with the 20-iteration single CTC

curve at low Eb/N0 is substantially reduced (0.08 dB maximum) w.r.t. the BER, and the crossing

point is moved at lower Eb/N0. This is due to the fact that very often a failed decoding with the

concatenated scheme is due to a high number of wrong bits within the same frame. Consequently,

BER and FER scale differently, since errors are clustered together and affect a very low number of

frames.
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Table 6.1 provides a comparison of the proposed FEC scheme with similar state of the art solutions.

Solution A refers to CCSDS SB turbo 1/4 + WiMAX LPDC 5/6, while solution B to CCSDS SB turbo

1/3 + WiMAX LPDC 5/6, both already shown in Fig. 6.2 and Fig.6.3. To help a fair comparison

with coding schemes with different rate, the ∆SHN row identifies the distance of the BER curve from

the Shannon limit at BER=10−6: in both cases the distance is less than 1.5 dB. The obtained ∆SHN

is similar to that of the AR4JA LDPC codes proposed by CCSDS [105], but has been obtained with

a much smaller number of iterations.

In a recent work [106], a FEC scheme for 3D HDTV using an outer block turbo code (BTC) con-

catenated to an LDPC code is proposed. The scheme is shown to outperform the DVB-T2 standard

serial concatenation of BCH and LDPC codes. Contrariwise to CTCs, BTCs are obtained by concate-

nating various BCH codes, and decoded via CHASE algorithm, whose implementation complexity is

estimated comparable to that of BCJR. The BER and FER performance is greatly outperformed by

this work’s, with approximately 4 dB gain, and a very high ∆SHN . This could partly be due to the

higher code rate and to the fading channel model, but [106] sets a very high number of iterations

for the inner code, a large block size and floating point precision for the simulations, all factors that

contribute to the improvement of results.

Luby Transform (LT) or fountain codes have been used together with non-binary LDPC (NB-

LDPC) codes in [107] for satellite communications. The resulting system is very flexible, thanks to

LT codes, and the presence of NB-LDPC codes guarantees a high error correction power even at high

rates. The decoding complexity, however, suffers from the concurrent FFT-based BP and message

passing algorithms, much higher than a single BCJR. The BER shows 1.2 dB loss w.r.t. solution

B: for the same rate and precision, the two FEC systems should yield comparable results. This is

confirmed by the comparable ∆SHN metrics. Both A and B, however, outperform the LT+binary

LDPC codes of [112].

The QC-LDPC construction scheme for deep space communications described in [108] gives very

good results without making use of concatenation: although the curves do not show low BER points,

a 0.4 dB gain can be observed against the plots with similar rate in Fig. 6.2. These curves have

been drawn with floating-point precision and a decoding algorithm devoid of approximations: some

degradation of performance is consequently to be expected after the implementation. The complexity

of the probability-domain BP algorithm, moreover, is very high, burdening the hypothetical hardware

with large area occupation and high power consumption.

The joint source-channel coding scheme described in [109], aimed at deep space image transmission,

uses Raptor codes, i.e. a concatenation of an LT code with a precode, in this case a very high-rate
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NB-LDPC. This powerful coding scheme, also addressed in [107], obtains very good results at high

coding rates: FER shows only 0.15 dB loss w.r.t. solution B, regardless of the rate difference.

In [110] parallel concatenation of LDPC and RSC codes is explored. The LLR-based BP algorithm

implemented for the LDPC part allows good performance also with relatively small block sizes and

a few allowed iterations: still, it is outperformed by A by 1.70 dB gain at BER=10−6 and one dB

smaller ∆SHN , with even more difference in the FER curves.

The two closely related works [104] and [111] implement CTCs as inner and LDPC codes as OCs,

decoding them with Log-MAP and probability-domain BP algorithms respectively. The work in [111]

presents the same system as [104], with the addition of a certain number of global decoder iterations

that slightly improve the BER. The plotted curves show a degradation of the concatenated scheme

(5+50 iterations) w.r.t. the single turbo code (5 iterations) of up to 0.3 dB that has not been observed

in this work (Fig. 6.4). Rates are comparable to that of B, and they both use the AWGN channel

model, while the block size of B is larger. Regardless of the much higher precision and number of

iterations allowed in [104], A and B yield better BER and ∆SHN results, with a gain ranging from

0.90 to 1.10 dB at BER=10−6.
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6.2 Unified decoder for concatenated turbo and LDPC codes

To the best of our knowledge no implementation solution for the concatenated scheme described in

Section 6.1 has ever been proposed, but decoders for both turbo and LDPC codes are present in the

state of the art, mainly targeting wireless communications. Multi-code and multi-standard decoders

that make flexibility their primary concern have also been introduced recently [14, 48–52]: they are

characterized by different degrees of datapath and memory sharing.

