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Abstract: The use of multiple aerial vehicles for autonomous missions is turning into commonplace.
In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate
in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose
additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable
or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this
paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple
UAVs. 3D-SWAP operates reactively without high computational requirements and allows
UAVs to integrate measurements from their local sensors with positions of other teammates
within communication range. We tested 3D-SWAP with our team of custom-designed UAVs.
First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second,
we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions
(i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this
field experimentation.

Keywords: multi-UAV; collision avoidance; decentralized coordination

1. Introduction

The use of multiple Unmanned Aerial Vehicles (UAVs) that cooperate to perform some
tasks is becoming mainstream, mostly due to the flexibility and breadth of their mobility and
sensing capabilities as well as the advancement of associated technologies. For instance, teams of
UAVs are being used in applications related to transportation [1], delivery of goods [2] or even
cinematography [3]. Many works address the problem of avoiding collisions while navigating such
teams in indoor facilities. However, outdoor scenarios bring extra difficulties since positioning
systems are not always accurate, communication can be unreliable, weather conditions can make
maneuverability more complex, etc.

Since applications requiring UAVs that operate jointly in a shared airspace are spreading, methods
that cope with 3D collision avoidance under the above constraints are of uppermost importance.
This problem is commonly tackled in the literature in a centralized fashion, but outdoor scenarios
demand robustness against faulty communication systems and scalability. Therefore, we focus on
decentralized approaches that can scale better with the number of vehicles and size of the scenario.
Moreover, we prioritize safety and fast responses in our system over optimality of the trajectories.
We aim at a reactive approach where UAVs do not optimize their trajectories for a time horizon ahead,
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but instead ensure their safety under harsh sensor and communication constraints with a myopic
algorithm not computationally expensive.

We propose a decentralized algorithm to solve the problem of 3D collision avoidance with an
outdoor fleet of UAVs. We eliminate the need for a central entity with access to all the information,
and each UAV uses only local measurements and communication. The algorithm operates reactively
with low computational overhead and allows UAVs to integrate measurements from their local sensors
as well as positions sent by teammates within communication range. The main idea is that each UAV
creates a reserved space around itself and detects hypothetical future collisions (i.e., conflicts) when
there are obstacles entering that space. If conflicts are detected, the UAVs maneuver avoiding each
other without colliding. It is assumed that all UAVs follow the same rules in order to converge to a
solution. In particular, we extend our previous work in 2D collision avoidance [4], where we developed
the algorithm SWAP (Safety-enhanced avoidance policy), and present in this paper a 3D version for
UAVs called 3D-SWAP.

We contribute in this paper in two main aspects:

• First, we propose 3D-SWAP, a novel algorithm for 3D collision avoidance with multiple UAVs.
The algorithm extends ideas from our previous work on ground robots that swap their positions
in a traffic roundabout fashion. Here, a similar strategy on a horizontal plane is combined with
a control of the UAVs’ altitude to navigate safely in 3D environments. Thus, UAVs that are
far enough in altitude can ignore each other, making the swapping of the rest more efficient.
Moreover, our approach requires low computational load, is decentralized and works with noisy
sensors and restricted communication.

• Second, we detail our system architecture and the implementation of our method in a real team of
UAVs. We tested our algorithm in realistic simulations to assess its performance. Later, we also
run tests in outdoor field experiments, coping with noisy communication, inaccurate positioning
systems, wind gusts, etc. We explain our procedures for the development and integration of the
algorithm in these field experiments.

The remainder of this paper is organized as follows: Section 2 discusses related work; Section 3
formulates the problem; Section 4 provides all the details about our algorithm 3D-SWAP; Section 5
analyzes further 3D-SWAP; Section 6 describes the system integration and experimental results;
and Section 7 includes conclusions and future work.

2. Related Work

The problem of motion planning is a classical problem in robotics. Traditionally, it has been
divided into global path planning and local path planning, also called collision avoidance. In the
former, a robot must find a path free of collision from an initial to a final state in an environment that
may contain static and/or dynamic obstacles. In the latter, the objective is to compute collision-free
paths for a shorter time horizon, i.e., to navigate safely reacting to obstacles that were not planned
in advance. If multiple autonomous vehicles are considered in a 3D scenario, the problem is harder.
This is the case in this paper, where we address collision avoidance in 3D environments for multi-UAV
settings. A complete review for UAV motion planning can be seen in [5].

In a multi-vehicle scenario, global path planning is often formulated as a constrained optimization
problem. Centralized approaches are usual for optimal trajectory generation. In [6], the problem is
formulated as a Mixed Integer Program, which works in continuous space and takes dynamics into
account to compute trajectories for quadrotors. Another approach is used in [7], where optimal
multi-robot path planning is solved by means of discrete graphs. There are some issues with
methods based on centralized optimization. Although they provide optimal solutions, they are usually
computationally expensive. Besides, solvers become more complex for non-convex problems, which
is the case quite often in multi-robot collision avoidance. Due to this, we favor safety instead of
optimality in 3D-SWAP. Nonetheless, there are still some efficient solutions for non-convex problems
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achieving local optimality. For instance, in non-convex settings, Sequential Convex Programming is a
technique to find feasible solutions by means of convex approximations. In [8], the method is used
with a real-time implementation for a team of quadrotors.

Constrained optimization algorithms have also been proposed for local collision avoidance in
multi-UAV teams. For example, Turpin et al. propose a centralized approach where the problem is
modeled as a task allocation [9]. Then, optimal trajectories in terms of traveled distance are generated
for multiple UAVs. The same authors also presented a decentralized version of the algorithm [10],
where UAVs use only local observations and communication. Moreover, methods based on formation
control can also be used to navigate multiple UAVs safely to their goals. The objective is to solve an
optimal control problem to maintain desired formations, e.g., by imposing inter-robot distances or
angles. A complete review can be found in [11]. Formation control can be solved in a centralized [6,12]
or decentralized fashion [13]. In [12], centralized linear programming is proposed in a velocity
space for multi-robot formation. In [13], sequential convex programming is applied to distributed
optimization through a consensus-based algorithm. In general, formation control is interesting for
coupled teams of vehicles. These appear in applications that imply a group of robots navigating
together to perform a common task, such as tracking an object or transporting something jointly.
However, formation-based methods reduce their applicability in other scenarios where vehicles need
to navigate to goal positions independently.

