21,516 research outputs found

    Ligand-based virtual screening using binary kernel discrimination

    Get PDF
    This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening

    A Novel Scoring Based Distributed Protein Docking Application to Improve Enrichment

    Get PDF
    Molecular docking is a computational technique which predicts the binding energy and the preferred binding mode of a ligand to a protein target. Virtual screening is a tool which uses docking to investigate large chemical libraries to identify ligands that bind favorably to a protein target. We have developed a novel scoring based distributed protein docking application to improve enrichment in virtual screening. The application addresses the issue of time and cost of screening in contrast to conventional systematic parallel virtual screening methods in two ways. Firstly, it automates the process of creating and launching multiple independent dockings on a high performance computing cluster. Secondly, it uses a NË™ aive Bayes scoring function to calculate binding energy of un-docked ligands to identify and preferentially dock (Autodock predicted) better binders. The application was tested on four proteins using a library of 10,573 ligands. In all the experiments, (i). 200 of the 1000 best binders are identified after docking only 14% of the chemical library, (ii). 9 or 10 best-binders are identified after docking only 19% of the chemical library, and (iii). no significant enrichment is observed after docking 70% of the chemical library. The results show significant increase in enrichment of potential drug leads in early rounds of virtual screening

    SQUIRRELnovo : de novo design of a PPARalpha agonist by bioisosteric replacement

    Get PDF
    Shape complementarity is a compulsory condition for molecular recognition. In our 3D ligand-based virtual screening approach called SQUIRREL, we combine shape-based rigid body alignment with fuzzy pharmacophore scoring. Retrospective validation studies demonstrate the superiority of methods which combine both shape and pharmacophore information on the family of peroxisome proliferator-activated receptors (PPARs). We demonstrate the real-life applicability of SQUIRREL by a prospective virtual screening study, where a potent PPARalpha agonist with an EC50 of 44 nM and 100-fold selectivity against PPARgamma has been identified..

    Fuzzy virtual ligands for virtual screening

    Get PDF
    A new method to bridge the gap between ligand and receptor-based methods in virtual screening (VS) is presented. We introduce a structure-derived virtual ligand (VL) model as an extension to a previously published pseudo-ligand technique [1]: LIQUID [2] fuzzy pharmacophore virtual screening is combined with grid-based protein binding site predictions of PocketPicker [3]. This approach might help reduce bias introduced by manual selection of binding site residues and introduces pocket shape information to the VL. It allows for a combination of several protein structure models into a single "fuzzy" VL representation, which can be used to scan screening compound collections for ligand structures with a similar potential pharmacophore. PocketPicker employs an elaborate grid-based scanning procedure to determine buried cavities and depressions on the protein's surface. Potential binding sites are represented by clusters of grid probes characterizing the shape and accessibility of a cavity. A rule-based system is then applied to project reverse pharmacophore types onto the grid probes of a selected pocket. The pocket pharmacophore types are assigned depending on the properties and geometry of the protein residues surrounding the pocket with regard to their relative position towards the grid probes. LIQUID is used to cluster representative pocket probes by their pharmacophore types describing a fuzzy VL model. The VL is encoded in a correlation vector, which can then be compared to a database of pre-calculated ligand models. A retrospective screening using the fuzzy VL and several protein structures was evaluated by ten fold cross-validation with ROC-AUC and BEDROC metrics, obtaining a significant enrichment of actives. Future work will be devoted to prospective screening using a novel protein target of Helicobacter pylori and compounds from commercial providers

    ANN Based Virtual Classification Model for Discriminating Active and Inactive Withanolide E Analogs against Human Breast Cancer Cell Line MCF-7

