898 research outputs found

    Efficient management of road intersections for automated vehicles – The FRFP system applied to the various types of intersections and roundabouts.

    Get PDF
    In the last decade, automatic driving systems for vehicles circulating on public roads have become increasingly closer to reality. There is always a strong interest in this topic among research centers and car manufacturers. One of the most critical aspects is the management of intersections, i.e., who will have to go first and in what ways? This is the question we want to answer through this research. Clearly, the goal is to manage the intersection safely, making it possible to reduce road congestion, travel time, emissions, and fuel consumption as much as possible. The research is conducted by comparing a new management system with the systems already known in the state of the art for different types of intersections. The new system proposed by us is called FRFP (first to reach the end of the intersection first to pass). In particular, vehicles will increase or decrease their speed in collaboration with each other by making the right decision. The vehicle that can potentially reach the intersection exit first

    Roundabouts: Traffic Simulations of Connected and Automated Vehicles—A State of the Art

    Get PDF
    The paper deals with traffic simulation within roundabouts when both “connected and automated vehicles” (CAVs) and human-driven cars are present. The aim is to present the past, current and future research on CAVs running into roundabouts within the Cooperative, Connected and Automated Mobility (CCAM) framework. Both microscopic traffic simulations and virtual reality simulations by dynamic driving simulators will be considered. The paper is divided into five parts. At first, the literature is analysed using the Systematic Literature Review (SLR) methodology based on Scopus database. Secondly, the influence of CAVs on roundabout-specific design features and configuration is analysed. Gap-acceptance models used to define the capacity of the roundabout, one of its most important key performance indicators, are also presented. Third, the most common simulation software are described and analysed in terms of traffic demand implementation. Then the communication approaches and path management algorithms are studied. An example is proposed on the integration of microscopic traffic simulations and dynamic driving simulators virtual reality simulations. Finally, car following models suitable for roundabout traffic are discussed. There is still a gap between simulations and actual experience. There are reasonable doubts on how modelling and optimizing CAVs’ behaviour into roundabouts in view of CCAM. It seems that Cooperative, Connected and Automated Vehicles (CCAVs), more than simply Connected and Automated Vehicles (CAVs), could optimise traffic flow, safety and driving comfort within the roundabout. A very promising technology for traffic simulation within the roundabout seems the one based on dynamic driving simulators

    Smart traffic control for the era of autonomous driving

    Get PDF
    This thesis aims to take on the challenges to address some of the key issues in traffic control and management, including intersection protocol design, congestion measurement, selfish routing and road infrastructure automation, under the assumption that all vehicles on the road are connected and self-driving. To design and test traffic control mechanisms for AVs, we introduced a formal model to represent road networks and traffic. Based on this model, we developed a simulation system on top of an existing open-source platform (AIM4) and used it to examine a number of traffic management protocols specifically designed for traffic with fully autonomous vehicles. Simulation outcomes show that traffic management protocols for AVs can be more subtle, sensitive and variable with traffic volumes/flow rate, vehicle safe distance and road configuration. In addition, by analyzing the real-world traffic data and simulation data, we found that measuring congestion with exponential functions has considerable advantages against the traditional BPR function in certain aspects. The deployment of autonomous vehicles provides traffic management with an opportunity of choosing either centralised control or decentralised control. The price of anarchy (PoA) of autonomous decision-making for routing gives an applicable quantitative criterion for selection between them. We extended the existing research on PoA with the ˙class of exponential functions as cost functions. We found an expression for the tight upper bound of the PoA for selfish routing games with exponential cost functions. Unlike existing studies, this upper bound depends on traffic demands, with which we can get a more accurate estimation of the PoA. Furthermore, by comparing the upper-bounds of PoA between the BPR function and the exponential function, we found that the exponential functions yield a smaller upper bound than the BPR functions in relatively low traffic flows. To specify traffic management systems with autonomous roadside facilities, we propose a hybrid model of traffic assignment. This model aims to describe traffic management systems in which both vehicles and roadside controllers make autonomous decisions, therefore, are autonomous agents. We formulated a non-linear optimization problem to optimize traffic control from a macroscopic view of the road network. To avoid the complex calculations required for non-linear optimization, we proposed an approximation algorithm to calculate equilibrium routing and traffic control strategies. The simulation results show that this algorithm eventually converges to a steady state. The traffic control scheme in this steady state is an approximately optimal solution

    Synchronous Roundabouts with Rotating Priority Sectors (SYROPS): high capacity and safety for conventional and autonomous vehicles

    Get PDF
    Roundabouts are a highway engineering concept meant to reduce congestion and improve safety. However, experience shows that capacity of roundabouts is limited, and safety is not optimal. However, these improvements in capacity and safety should be compatible with both manually-driven and autonomous vehicles. Incorporating existing advanced technologies to the signaling and control of roundabouts will undoubtedly contribute to these improvements but should not restrict this compatibility. We approach roundabouts as synchronous switches of vehicles, and propose a roundabout system (synchronous roundabouts with rotating priorities) based on vehicle platoons arriving at the roundabout at a uniform speed and within the time slot assigned to their entry, avoiding conflicts and stops. The proposed signaling system is visual for human drivers and wireless for connected and autonomous vehicles. We evaluated analytically and with simulations roundabouts of different radii for several values of the average distance between vehicles. Results show that average delays are 28.7% lower, with negligible dispersion. The capacity improvements depend on design parameters, moderate for small roundabouts, but that goes up to 70&-100% for short inter vehicular distances and medium and large roundabouts. Simulations with unbalanced traffic maintained the capacity improvement over standard roundabouts.Comunidad de Madri

    Design and implementation of a protocol for safe cooperation of self-driving cars

    Get PDF
    Tese de mestrado, Engenharia Informática (Arquitetura, Sistemas e Redes de Computadores) Universidade de Lisboa, Faculdade de Ciências, 2019Ever since its introduction, the car has fundamentally changed our society. Its popularity grew tremendously in the early 20th century, and today it is nearly ubiquitous. However, there are several problems related to automobiles, one of the major ones being road congestion. Drivers lose millions of dollars every year in fuel costs and time spent in day to day traffic congestion. Another major problem is emissions from vehicles, forming a significant percentage of greenhouse gas emissions. Automated driving systems currently rely on their own sensors to gather information from the real-world, and make informed decisions to keep their passengers safe. But sensors may not be sufficiently accurate during all conditions and can even fail, so automated driving systems take this into consideration when controlling the car, leading to larger safety margins. Vehicle-to-Vehicle communication can enable cooperation between vehicles which, among other things, can be sending or receiving information from other nearby vehicles, increasing the confidence level in the information gathered or even gathering information otherwise not obtainable. Cooperation opens the door to complex vehicular applications such as road-trains (or platooning) and virtual traffic lights, both of which have the potential to mitigate the problems mentioned before. These applications have tight safety requirements due to the context in which they operate: vehicles, possibly with human occupants, operating on roads traversed by non-autonomous vehicles and pedestrians. In this MSc Dissertation, we describe the implementation of a vehicular cooperation algorithm backed by both vehicle-to-vehicle communication and a cloud membership service. We then evaluate the implemented algorithm in a cooperative environment to conclude about its correctness, making use of the Robot Operating System middleware to implement a simulation and visualize a maneuver executed using the algorithm

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE
    corecore