This section proposes a decoder for concatenated turbo and LDPC codes targeting deep space

communications, and more in general communications where retransmission can not be afforded,

like broadcasting. The usage of the same decoding algorithm for both codes greatly reduces the area

overhead of the concatenated scheme decoder with respect to a single LDPC or turbo code decoder. In

facts, it allows to exploit a high degree of datapath sharing and obtain very low power consumption and

area occupation. The presented work is currently under review by IEEE Transactions on Aerospace

and Electronic Systems.

6.2.1 Unified LDPC/turbo decoding architecture

Following the effectiveness of the concatenated FEC scheme presented in the previous section, the

decoder architecture for turbo and LDPC codes concatenation shown in Fig. 6.6 has been designed.

The gray blocks represent the duplicated datapath described in this section, while the structure of

the memory banks, with their alternative usage according to half-iterations, is detailed in Section

6.2.2. The common turbo/LDPC decoding technique depicted in Section 2.2 paves the way for highly

shared datapaths, in the wake of works like [52] and [50], as opposed to separate datapath turbo/LDPC

decoders like [14, 48, 49]. The proposed decoder relies on an innovative smart memory structure that

allows to increase the percentage of module reuse within the datapath and avoid complex interleaving

mechanisms between the decoding modes.

Datapath

The structure of the designed LDPC/turbo datapath positions itself in between a completely shared

approach and datapath separation. The turbo and LDPC datapaths have great disparities in terms

of complexity, with the turbo datapath requiring more resources. As shown later in this section, the

LDPC datapath is included within the turbo datapath, while constituting a limited percentage of its

overall logic. The concatenated scheme can consequently be decoded at little more than the logic cost

of a turbo decoder.

Fig. 6.7 shows a block diagram of the designed datapath. It is characterized by a pipelined
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Figure 6.6: Unified LDPC/turbo decoder overall block diagram
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Figure 6.7: Unified LDPC/turbo decoding datapath block diagram

architecture, with registers represented by striped blocks. The turbo decoding process makes use of

a butterfly structure: the datapath is duplicated in an α and β datapath, respectively entrusted with

the concurrent forward and backward scanning of the trellis steps. They implement the modified

sliding window technique described in Section 2.2. Each half of the duplicated datapath receives as

an input from the memories the λaprk [u(e)] and λk[c(e)] relative to a trellis step: these are used by

the Branch Metric Units (BMUs) to perform (2.5) and obtain γk[e]. These are passed to the α and

β units, that perform the computations of (2.3) and (2.4) respectively. The structure of the α and

β units is similar. Along with the output of BMU, the α unit receives αk−1[s
S(e)] either from the

memory (when computing the first trellis step of a window) or from its own outputs (all other trellis
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Figure 6.8: Unified LDPC/turbo comparator components, with inputs used in the α unit

steps), as shown by the feedback loop in Fig. 6.7. Together with the updated αk[s], that are stored

in the state metric memory α (Fig. 6.6), the α unit also produces the αk−1[s
S(e)]+γk[e] partial sums

needed by (2.2). These are passed to one of the extrinsic computation units (EXT-α in Fig. 6.7).

EXT-α completes (2.2) by taking the βk[s
E(e)] stored in the state metric memory β by the β unit

and finally performs (2.1). The same computation is concurrently carried out on another trellis step

by EXT-β, to which are given αk−1[s
S(e)] stored by the α unit in the state metric memory α and

γk[e] + βk[s
E(e)] partial sums calculated in the β unit.

The LDPC decoding process makes mostly use of the turbo mode datapath. LDPC codes are

characterized by 2-state binary trellises: since the turbo codes considered are either 16-state SBTC or

8-state DBTC, LDPC codes can easily exploit an additional parallelism factor. The BMU is not used

and consequently deactivated in LDPC mode, while both α and β units are shared with the turbo

mode. In Fig. 6.8, the core components of the unified α unit are depicted. Adders and comparators

are shared among the two operating modes. Both structures are equivalent when in turbo mode, while

their operations differ in LDPC mode. Architecture ‘1’ implements the max(x, y) operator of Φ(x, y)

(2.13), while architecture ‘2’ implements max(x+y,0). The EXT-α and EXT-β units perform (2.14),

and rely on the same architectures used for α and β unit (Fig. 6.8). Also in this case they are shared

with the turbo datapath.