    Get PDF
    Withanolides are a group of natural C-28 steroids built on an ergostane skeleton and classified into two major groups according to their structural skeleton: (a) compounds with a beta-oriented side chain and (b) compounds with an alpha-oriented side chain. Withanolide E represents one of the members of the latter group. Classification of active compounds on the basis of pharmacophore against specific cancer cell line poses a serious concern at the primary stage of virtual screening. To overcome this problem we have developed an artificial neural network based virtual screening model for discriminating active and non-active Withanolide-E-like derivatives or analogs against human breast cancer cell line MCF-7. In the present work, a 2D chemical descriptors ensemble pharmacophore has been modelled on the basis of withanolide E structural featured molecules. The ANN structure activity based classification model could be useful for identification of active withanolide analogs as anticancer leads against MCF-7. This model can be used for predicting possible growth inhibitory concentration (logGI50) against breast cancer cell line MCF-7. The virtual screening tool “CanWithaANN” can be accessed at local network of CIMAP

    Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases

    Get PDF
    This paper reports an evaluation of both graph-based and fingerprint-based measures of structural similarity, when used for virtual screening of sets of 2D molecules drawn from the MDDR and ID Alert databases. The graph-based measures employ a new maximum common edge subgraph isomorphism algorithm, called RASCAL, with several similarity coefficients described previously for quantifying the similarity between pairs of graphs. The effectiveness of these graph-based searches is compared with that resulting from similarity searches using BCI, Daylight and Unity 2D fingerprints. Our results suggest that graph-based approaches provide an effective complement to existing fingerprint-based approaches to virtual screening

    Kernel learning for ligand-based virtual screening: discovery of a new PPARgamma agonist

    Get PDF
    Poster presentation at 5th German Conference on Cheminformatics: 23. CIC-Workshop Goslar, Germany. 8-10 November 2009 We demonstrate the theoretical and practical application of modern kernel-based machine learning methods to ligand-based virtual screening by successful prospective screening for novel agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) [1]. PPARgamma is a nuclear receptor involved in lipid and glucose metabolism, and related to type-2 diabetes and dyslipidemia. Applied methods included a graph kernel designed for molecular similarity analysis [2], kernel principle component analysis [3], multiple kernel learning [4], and, Gaussian process regression [5]. In the machine learning approach to ligand-based virtual screening, one uses the similarity principle [6] to identify potentially active compounds based on their similarity to known reference ligands. Kernel-based machine learning [7] uses the "kernel trick", a systematic approach to the derivation of non-linear versions of linear algorithms like separating hyperplanes and regression. Prerequisites for kernel learning are similarity measures with the mathematical property of positive semidefiniteness (kernels). The iterative similarity optimal assignment graph kernel (ISOAK) [2] is defined directly on the annotated structure graph, and was designed specifically for the comparison of small molecules. In our virtual screening study, its use improved results, e.g., in principle component analysis-based visualization and Gaussian process regression. Following a thorough retrospective validation using a data set of 176 published PPARgamma agonists [8], we screened a vendor library for novel agonists. Subsequent testing of 15 compounds in a cell-based transactivation assay [9] yielded four active compounds. The most interesting hit, a natural product derivative with cyclobutane scaffold, is a full selective PPARgamma agonist (EC50 = 10 ± 0.2 microM, inactive on PPARalpha and PPARbeta/delta at 10 microM). We demonstrate how the interplay of several modern kernel-based machine learning approaches can successfully improve ligand-based virtual screening results

    Similarity-based virtual screening using 2D fingerprints

    Get PDF
    This paper summarises recent work at the University of Sheffield on virtual screening methods that use 2D fingerprint measures of structural similarity. A detailed comparison of a large number of similarity coefficients demonstrates that the well-known Tanimoto coefficient remains the method of choice for the computation of fingerprint-based similarity, despite possessing some inherent biases related to the sizes of the molecules that are being sought. Group fusion involves combining the results of similarity searches based on multiple reference structures and a single similarity measure. We demonstrate the effectiveness of this approach to screening, and also describe an approximate form of group fusion, turbo similarity searching, that can be used when just a single reference structure is available
    • …
    corecore