In this work, we aim at decentralized approaches, where each vehicle can only access local
observations (i.e., from onboard sensors) and use local communications (i.e., with its neighbors).
These approaches present advantages in outdoor scenarios, mainly for large-scale applications.
They can scale better with the number of UAVs and they do not rely on a central communication facility,
which is not usually available in the mentioned scenarios. Many works in decentralized collision
avoidance rely on the concept of Velocity Obstacles (VO), where collision-free trajectories are computed
by imposing constraints in the velocity space. For instance, ref. [14] propose a convex optimization
method to solve local collision avoidance based on Velocity Obstacles. They solved the problem
in a centralized manner, but then present a decentralized solution which considers multiple UAVs
and static obstacles. A similar decentralized optimization method is proposed in [15] using Model
Predictive Control, but uncertainties in states’ estimation are also considered. Lalish et al. also present
a decentralized algorithm to apply Velocity Obstacles to 3D collision avoidance [16]. They analyze the
robustness of the algorithm against unmodeled dynamics and non-cooperative vehicles.

A disadvantage of methods based on Velocity Obstacles is that they rely on an accurate estimation
of the velocity of surrounding obstacles, which is not always straightforward. Although some works
consider uncertainties in the position estimations [15] or unmodeled dynamics [16], they assume that
UAVs can observe velocities from others, something that we avoid in our solution. Moreover, 3D-SWAP
is proved to behave safely against localization uncertainties. This links with another limitation of the
applicability of many of the works mentioned so far, which is that they are only validated through
simulations or make use of a Vicon system [15]. Outdoor settings cannot rely on fixed, high-precision
positioning systems such as a Vicon. Instead we consider more common localization systems like
usual GPS receivers (i.e., no RTK GPS), which are noisier but have lower prices.

Another option for outdoor collision avoidance with UAVs are methods based on potential fields
or bio-inspired. In [17], an outdoor GPS and vision-based swarm with ten UAVs is presented. Potential
fields are used for collision avoidance in a bio-inspired and decentralized flocking approach. Price et al.
propose an algorithm for target cooperative tracking with multiple UAVs outdoors [18]. They use
potential fields for collision avoidance in order to circumvent the non-convexity of their Model
Predictive Controller for formation control. Moreover, artificial potential fields are use in [19] for local
obstacle avoidance given a 3D occupancy grid; and in [20], a heuristic-driven 3D visibility graph is
proposed for local navigation. These two works focus on the complete architecture for localization,
mapping and navigation for a single UAV, providing a thorough insight into implementation details,
but do not concentrate on the multi-vehicle problem. In general, methods based on potential fields
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can be easily decentralized and imply low computational requirements. However, they can present
issues in terms of convergence and local minima when many vehicles concentrate on the same area.
Our proposal of ignoring vehicles far enough in altitude and swapping positions orderly on a horizontal
plane for the rest turns out to be efficient for those situations.

Finally, there is also extensive literature regarding see-and-avoid methods, which aim to integrate
unmanned aircrafts into the civil airspace. A recent and complete review of these methods can be
found in [21]. They follow current regulation in terms of trajectories and use typically visual sensors
for obstacle detection. For instance, in [22] a visual predictive control approach is proposed following
spiral trajectories for collision avoidance. Nonetheless, the validation is performed by means of
quadrotors with a Vicon motion capture system.

3. Problem Description

We assume that there is a team of UAVs operating in a 3D environment that need to navigate to
their destinations without colliding. Those destinations represent local goal waypoints that may come
from a higher-level motion path planner. Our problem is to navigate the UAVs safely to their local
goals reacting to possible collisions with other UAVs and with external obstacles. By external obstacles
we imply existing static obstacles in the scenario different from the UAVs in the team. Formally,
given a set of N UAVs, let {pi(t) = (pxy, z)|pi(t) ∈ R3}i=1,...,N be their 3D positions at each time
instant t, where pxy is the 2D projection onto the xy-horizontal plane and z is the altitude. Also, let
{gi|gi ∈ R3}i=1,...,N be their goal waypoints.

First, let us define the UAV coordinate frame, which is a coordinate frame associated with each UAV
i and centered at its position pi. The x-axis is aligned with the UAV yaw orientation and the z-axis is
vertical, pointing upwards. The xy-plane of this UAV coordinate system stays always horizontal and
does not tilt or roll with UAV movements. Then, we can define the concept of collision.

Definition 1. (Collision) We define the collision hull of each UAV as a cylinder that circumvents its shape.
The collision cylinder has radius rc and height hc, and its center coincides with the UAV position. The vertical
axis of this cylinder is aligned with the UAV z-axis. A collision occurs when the collision cylinders of two UAVs
overlap or when an external obstacle enters the collision cylinder of a UAV.

Therefore, if we denote Ci as the collision cylinder of UAV i and Vk as a 3D volume representing
external obstacle k, a collision for UAV i occurs if ∃j 6= i such that Ci ∩ Cj 6= ∅ or ∃k such that
Ci ∩ Vk 6= ∅. Our objective is to navigate each UAV i to its goal gi safely, i.e., with no collision at
any moment.

It is important to note that modeling the shape of the UAVs as cylinders will be helpful for checking
collisions efficiently and, at the same time, it makes sense for multirotors due to the downwash effect
on other vehicles [9,14] (the safety separation in vertical distance should be larger than in horizontal to
avoid perturbations). Moreover, to be strict, the collision cylinder should tilt and roll as the UAV does.
Instead, we assume it fixed to the UAV coordinate frame, which is always horizontal. This simplifies
our solution and makes sense provided that the collision cylinder is big enough to encompass the UAV
shape even tilted or rolled.

Additionally, we make the next assumptions in our problem:

• Holonomic vehicles. We model UAVs as holonomic vehicles (e.g., multirotors). They can move in
any direction independently from their yaw orientation. We assume that their acceleration and
speed constraints allow them to stop horizontally within a planar breaking distance dbr, and stop
their vertical movement within a vertical distance zbr.

• Noisy localization. UAVs can localize themselves by means of noisy sensors. In outdoor scenarios,
UAVs could carry GPS receivers and altimeters, for instance. Each UAV has access to its own
noisy localization p′ = (p′xy, z′), such that ||p′xy − pxy|| ≤ εxy and |z′ − z| ≤ εz. εxy and εz are
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the maximum localization errors on the xy-plane and altitude, respectively. We differentiate them,
as altitude is usually more precise due to the use of altimeters or lasers.

• Local communication. If two UAVs i and j are within communication range, i.e., ||pi − pj|| ≤ rcomm,
they can exchange their noisy localizations p′i and p′j. Thus, UAVs share with their neighbors
their position, but not their goals, velocities nor orientations. We do not assume a perfect
communication. When communication links fail, other UAVs could still be detected with the
onboard sensors.