6.2.2 Memory

As occupied area in both turbo and LDPC decoders is dominated by storage components, efficient

memory sharing is very important: for example, a scheme suitable for serial PEs with disjoint turbo

and LDPC datapaths has been used in Chapter 3, resulting in large memory saving. However, a

different approach is needed with this work. Since the sizing of memories strongly depends on the

supported codes, the following analysis is carried out supposing the concatenation of a rate 5/6,

N=1920 WiMAX LDPC code with a rate 1/3, K=960 DBTC taken from the same standard, decoded

considering a window size w = 80. As already shown in [18] and in Section 6.1, this FEC scheme
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guarantees performance comparable to that of more powerful codes. No padding bits are necessary,

since the size of the input frame for the DBTC (960 symbols, i.e. 1920 bits) is equal to the size of

the LDPC codeword. However, the following discussion on memory requirements stands also in case

of padding, as long as the padding bits are added at the end of the LDPC codeword. The memories

necessary to support the designed decoder can be observed in Fig. 6.6: two sets of four memory

banks serve the in-order and interleaved half-iterations respectively, storing extrinsic and intrinsic

information, while two memories are dedicated to the storage of state metrics.

In turbo mode, the duplication of the datapath required by the butterfly structure rises the need

for concurrent data reading and writing. For the correct computation of a trellis step the following

metrics are necessary:

� λaprk [u(e)] and λk[c(e)] for the computation of (2.5). Since WiMAX codes are duo-binary,

λaprk [u(e)] consists of three different metrics, while λk[c(e)] of four. However, as explained in

[38], symbol-level information in duo-binary codes can be converted to bit-level information and

vice versa, with a small performance degradation. This means that the memory requirements for

λaprk [u(e)] can be reduced by approximately 1/3. Due to the butterfly structure, eight λk[c(e)]

metrics and four λaprk [u(e)] are needed. While λk[c(e)] values are received by the decoder at

the beginning of a frame and not updated anymore, the λaprk [u(e)] metric is updated at least

once per iteration.

� α[sE(e)] and β[sE(e)] for (2.2), (2.3) and (2.4). Every trellis step computation requires a

number of α[sE(e)] and β[sE(e)] metrics equal to the number of states of the turbo code: in

this case, eight of each. The loading and storing needs for these metrics vary during the decoding

process. At the beginning of each trellis window, the α[sE(e)] and β[sE(e)] values coming from

adjacent windows must be read as initialization values. The updated α[sE(e)] and β[sE(e)]

must be stored during the first half of the window, and loaded again in the second half. Finally,

the metrics belonging to trellis steps at the edge of a window must be stored for the adjacent

windows.

In LDPC mode, for every trellis step computation, a λk[c] and Rold
lk pair must be loaded in both

parts of the datapath to perform (2.6), along with ∆αk[c] and ∆βk[c] for (2.14), (2.15) and (2.16).

Similarly to the turbo case, only the ∆αk[c] and ∆βk[c] metrics at the edge of the trellis need to be

stored for further usage, while the λk[c] and Rnew
lk metrics involved in (2.9) are to be updated once

per trellis.

Since the turbo code chosen for this analysis is duo-binary and has an eight-state trellis, its
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Figure 6.9: Unified turbo/LDPC decoder memory sharing scheme

decoding process needs a much larger number of metrics than the LDPC code, which decoding is

similar to that of a single-binary, two-state turbo code. From the LDPC point of view, this translates

in an internal level of parallelism in the datapath that is not, however, directly available. In fact, the

structure of the H matrix and the layered scheduling require the same LLR to be read and updated

multiple times during a single LDPC decoding iteration, resulting in complex load and store patterns

not found in turbo decoding. Careful planning of the memory structure is consequently necessary to

maximize the level of memory sharing and to concurrently allow the LDPC datapath to exploit the

internal parallelism. Figure 6.9 shows an in-depth detail of the one the two sets of memory banks

depicted in Fig. 6.6. Memories sized to accommodate the considered codes in case a parallelism factor

×2 is to be used in LDPC decoding. They are dual-port, and the usage percentage of each memory is

portrayed for both turbo and LDPC codes, along with its depth and width.