• Obstacle detection. UAVs have onboard sensors to detect obstacles within a 3D distance
rdet. In particular, we assume that each UAV has a 3D sensor generating poincloud-based
measurements from the obstacles around (e.g., a Lidar). Each pointcloud consists of M points,
where each point m, without losing generality, can be expressed in cylindrical coordinates relative
to the UAV (ρm, ϕm, zm). Again, we assume those measurements to be noisy.

In our problem formulation, the 3D sensors onboard are primarily used to detect external obstacles.
In order to detect other UAVs, the communication channel can be used. However, we do not assume
perfect communication, as it could fail even if UAVs are within communication range. Therefore,
the 3D sensors could also be used to detect other teammates when there are communication losses.
Of course, we rely on the fact that all external obstacles or teammates will be detected on time one way
or another.

4. 3D-SWAP

In this section we describe 3D-SWAP, which is a novel algorithm to solve the collision avoidance
problem formulated in Section 3 in a decentralized fashion. In particular, we develop an extension
for aerial vehicles of our previous algorithm SWAP [4], which addressed collision avoidance for large
teams of ground robots.

4.1. Overview and Preliminaries

The original SWAP [4] is a reactive algorithm for collision avoidance in ground multi-robot teams.
Safety disks are defined around each robot to detect possible conflicts when obstacles enter these safety
areas. These conflicts are then resolved in a decentralized fashion by means of a set of maneuvers
where all robots follow similar predefined rules. 3D-SWAP generalizes SWAP to deal with UAVs in
3D spaces. First, the notion of disks is extended to cylinders. By defining different cylinders around
each UAV and checking when they are invaded, vehicles can detect two different types of conflicts:
xy-conflicts when others get too close on an xy-horizontal plane; and z-conflicts when others get too
close in altitude. If an xy-conflict is detected, the vehicles involved move surrounding each other
laterally in a roundabout fashion, i.e., swapping their positions at the same time that they keep going
up or down in altitude as they were. If a z-conflict is detected, the vehicles involved keep moving as
toward their goals, but fixing their altitude while the z-conflict persists, not to get closer vertically.
Figure 1 depicts an example where a UAV 1 is surrounded by several others to understand the two
types of conflicts that can occur in 3D-SWAP and how they are resolved (a video illustrating this
example and another one with more UAVs can be found at https://youtu.be/-iiPJ9vuUA8). UAV 1 has
a z-conflict with UAV 2 (see Figure 1a), so it needs to keep its altitude fixed instead of flying up toward
its goal. This is to prevent a possible collision with UAV 2. Besides, UAV 1 has xy-conflicts with UAVs
3 and 4, which are close on the same horizontal plane. UAV 1 will compute an avoidance direction ϕa

in order to move horizontally surrounding UAV 4 counter-clockwise toward its goal (see Figure 1b).
More in detail, 3D-SWAP works by defining two concentric cylinders around each UAV: the

reserved cylinder and the blocking cylinder (see Figure 2a). These cylinders are the foundation to define
the concept of conflict and navigate UAVs without collision to their destination.

https://youtu.be/-iiPJ9vuUA8
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(a)
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ϕc3

ϕc4 + π/2
ϕc3 − π/2

ϕa =ϕc4 − π/2
ϕc3 + π/2

(b)

Figure 1. Example situation with several UAVs in conflict. The figure shows the avoidance maneuver
computed by 3D-SWAP for UAV 1 while trying to reach its goal g1. All UAVs are represented with
their collision, reserved and blocking cylinders. On the left (a), a lateral view of the scene to depict
z-conflict with UAV 2. On the right (b), a view from above to show xy-conflicts with UAV 3 and 4,
and the computation of the avoidance direction.

rr rc

hrhb

(a) (b)

ρ

0 π 2π

ϕc1 ϕc2

(c)

Figure 2. (a) Representation of the three concentric cylinders that define the collisions and conflicts.
(b) A UAV (in the middle) computes its COD with two obstacles: an external, static obstacle and
another UAV. The reserved cylinder of the central UAV is shown to see how it is invaded by the
collision cylinder of the other UAV and the static obstacle. (c) Equivalent polar representation of its
COD with the two conflict angles.

Definition 2. (Reserved cylinder) The reserved cylinder has radius rr and height hr and its volume is denoted
as R. It is concentric and aligned with the collision cylinder. This cylinder is used to detect conflicts on
the xy-plane. In particular, a UAV i has an xy-conflict when its reserved cylinder intersects with another
reserved cylinder or with an external obstacle. This means that ∃j 6= i such thatRi ∩Rj 6= ∅ or ∃k such that
Ri ∩ Vk 6= ∅. The radii rr must ensure that UAVs can always detect xy-conflicts on time to brake horizontally
before a lateral collision, and then maneuver accordingly.

Definition 3. (Blocking cylinder) The blocking cylinder is concentric and aligned with the reserved cylinder,
having the same radius but height hb, and its volume is denoted as B. It is defined by adding to the reserved
cylinder a cylinder B+ on top and another B− below, such that B = B+ ∪R∪ B−. The blocking cylinder is
used to detect conflicts in altitude. Thus, a UAV i has a z-conflict when the B+ or B− part of its blocking cylinder
intersects with the B− or B+ (respectively) part of another blocking cylinder or with an external obstacle. This
means that: (i) ∃j 6= i such that B+i ∩ B

−
j 6= ∅ or B−i ∩ B

+
j 6= ∅; or (ii) ∃k such that B+i ∩ Vk 6= ∅ or
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B−i ∩ Vk 6= ∅. The height hb must ensure that UAVs can always detect z-conflicts on time to brake vertically
before a collision from above or below, and then maneuver accordingly.

The complete procedure to run 3D-SWAP in a decentralized manner is depicted in Algorithm 1.
An instance of this algorithm runs on each UAV in order to navigate the whole team safely toward
their goals. Each UAV i uses its local information, i.e., its own noisy position p′i and its last pointcloud
observed. At each iteration, the UAV shares its position with the neighbors (Line 2) and initializes
its Cylindrical Obstacle Diagram (COD) without obstacles (Line 3). Then, the COD is updated with
the positions received from other neighboring UAVs (Lines 4–8) and with the information in the
local pointcloud (Lines 9–12). This procedure will be detailed in Section 4.2. The conflict state of
the UAV is determined by means of this COD (Line 13). Depending on its current state, the UAV
performs different maneuvers varying the reference velocity to its velocity controller (Lines 15–28).
These maneuvers and how the UAV movement is controlled are explained in Section 4.3.