In turbo mode, two λk[c(e)] metrics are stored at each address in the two 1920 × 16 bit intrinsic

memories: both ports are always kept in read mode, except during initialization. In this way, four
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Table 6.2: Memory requirements

Memory Bits

Turbo LDPC Total

Separate memories
176384 210240 386624 100%

No smart allocation

Separate memories
161024 138560 299584 77.5%

Smart allocation

Shared memories
161024 138560 161792 41.8%

Smart allocation

λk[c(e)] are concurrently available to the α datapath, and four to the β datapath. These same

intrinsic memories are used to store the Rold
lk values in LDPC mode. At every clock cycle both the

datapaths need a Rold
lk value: during the second half of the trellis, the α datapath will need the

values fed to the β datapath during the first half in backward order, and vice versa. This means

that by storing at the same memory address Rold
lk values in symmetrical positions with respect to the

trellis half-point (e.g. Rold
l1 with Rold

l20, Rold
l2 with Rold

l19 etc.) the storage requirements are reduced by

1/2 without decreasing the number of concurrently available metrics. The total number of memory

locations required becomes 3200, resulting in a 83.3% usage of each intrinsic memory. Two 960 × 8

bit extrinsic memories hold the λaprk [u(e)] values. From the turbo decoding point of view, these two

memories could be merged into a single 960× 16 bit memory, since λaprk [u(e)] metrics must be paired

to obtain the symbol-level metrics used in the BCJR algorithm. LDPC decoding must hold at least N

λk[c]: four of them must be read concurrently. A single 960 × 16 bit memory would not suffice, since

the coupling of values changes with every row of the H matrix. Both extrinsic memories are used to

their full capacity in both decoding modes.

The memories portrayed so far compose the in-order half-iteration memory banks (Fig. 6.6) and

need to be kept, during turbo decoding, with both ports in read mode. The in-order half-iteration

makes use of two additional extrinsic memories to store the newly computed λapok [u(e)], that are

used in the interleaved-order half-iteration (Fig. 6.6). Also the λk[c(e)] needed by the interleaved

half-iteration can be stored in two additional intrinsic memories: while this is not strictly necessary,

since they can be obtained by reading in interleaved order those used in the first half-iteration, the

extra storage is useful for LDPC decoding. In fact, by having a total of four 1920 × 16 bit and four

960 × 8 bit memories, LDPC decoding can exploit a ×2 internal parallelism factor.

Finally, two wider 128×32 state metric memories, as the one shown in Figure 6.9, are used to hold

the α[sE(e)] and β[sE(e)] values for both window initialization and intra-window state metrics in

turbo mode. The same memories are used in LDPC mode to store ∆αk[c] and ∆βk[c]. Each address

holds the values used by each datapath in both levels of parallelism.
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Table 6.2 synthesizes the advantages of the devised memory structure. The first row gives the

memory bits necessary for the decoder architecture described in Section 6.2.1 to work in both turbo

and LDPC mode, while considering separate memories. If smart metric allocation techniques are used

(Rold
lk coupling and reusage, bit-level λapok [u(e)]), the required bits are reduced of 22.5%. Moreover,

by sharing the memories between the two modes, only 41.8% of total bits is necessary, with LDPC

mode being completely supported by the memories required by turbo mode.

Interleaving and addressing

Address generation for the described memory structure is in most cases straightforward. In turbo

mode, all read operations are sequential, either in forward or backward order, and are consequently

handled by simple counters. Write operations to the following half-iteration memories are based

on the permutation law associated to the turbo code encoding, and the memory addresses can be

obtained via simple operation on the current half-iteration read address. In the considered case study,

the interleaving rules are those associated to the WiMAX standard turbo codes: the interleaved

addresses are obtained on-the-fly by dedicated logic implementing the WiMAX permutation function.

Address generation for the intrinsic memories is sequential in both read and write operations when

in LDPC mode, and the counters used in the turbo mode can be reused, but problems arise when

dealing with the extrinsic memories. While sequential addressing in intrinsic memories is possible

thanks to the local nature of Rold
lk values, λk[c] values are read and updated multiple times and in

variable order during an iteration. Address generation, however, can still exploit the regular structure

of the H of QC-LDPC codes. By storing in a small memory the shift factors of the constituent m×m

circulant identity matrices, together with the position of the nonzero entry of their first row, read and

write addresses can be obtained with modulo-m counters and adders. A single 160 × 36 bit memory

is sufficient to support also the ×2 internal parallelism.

The devised memory structure is particularly advantageous when switching between turbo and

LDPC decoding: after the last turbo iteration, the extrinsic memories relative to the in-order half-

iteration contain the data needed by the LDPC decoding process in the correct order. The memories

relative to the interleaved-order half-iteration in turbo mode, to be used in LDPC mode, will only

need to have the read and write addresses pass through the permutation law circuit.

6.2.3 Implementation

The decoder architecture described in Section 6.2.1 has been implemented in 90 nm CMOS technology:

synthesis and power estimation have been carried out with Synopsys Design Compiler, while the switch
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activity has been analyzed with Mentor Graphics Modelsim.

Several design choices are related to the set of codes that is going to be implemented, in particular

the sizing of the memories. The largest codes considered for the implementation are taken from

the WiMAX standard: an LDPC code with block size 1920 bits and rate 5/6, and a DBTC with

information block size 1920 bits and rate 1/3. Soft metrics have been quantized with nine and eight

bits, with two bits of fractional part; the maximum number of iterations has been set as ItOC = 10

for LDPC and ItIC = 6 for turbo. The CCSDS throughput requirement for spacecraft-to-Earth

communication is 2.08 Mb/s, that can be achieved by the proposed architecture at 100 MHz (2.1

Mb/s). With this target frequency, the total area occupation is 1.01 mm2: thanks to the shared

datapath approach, more than 90% of the LDPC datapath is included in the larger turbo datapath,

with very few LDPC-exclusive components.

This is also reflected on the power consumption estimate, resulting in 18.4 mW at 100 MHz.

Memories occupy 82.6% of the decoder area, and account for 70.6% of the total power consump-

tion. Pipeline stages contribute for 10.1% of the area and 13.3% of power conumption, with the

remaining 7.3% area occupation and 16.1% power consumption being taken by processing, addressing

and control logic. The implementation results show that this decoder has a smaller area and lower

power consumption than most LDPC and turbo decoders [14, 113–115]. Obviously, due to the very

reduced throughput target, the obtained throughput-to-area ratio is low. It yields, however, an energy

efficiency of 8.76 nJ/bit, outperforming the majority of the state of the art.

Thanks to the low throughput requirements of CCSDS, it has been possible to design a simple

decoder structure, and to guarantee very low power consumption. The proposed architecture, however,

can sustain higher throughputs: 10.5 Mb/s have been obtained by synthesizing the presented decoder

without any modifications targeting a frequency of 500 MHz. The implementation yields an area

occupation of 1.06 mm2 and 111.9 mW power consumption. To achieve even higher throughputs, it is

possible to reduce the system critical path by adding a pipeline stage in the EXT-α, EXT-β modules

and another in the α, β modules: with these straightforward modifications, up to 14.5 Mb/s can be

obtained. Another possible approach can be incrementing the degree of parallelism of the decoder:

by subdividing the current memory structure in a number of smaller banks, multiple instances of the

datapath can work concurrently, virtually multiplying the achievable throughput.

The state of the art is currently lacking extensive information about decoders aimed at deep space

communications, making the comparison between the concatenated FEC scheme implementation and

alternative solutions unfeasible. The work in [116] presents an FPGA-based LDPC decoder for space

communications: however, the considered near-Earth transmissions involve codes and specifications
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very different from deep-space links. Turbo codes are a more mature technology in the deep space

field, and various CCSDS-compliant turbo decoders are available on the market [117, 118]. However,

very few scientific papers have been published on the subject. The work in [119] discusses the im-

plementation of a CCSDS-compliant turbo decoder, but it is based on multiple off-the-shelf Digital