Algorithm 1 3D-SWAP for each UAV i
Input: Pointcloud from local sensors, current position p′i, goal position gi

1: while gi not reached do

2: Send position p′i to neighbors
3: COD ← initCOD()
4: for all UAV j within communication range do

5: Receive its position p′j
6: (ρ′j, ϕ′j, z′j)← trans f ormToCylindrical(p′j)
7: COD ← UpdateCOD(ρ′j, ϕ′j, z′j)
8: end for
9: for m = 1 to m = M do

10: Extract point m from local pointcloud
11: COD ← UpdateCOD(ρm, ϕm, zm)
12: end for
13: (sxy, sz)← computeState(COD)
14: dg = gi − p′i
15: if sxy is xy-free then

16: ∠vre f
xy = ∠dg

xy and ||vre f
xy || = computeRe f Speed(||dg

xy||, vmax)
17: else if sxy is rendezvous then

18: ∠vre f
xy = ϕa and ||vre f

xy || = va
19: else if sxy is xy-blocked then

20: vre f
xy = 0

21: end if
22: if sz is z-free then

23: vre f
z = ±computeRe f Speed(dg

z , vmax), depending on whether gi is above or below
24: else if sz is z-blocked then

25: vre f
z = 0

26: end if
27: vre f ← (vre f

xy , vre f
z )

28: Send vre f to velocity controller
29: end while
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4.2. The Cylindrical Obstacle Diagram

Each UAV maintains a local Cylindrical Obstacle Diagram (COD) to analyze its conflicts and
determine its movements accordingly. The Cylindrical Obstacle Diagram is a cylindrical representation
of the obstacles around a UAV that is expressed on its coordinate frame. In order to create the COD,
the UAV polar angle ϕ is discretized into Nϕ values, obtaining a set of angle bins. The COD stores
the polar distance ρ corresponding to the closest obstacle within each bin. Formally, the COD of a
UAV consists of a set of angle bins {ϕ1, · · · , ϕNϕ} with their corresponding polar distances to obstacles
{ρ1, · · · , ρNϕ}.

The COD is used to evaluate the conflict state of a UAV. Measurements in the COD are checked to
see whether the UAV reserved cylinder is invaded by another reserved cylinder or an external obstacle,
provoking an xy-conflict. The COD is updated with measurements from the local pointclouds and
with positions received from other UAVs. Measurements far enough in altitude to invade the UAV
reserved cylinder (i.e., not able to provoke a xy-conflict) are not included in the COD. Figure 2b,c
show an example of a graphical representation of the COD for a UAV observing an external obstacle
and another UAV.

First, UAVs update their COD with positions sent by other UAVs. If any other UAV j within
communication range shares its position, its cylindrical coordinates with respect to UAV i are computed
(ρ′j, ϕ′j, z′j): ρ′j represents the planar distance between UAVs; ϕ′j is the angle between the x-axis of UAV
i coordinate frame and UAV j center; and z′j the difference in altitude between both. Then, a virtual
circular obstacle of radius rc is created at the position of UAV j representing its collision cylinder.
The COD is updated accordingly to include the border of this cylinder representing UAV j. The closest
point corresponding to this obstacle will have distance ρ′j = ||p′

xy
j − p′xy

i || − rc. Before updating the
COD, it is verified whether the UAV is close enough in altitude to cause an xy-conflict . Otherwise
it is discarded and not included in the COD. In particular, it is included in the COD iff |z′j| ≤ 2hr/2
(reserved cylinders overlap). All the angle bins updated with measurements from other UAVs are
labeled as dynamic, since there are moving obstacles in those directions.

Second, UAVs update their COD with the M points of their poincloud measurement if available.
Each point obstacle m is also transformed into cylindrical coordinates (ρm, ϕm, zm). Then, ϕm

determines to which bin ϕi the point corresponds. If ρm < ρi, then ρi = ρm, updating the COD
accordingly to keep the closest obstacle at that angle. If the obstacle point corresponds to a bin labeled
as dynamic, it is assumed that it comes from another UAV, so it is treated as such As before, it is
included in the COD iff |zm| ≤ 2hr/2− hc/2 (overlap between two reserved cylinders). If the obstacle
corresponds to a bin not labeled as dynamic, it is treated as static. Therefore, it is included in the COD
iff |zm| ≤ hr/2 (obstacle is within the UAV reserved cylinder).

After updating the COD with all available information, xy-conflicts are double-checked. For each
bin in the COD, an xy-conflict occurs when: ρi ≤ rr, for bins not labeled as dynamic (static obstacle
entering the reserved cylinder); or ρi ≤ 2rr − rc for bins labeled as dynamic (reserved cylinders from 2
UAVs overlapping). Thus, sectors whose angles are in xy-conflict are marked as conflict sectors; and for
each conflict sector, there is a conflict angle ϕc corresponding to the closest obstacle (see Figure 2b,c.
Furthermore, note that during the process of updating the COD, determining whether the UAV has
also a z-conflict above or below is straightforward checking the vertical and horizontal distances with
the obstacle: it is a sufficient condition to find a single obstacle point causing z-conflict.

3D-SWAP relies on the assumption that all conflictive UAVs or external obstacles are detected
in time to avoid collisions. Therefore, the dimension of the cylinders must be designed in such a
way that UAVs can brake safely after detecting conflicts. The reserved cylinder is used to avoid
collisions given xy-conflicts, so hr = hc and rr > rc + dbr + εxy. Thus, once an xy-conflict is detected,
UAVs would be far enough to brake in the worst case, i.e., if they were moving at full speed against
each other (see Figure 3). The blocking cylinder is used to avoid collisions given z-conflicts, so rb = rr

and hb > hc + zbr + εz. The positions communicated by the UAVs are noisy, so they may be actually
closer than they think when sharing positions and computing conflicts. This is why εxy and εz are
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added to the braking distances in order to account for those inaccuracies on the horizontal and vertical
positioning observations, respectively. We need to ensure braking in time even if measurements from
the communication channels are noisy. Measurements from the pointclouds provided by the local
sensors are also noisy, but we do not model them here because these inaccuracies would be typically
lower than those of the positioning system, which are already included in εxy and εz. Last, note that
all obstacles in conflict should be detected in time to react. Therefore, we assume that rcomm > 2rr

(UAVs in conflict are always within communication range) and rdet > rr (any external object that enters
in conflict is within detection range).

(p′xy, z′)

(pxy, z)

εxy rc dbr rr

εz

Figure 3. Representation of two UAVs at the instant of starting braking due to an xy-conflict. For the left
UAV, the real (black) and measured (gray) positions are represented. The worst case for the maximum
positioning error considered in our system is depicted.

4.3. Avoidance Maneuvers

Each UAV computes its own COD and solves its conflicts in a decentralized fashion, performing
avoidance maneuvers when needed. A UAV uses its COD to determine its conflict state. Depending
on its current conflicts, the UAV can be in several states that form a state machine. Depending on the
state, a 3D reference velocity is computed to control the UAV movement. UAVs assume that their
neighbors will also follow the same rules to resolve their conflicts. In particular, there are two parallel
state machines: one reasons about xy-conflicts and outputs a 2D reference velocity vre f

xy to move the
UAV on the horizontal plane; whereas the other reasons about z-conflicts and outputs a scalar reference
velocity vre f

z to move the UAV vertically. The UAV conflict state consists of a joint state from both state
machines (sxy, sz), where sxy ∈ {xy-free, redezvous, xy-blocked} and sz ∈ {z-free, z-blocked}.
At each iteration, 3D-SWAP revises the conflict states, and both state machines can transition freely
and independently if the UAV circumstances changed. Any time the UAV transitions to another state,
its reference velocities change too, modifying its behavior. These reference velocities are combined into
a 3D reference velocity vre f which is sent to a velocity controller. The design of this controller is out of
the scope of the paper and we assume that the UAV autopilot provides such a functionality. Next, we
describe all possible conflict states for the UAVs and their corresponding reference velocities.

xy-free: This is the normal operation mode for the horizontal movement. A UAV is in this
state when there are no xy-conflicts, or the existing ones do not interfere with its path to its goal.
The UAV should move horizontally toward its goal to reach it. For that, a 3D direction vector dg from
the UAV to its goal is computed (Line 14, Algorithm 1). Then, the 2D reference velocity points to
the goal ∠vre f

xy = ∠dg
xy, being dg

xy the projection of dg on a horizontal plane. The reference speed is
computed proportional to the distance to goal and bounded by the maximum allowed speed vmax

(Line 16, Algorithm 1).
If a UAV finds xy-conflicts affecting the path to its goal, i.e. there may be a collision navigating

straight to the goal, its horizontal movement is constrained to avoid the collision through two states:
rendezvous and xy-blocked.

rendezvous: The UAV is in this state when it finds xy-conflicts but it can find an avoidance
direction. Given the conflict angles ϕc of the xy-conflicts, this avoidance direction ϕa is computed.
For each xy-conflict, the interval (ϕc − π/2, ϕc + π/2) define the forbidden angles. If the UAV keeps
moving in any of those directions there is a risk of collision with the conflicting obstacle, otherwise not.
Therefore, each obstacle can be surrounded following any of the directions that bound the forbidden
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sector, ϕc − π/2 or ϕc + π/2. In particular, the rule is that all UAVs should surround obstacles
counter-clockwise, so the option ϕc − π/2 is used. However, that angle could be within the forbidden
sector associated with another conflict, making impossible its selection. All conflicts are checked
to find an avoidance direction ϕa = ϕc − π/2 out of forbidden sectors. If there is none, there is no
escape direction and the UAV is blocked. An example is depicted in Figure 1b, where UAV 1 has two
xy-conflicts with UAV 3 and UAV 4. UAV 2 is too far in altitude to cause a xy-conflict and hence not
included in the COD and ignored to compute the avoidance direction. In green, the angles out of any
forbidden sector are shown. In this case, ϕc3 − π/2 is within a forbidden sector, so ϕa = ϕc4 − π/2 is
selected to surround UAV 4 counter-clockwise.

During the avoidance maneuver the speed of the UAV is reduced for security to a value va ≤ vmax.
Therefore, ∠vre f

xy = ϕa and ||vre f
xy || = va.

xy-blocked: If no possible avoidance direction for the UAV is found following the previous
procedure, the UAV assumes that it is surrounded horizontally by other UAVs and enters the
xy-blocked state. In this case, a reference not to move the UAV horizontally is sent, i.e., ||vre f

xy || = 0.
UAVs around are expected to leave at some point toward their destinations after circumventing the
blocked UAV.

The states described above govern the horizontal UAV movement but do not affect its vertical
movement. This allows UAVs to fly up or down toward their goal as they perform horizontal
avoidance maneuvers, which is more efficient. However, as they change altitude they may find
z-conflicts, blocking their vertical movement.

z-blocked: In this state the UAV has detected a z-conflict that precludes it from keeping its
vertical movement. Otherwise, the UAV may appear unexpectedly in a horizontal plane where there
are other UAVs without time to brake. In this state, the altitude of the UAV is blocked (vre f

z = 0),
so there is no vertical movement.

z-free: This is the normal operation mode for the vertical movement. If no z-conflicts are
detected, or the existing ones do not interfere with the path to the goal (e.g., a z-conflict above but the
UAV is going down), the UAV can move up or down toward its goal at a speed proportional to the
distance and bounded by the maximum allowed speed vmax (Line 23, Algorithm 1).

5. Discussion

In this section, we discuss several aspects of our algorithm 3D-SWAP in more detail. In summary,
3D-SWAP is thought as a reactive algorithm for collision avoidance, so its primary objective
is safety. Under certain realistic conditions, the algorithm can converge to a solution in most
cases, even though not the optimal one. Besides, 3D-SWAP achieves robustness by fusing
information from communication channels and onboard sensors, as well as modeling uncertainty in
sensor measurements. Given its decentralized fashion, 3D-SWAP relies on local observations and
communication, being scalable with the number of UAVs. Next subsections provide further discussion
about these aspects.

5.1. Convergence

The ultimate goal of 3D-SWAP is to drive all UAVs to their destinations safely, i.e., without
collisions. Under our assumption of detecting all static obstacles and neighboring UAVs in time,
the safety can be guaranteed, since vehicles have always enough distance to brake and avoid collisions.
For that, we need to bound the braking distance for the vehicles, the uncertainty of the sensors and have
enough detection and communication ranges, which is realistic. Moreover, given certain conditions,
the algorithm converges to a solution where all conflicts are solved eventually.

First, all obstacles must be cooperative teammates or static obstacles. With other kind of dynamic
obstacles, our UAVs could get stuck since others would not follow 3D-SWAP rules. Besides, the braking
distance for those external dynamic obstacles is not modeled, so collision-free maneuvers are not
ensured in that case.
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Second, the goals for all UAVs need to follow configurations where deadlocks are avoided.
For instance, if several UAVs reach their goals and they surround the goal of another one with no
space to get there without conflicts, the last UAV would never reach its destination. Another deadlock
may occur when UAVs block their altitudes due to a z-conflict. Imagine that UAV 1 is on top of UAV
2, with g1 below UAV 2 and g2 on top of UAV 1, all aligned in the same vertical axis. They both
would navigate to their destinations until a z-conflict occur, and they would get stuck pushing each
other endlessly. Also, there may be deadlock situations when the goals for some UAVs are located in
areas occupied by other blocked UAVs. The ones surrounding the blocked ones would stay circling
around infinitely.