Signal Processors, lacking area occupation and power consumption details. Also evaluating the area,

power and energy efficiency gain of the proposed solution with respect to similar architectures is prob-

lematic. Shared datapath LDPC and turbo decoders are present in the literature, for which complete

implementation results are provided [50, 52]. Their target applications are wireless communication

standards like 3GPP-LTE, WiMAX, WiFi and DVB, for which BER and throughput requirements are

extremely different from deep-space communications. These decoder designs are often based on high

levels of parallelism, favoring speed over performance, especially in video broadcasting. For example,

the decoder presented in [52] relies on a completely shared datapath. Since the target throughput

ranges between 450 and 600 Mb/s, the internal parallelism of each decoding core can be close to a

hundred, while the frequency is set to 500 MHz. Moreover, to give full support to high-throughput

communication standards, multiple instances of parallel cores are used. Consequently, while the

concept of datapath sharing and turbo/LDPC code decoding behind the presented work and [52] is

similar, the difference in throughput requirements results in diverging design choices, that lead to a

more than three-fold area occupation and an estimated ×20 factor in power consumption. While it

is clear that a fair comparison with the state of the art cannot be performed, it is possible to get a

sense of where the proposed decoder stands. The CCSDS-compliant RS decoder [120] and Viterbi

decoder [121] yield a total area normalized to 90 nm CMOS technology of 0.63 mm2. The RS+CC

FEC schemes is consequently cheaper to implement than the proposed turbo/LDPC concatenation,

but its performance is much worse. An additional evaluation can be made thanks to the resource

utilization data given in Lattice Semiconductor FPGA-based CCSDS turbo decoder [117]. Approx-

imately 8000 Look-Up Tables (LUTs) and 4000 flip-flops are necessary for different Lattice devices.

This work, implemented on a Xilinx Virtex 6 FPGA, requires 6000 LUTs and 1000 flip-flops, having

better performance while at the same time occupying a smaller area than [117].
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Additional contributions and

conclusions

7.1 Additional contributions

Additional publications to which the author has contributed are listed below:

� In [20], an extensive review of the state of the art on flexible LDPC decoders is given.

� In [21], an LDPC decoder for euclidean-geometry LDPC codes is designed, with FPGA imple-

mentation results being given. The author’s contribution lies within the code simulation and

decoder architecture design and validation issues.

� In [22], a circuit implementing an optimal routing algorithm for Kautz topology NoCs is pre-

sented. The author has carried out the VLSI implementation of the proposed circuit.

7.2 Conclusion and future perspectives

The presented work has been mainly focused on the exploration of alternative solutions for flexi-

ble channel decoders. The NoC paradigm has been analyzed and proven effective for both turbo

and LDPC code decoding, providing excellent flexible support for multi-standard decoders. Its main

drawbacks, i.e. large overheads in area occupation and power consumption, have been tackled by

stripping the NoC of general-purpose characteristics and by introducing ad-hoc power reduction tech-

niques. The reconfiguration of NoC based decoders has been studied in depth. Complete decoders

have been designed at various steps of the study, resulting in competitive flexible implementations.

Additional studies in power reduction and low complexity will reduce the gap between flexible and

151
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dedicated decoders even more. The JANoCS simulator developed within this research is a powerful

tool that will ease the design of future MP-SoCs, whatever their purpose might be. In particular, the

powerful polar codes have been drawing the interest of the research community in the last few years.

Since an important part of future studies will concern smart polar decoder designs, JANoCS will help

to significantly speed up the design space exploration.

Regarding the study on early stopping criteria for LDPC decoders, the devised MSESC has been

evaluated and compared to the state of the art taking in account both performance and actual energy

saving. This is a novel approach unseen before in the literature on the subject, and has confirmed

the effectiveness of the proposed criterion. Future developments can be foreseen in the direction of

generalization of the on-the-fly threshold computation mechanism to a wider set of codes, and an

extension of the implementation-wise energy saving evaluation to other early stopping criteria. While

the state of the art on this subject is wide, the lack of an accurate analysis of the actual effectiveness

of early stopping criteria prevents the consolidation of these methods within the academical and

industrial community.

Also the devised UEP falls within a larger research towards the improvement of LDPC decoders,

even using future unreliable fabrication technologies: it has been proven extremely useful under

very high error probabilities. The proposed method has shown very good resilience to hard errors

as well, and the implementation of UEP has allowed to measure the impact of UEP on a decoder

area occupation and power consumption, showing competitive figures. Later research will proceed to

extend UEP to different applications other than LDPC decoding: the effectiveness of the proposed

solution, while it has been proven in this particular case, needs to be evaluated when applied in

different contexts.

Within the research on deep space communications, a new FEC scheme has been designed, together

with a low-complexity and low-power decoder. Results are promising in both the scheme’s error

correction capabilities and the associated decoder complexity. Future research will refine the FEC

scheme, while evaluating its usefulness in other communication environments. Broadcasting could

particularly benefit from the proposed scheme, since it is impossible to ask for retransmission in case

of failed reception.
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