These deadlock situations are marginal and unlikely, but they could be solved by a higher-level
motion planner that gets UAVs out of their deadlocks. Note that 3D-SWAP does not pretend to be a
complete motion planning algorithm, but a reactive algorithm for collision avoidance. Our previous
work [4] analyzes further deadlock situations for 2D scenarios. Nonetheless, they are unlikely if we do
not consider crowded, confined scenarios. Therefore, a similar analysis of 3D-SWAP for a 3D scenario
is out of the scope of this paper.

5.2. Optimality and Robustness

Even though 3D-SWAP can solve all conflicts under certain assumptions and keep UAVs safe
without colliding, the solution is not optimal. UAVs could get blocked by others during some
time or they may perform longer detours in highly conflictive situations. Note that we enforce
counter-clockwise roundabouts, even if moving in the other direction were more efficient.

However, 3D-SWAP behaves in a robust manner in several aspects, even under unreliable
communication and noisy sensors. First, the system is redundant fusing information from the
communication channel and the onboard sensors. On the one hand, if communication fails the
algorithm can still work, since the onboard sensors can be used to detect UAVs around. Note that in
that case those obstacle points would be treated by default as static in the COD instead of dynamic.
However, if communication failures were detected, we could treat all obstacles as dynamic to be
conservative. Also, if neighbors positions were tracked, we could determine which angle bins should
by dynamic, even with short communication losses. On the other hand, onboard sensors can have
limited field of view due to processing or payload issues. This is why we also integrate measurements
coming from communication channels. Moreover, the onboard sensor will usually point forward if
its field of view is limited. Although 3D-SWAP assumes holonomic vehicles that do not need to turn
around in order to navigate in any direction, the yaw of UAVs can also be controlled so that they
always points their nose toward their forward direction. In that case, it is unlikely that an obstacle
provoking a relevant conflict is not detected.

Besides, 3D-SWAP relies on the fact that UAVs will not get too close when avoiding each other,
as they try not to overlap their reserved cylinders. However, even if these cylinders are appropriately
designed, some unexpected behaviors may still arise due to external perturbations like strong wind
gusts, saturated controllers, etc. In order to address those and make the system more robust, 3D-SWAP
includes an additional controller to keep distances between UAVs above a threshold. This controller
implements a repulsive force on the UAV when an external obstacle invades its reserved cylinder more
than dbr/2.

Finally, 3D-SWAP is robust in terms of synchronization. UAVs do not need to execute the
algorithm at the same time synchronously. Instead, each UAV resolves its conflicts locally and start
its avoidance maneuvers asynchronously. Still, 3D-SWAP can guarantee safety as UAVs navigate,
converging to the solution in a distributed fashion. As it will be explained in the experimental section,
we use time synchronization for our UAVs, but this is just to ease logging tasks.
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5.3. Scalability

3D-SWAP is a decentralized algorithm and it does not require high computational overhead,
since the UAVs do not plan ahead but operate reactively. Each UAV runs locally Algorithm 1 only with
local information from sensors and neighbors, so the approach scales independently of the number
of UAVs. The main computation lies behind updating and analyzing the COD. The cost of these
operations depends mainly on two factors: the size M of the pointclouds provided by the onboard
sensors; and the level of discretization Nϕ in the COD. As M or Nϕ increase, the number of times that
the COD needs to be updated or the number of angle bins to search for conflicts grow, respectively.
In both cases, the increase of complexity is linear in the worst case and can be bounded by selecting
the parameters M and Nϕ. In practice, M is most critical for the complexity of the algorithm, since
pointclouds are usually large for realistic fields of view.

6. System Integration and Experiments

In this section we show how 3D-SWAP was implemented for a team of UAVs. We describe our
aerial platforms, the process followed for system integration and the experimental results to validate
3D-SWAP. We present results simulating the system with a Software-In-The-Loop approach, in order
to showcase typical behaviors of the algorithm and evaluate its performance. Then, we detail our field
experiments with up to 3 UAVs in an outdoor scenario.

6.1. Aerial Platforms

The UAVs that we used in our experiments are the custom-designed hexarotors shown in
Figure 4. They are made of carbon fiber and have a size of 1.18 × 1.18 × 0.5 m (including rotor
blades). Their weight is 5.5 kg (including batteries, sensors and electronics), with a maximum take-off
weight of 10 kg and a flight time of 20 min. Each UAV is equipped with: an Ubiquiti Rocket M5
5.8 GHz radiolink for communication with a ground station and other UAVs; a Lidar sensor based
on a ZED stereo camera that provides 3D pointclouds for navigation; a 3DR uBlox GPS receiver for
localization; a Pixhawk autopilot for UAV control; and an Intel NUC i7 processor (16 GB RAM).

Figure 4. On top, close view of one of our custom-designed UAVs. At the bottom, a view of the
experimental site. The colored circles indicate three flying UAVs.
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6.2. System Integration

We implemented 3D-SWAP with ROS Kinetic Kame (the code can be found at https://github.
com/multirobot-ferr/3d-SWAP). A diagram block of the system integration can be seen in Figure 5.
In particular, each UAV executes on its Intel NUC onboard an instance of a ROS node running
3D-SWAP (it runs at 10 Hz in all our experiments). This module could receive the goal of the UAV from
a higher-level Planner, we just implemented a simple version for our experiments. We use the Lidar
sensor onboard to provide poinclouds from external obstacles around and the communication channel
through the Ubiquiti to share UAVs’ positions. This information is also collected in our ground station,
and used for data logging and visualization.

Our 3D-SWAP is built on top of a UAV Abstraction Layer (UAL) (code at https://github.com/
grvcTeam/grvc-ual), which is a software developed by our lab to simplify the interaction of external
modules with the UAVs regardless of the autopilot used underneath. Our UAL offers interfaces to
issue commands such as take off, land and go to waypoint, as well as reference velocities to command the
autopilot. Our UAVs use the autopilot software PX4, which is abstracted by the UAL. Since we do not
have an accurate RTK-GPS localization, we use the local coordinates provided by the PX4 filter (fusing
GPS measurements) instead of its global coordinates, which are less stable. Measuring the initial
UAV positions, the local coordinates can be transformed into a global coordinate system to be shared
between the teammates. Moreover, for time synchronization between the nodes run on each UAV,
we use Network Time Protocol (NTP) with a server on the ground station. This time synchronization
is just for logging tasks, UAVs do not need it to run 3D-SWAP.

In order to ease system integration, we also developed a simulator based on Gazebo following
a Software-In-The-Loop (SITL) scheme. The actual software of the PX4 is integrated within the
simulator [23] to achieve realistic simulations where the system does not distinguish between real or
simulated flights.

Figure 5. Block diagram of the system integration. Each UAV carries onboard a Pixhawk autopilot with
GPS and an Intel NUC to run the navigation software. External obstacles are detected by a Lidar and
the Ubiquiti is used as communication channel to share positions with others. The Planner is optional
and would provide goals at each moment for the UAV.

6.3. Simulations

We simulated 3D-SWAP with our SITL tool to evaluate its performance. The objective is to assess
the robustness of 3D-SWAP under noisy sensors or how sensitive is to variations on its parameters.
We used a 3D simulated scenario without external obstacles and simulated our aerial platforms in
Section 6.1. In this scenario, 4 UAVs are placed in opposite squares of a 20× 20× 20 m cube, two UAVs
start at the top part and the others at the bottom. The UAVs are commanded to exchange their positions.
This creates a remarkable conflictive situation in the middle of the cube, where all UAVs arrive at the
same time.

https://github.com/multirobot-ferr/3d-SWAP
https://github.com/multirobot-ferr/3d-SWAP
https://github.com/grvcTeam/grvc-ual
https://github.com/grvcTeam/grvc-ual
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3D-SWAP parameters were set as: rc = 0.85 m, hc = hr = 7 m, rr = rb = 2.35 m, hb = 12 m,
Nϕ = 360. The maximal speed of the UAVs during the simulation was vmax = va = 2.5 m/s.
We selected these sizes for the reserved and blocking cylinders after checking that the behavior was
adequate in that scenario. Note that there is no wind in the simulator and dynamics are softer than with
the actual platforms, so braking distances are shorter. Therefore, we can get UAVs closer in simulation
than in field experiments (see Section 6.4) and test 3D-SWAP behavior in that situation. Since there
are no external obstacles in the scenario and UAVs can communicate their positions, the Lidar is not
strictly needed and was not used unless specified. In any case, we set the communication (rcomm) and
detection ranges (rdet) large enough to detect all conflictive obstacles.

We performed a first simulation to evaluate the robustness of 3D-SWAP against noisy
measurements. For that, we kept fixed the sizes of the reserved and blocking cylinders and increased
gradually the noise in the UAVs’ measurements. In particular, we added a Gaussian noise on each
coordinate of zero mean to the positions shared by the UAVs through the communication channel.
We repeated the simulation (using always the same starting and goal positions for UAVs) with different
values of the standard deviation of the added noise σ = {0 m, 1 m, 1.5 m}, 15 runs for each value.
Since we have 4 UAVs in symmetrical conditions, we can extract 60 samples for the evaluation
metrics in each case. All simulations were run on a single computer with the SITL simulation and the
3D-SWAP modules for the 4 UAVs. The computer had an Intel(R) Core(TM) i7-7700@3.60GHz CPU
with 16 Gb RAM.

We used three metrics to evaluate the performance of 3D-SWAP. The clearance distance is the
distance on the horizontal plane of a UAV to its closest obstacle, i.e., another UAV or external obstacle.
It indicates the risk of collision on the xy plane. The traveled distance is the distance that a UAV covered
to reach its goal location; whereas the traveled time is the time that took it to get there. These two
last metrics assess how efficient the navigation is. We can compare the values with the nominal ones,
i.e., the distance and time that a UAV would take to reach its goal without obstacles. We compute these
nominal values assuming that the UAV would navigate in a straight line between the starting and goal
positions at its maximum speed.

Figure 6 depicts the results of the 3D-SWAP performance for the simulations increasing the level
of noise in the observed positions. Figure 6a shows an example of the evolution of the clearance
distance during a simulation run. Similar runs gave similar results. In the middle, UAVs create a
virtual roundabout to resolve the conflictive situations, performing an avoidance maneuver between
second 7 and 13, approximately. It can be seen that they never collide. In Figure 6b, it is shown that
the clearance distance does not decrease with noise, but slightly the opposite indeed. This depicts
how 3D-SWAP is robust to noise in terms of safety, since UAVs do not get closer when their sensors
are noisier. Due to the noise in the positions, UAVs think that others are closer than they really are,
and trigger their maneuvers to solve conflicts even before. The distributions of the traveled distance
and the traveled time are shown in Figure 6c,d. 3D-SWAP is not optimal and, in order to solve this
conflictive situation, the traveled distance increases on average a 14% over the nominal value, whereas
the traveled time increases a 50% over the nominal time. In terms of traveled distance, the solution is
quite efficient indeed, not so in terms of the time spent in the roundabout. However, it is important to
remark that the increase in the level of noise does not provoke a significant degradation in both metrics.

We performed a second experiment to test the effect of varying the size of the reserved cylinder,
which is a key parameter in 3D-SWAP. Thus, we set a high and fixed level of noise σ = 1.5 m while we
increased the reserved radius gradually rr = {2.3 m, 3.3 m, 4.3 m}. Again, we run 15 simulations for
each value, obtaining 60 samples for each metric.
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Figure 7 shows the results for this experiment in terms of traveled distance and traveled time.
It can be seen that they both increase linearly as the reserved radius does. This increase is not quite
pronounced and is an expected behavior, since UAVs detect conflicts before and perform avoidance
maneuvers longer.

Finally, we performed some scalability tests to analyze the computational overload of 3D-SWAP.
First, we run the same cube simulation increasing the number of UAVs and computed the average
execution time of 3D-SWAP (200 samples for each number of UAVs). Figure 8a shows how the
execution time stays almost constant. Indeed, it should not increase with the number of UAVs given the
decentralized nature of 3D-SWAP. However, the slight increment is due to the fact that the complete
simulation was run on a single computer instead of distributively. Then, we run a simulation with a
single UAV using the Lidar with different pointcloud sizes and measure the execution time (200 samples
for each pointcloud size). Figure 8b shows how the execution time increases with the pointcloud size,
since there are more points to process. As it was explained in Section 5, this is a critical parameter for the
computational load of the algorithm that need to be selected according to onboard capabilities.
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Figure 6. 3D-SWAP results in simulations increasing noise in observed positions. (a) Clearance
distance along time for a simulation run without noise. The distance 2rr indicates when UAVs enter in
xy-conflict, and the distance 2rc when they collide. (b) Boxplot comparing clearance distances as noise
increases. (c) Boxplot comparing traveled distances as noise increases. (d) Boxplot comparing traveled
times as noise increases.
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Figure 7. 3D-SWAP results in simulations increasing reserved radius. (a) Traveled distance. (b) Traveled time.
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Figure 8. Scalability tests for 3D-SWAP. (a) 3D-SWAP execution time as the number of UAVs increases.
(b) 3D-SWAP execution time as the pointcloud size increases.

6.4. Field Experiments

We evaluated 3D-SWAP during several days of field experiments in an outdoor experimental site
of 130× 80 m that is located close to Seville (see Figure 4). We flew up to 3 UAVs following a strategy
with several incremental phases.

6.4.1. Tuning Parameters

We performed some simple experiments to calibrate the system and determine some parameters
of the UAVs. In these field experiments there were no external obstacles, so we used the wireless
communication channel (Ubiquiti) to exchange UAV positions and deactivated the Lidar sensors.
The communication range rcomm was enough to detect all conflictive UAVs in the scenario.
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First, we need to know the uncertainty involved in the positioning systems of the UAVs to tune
3D-SWAP. We do not use RTK GPS and we have no ground truth either, so we could only get an
empirical estimation of the localization error. For that, we took large sets of measurements of a UAV at
different static positions and compared them with the average value to measure maximum errors of
εxy = 1.5 m and εz = 0.1 m. Note that the altitude was provided by a highly accurate laser altimeter,
and hence the much lower vertical uncertainty.

Second, to measure the braking distances, we left one UAV hovering while a second one was
commanded to drive towards the first. We set up the reserved cylinders for 3D-SWAP large enough
in altitude, in order to perform those tests with the UAVs at different altitudes but still provoke the
braking. We found that under average windy conditions our UAVs were not able to stop in less
than dbr = 2.25 m on the horizontal plane, and zbr = 2 m for the altitude. This allowed us to set
rr = rb = 4.6 m and hb = 12 m. We used different parameter values depending on the windy
conditions, but we report here those for the experiments included in the paper. rc = 0.85 m and
hc = hr = 7 m were given by the size of the UAVs and the downwash effect (a minimum separation in
altitude is required to avoid perturbations). Finally, we limited for safety the maximal speed of the
UAVs to vmax = va = 1.5 m/s in all our field experiments and set Nϕ = 360.

6.4.2. Results

Once the parameters were tuned, we started testing 3D-SWAP with preliminary tests where the
UAVs flew and exchanged positions at different horizontal planes. In particular, we set hr to quite
large values in order to enforce xy-conflicts even with UAVs at different altitudes (i.e., infinite reserved
cylinders). Then, we run several tests with two UAVs at antipodal positions of a circle of 10 m radius,
exchanging their positions. Finally, both UAVs were commanded to the center of the circle to check
that 3D-SWAP was ensuring safety in case of overlapping destinations. We experienced that the UAVs
were quite sensitive to the level of wind, being necessary to adjust the sizes of the cylinders depending
on those conditions.

After the first preliminary tests, we run several experiments with 2 and 3 UAVs exchanging their
positions at different altitudes without constraining their movement to different planes (without infinite
cylinders). One of those experiments is depicted in Figure 9 (the video of such experiment can be found
at https://youtu.be/4Eofi38RGWk). Three UAVs were placed in the vertices of a triangle and were
commanded to navigate to their diametrically opposite position, creating a conflictive area in the middle.
For each UAV the altitude of its starting and goal positions were equal and different to the other UAVs,
flying each at 3, 6 and 12 m (from here on: UAV3, UAV6 and UAV12). Since UAVs do not need to vary
their altitude to reach their goals, z-conflicts are not relevant in this experiment. If we center our attention
in UAV3, it is possible to see how between seconds 71 and 78 it detects an xy-conflict with UAV6 and
performs an avoidance maneuver on a horizontal plane to surround it counter-clockwise (rendezvous
state). However, UAV3 detects no xy-conflict with UAV12, which is far enough in altitude, and hence
they ignore each other crossing their horizontal trajectories. Instead, UAV6 is involved in a more complex
situation, having xy-conflicts with the two other UAVs. In second 74 is possible to see how the UAV
maneuvered to avoid UAV3 and starts a new maneuver to avoid UAV12 counter-clockwise too. From
second 78 on, UAV6 is back to xy-free state and it navigates straight to its goal. Finally, UAV12 performs
a slight change of direction from second 74 (rendezvous state) to head properly the virtual roundabout
created with UAV6. After second 78, it is back to xy-free state and it flies toward its goal over UAV3

ignoring it. Note that UAV3 decreases its altitude when UAV12 flies over it due to the downwash effect.

https://youtu.be/4Eofi38RGWk
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Figure 9. Different snapshots with the paths followed by the 3 UAVs during a field experiment. The last
snapshot is the final view of the actual experiment. Solid circles represent collision cylinders and
dashed circles reserved cylinders. Each UAV is labeled with its altitude. At the bottom, the evolution
of the altitudes of the UAVs along the experiment are shown, together with marks on the time instants
when the above snapshots were taken.

7. Conclusions

We presented 3D-SWAP, a decentralized algorithm for multi-UAV collision avoidance in 3D
outdoor scenarios. The primary objective of 3D-SWAP is to navigate the UAVs safely in a robust manner,
even under harsh constraints. We do not assume accurate positioning systems outdoors, and our
results show how 3D-SWAP ensures safety under noisy UAV positions. We propose a decentralized
approach because it tackles better communication and computational issues. The algorithm integrates
measurements from onboard Lidar sensors with positions communicated by other teammates,
which provides additional flexibility. Moreover, 3D-SWAP behaves reactively instead of planning
ahead in time, which is also relevant to achieve a low computational burden. Therefore, the algorithm
is not optimal, but we proved it still efficient in terms of traveled distance. Our scalability tests also
showed that 3D-SWAP scales with the number of UAVs and that its main computational load comes
from the size of the Lidar pointcloud.

We used an SITL tool to integrate our algorithm and evaluate its performance 3D scenarios with
highly conflictive situations. Furthermore, we run field experiments with inaccurate GPS localization.
We found that external conditions such as localization errors or wind speeds are critical for the
performance of the system (e.g., to determine UAV braking distances); and hence, 3D-SWAP parameters
need to be properly adjusted beforehand. As future work we plan to run field experiments using Lidar
sensors to detect other UAVs instead of the communication channels. We also plan to explore better
the theoretical guarantees of our algorithm in terms of completeness, studying deadlock situations.
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