670 research outputs found

    Virtual Network Embedding with Path-based Latency Guarantees in Elastic Optical Networks

    Get PDF
    Elastic Optical Network (EON) virtualization has recently emerged as an enabling technology for 5G network slicing. A fundamental problem in EON slicing (known as Virtual Network Embedding (VNE)) is how to efficiently map a virtual network (VN) on a substrate EON characterized by elastic transponders and flexible grid. Since a number of 5G services will have strict latency requirements, the VNE problem in EONs must be solved while guaranteeing latency targets. In existing literature, latency has always been modeled as a constraint applied on the virtual links of the VN. In contrast, we argue in favor of an alternate modeling that constrains the latency of virtual paths. Constraining latency over virtual paths (vs. over virtual links) poses additional modeling and algorithmic challenges to the VNE problem, but allows us to capture end-to-end service requirements. In this thesis, we first model latency in an EON by identifying the different factors that contribute to it. We formulate the VNE problem with latency guarantees as an Integer Linear Program (ILP) and propose a heuristic solution that can scale to large problem instances. We evaluated our proposed solutions using real network topologies and realistic transmission configurations under different scenarios and observed that, for a given VN request, latency constraints can be guaranteed by accepting a modest increase in network resource utilization. Latency constraints instead showed a higher impact on VN blocking ratio in dynamic scenarios

    Towards a Virtualized Next Generation Internet

    Get PDF
    A promising solution to overcome the Internet ossification is network virtualization in which Internet Service Providers (ISPs) are decoupled into two tiers: service providers (SPs), and infrastructure providers (InPs). The former maintain and customize virtual network(s) to meet the service requirement of end-users, which is mapped to the physical network infrastructure that is managed and deployed by the latter via the Virtual Network Embedding (VNE) process. VNE consists of two major components: node assignment, and link mapping, which can be shown to be NP-Complete. In the first part of the dissertation, we present a path-based ILP model for the VNE problem. Our solution employs a branch-and-bound framework to resolve the integrity constraints, while embedding the column generation process to effectively obtain the lower bound for branch pruning. Different from existing approaches, the proposed solution can either obtain an optimal solution or a near-optimal solution with guarantee on the solution quality. A common strategy in VNE algorithm design is to decompose the problem into two sequential sub-problems: node assignment (NA) and link mapping (LM). With this approach, it is inexorable to sacrifice the solution quality since the NA is not holistic and not-reversible. In the second part, we are motivated to answer the question: Is it possible to maintain the simplicity of the Divide-and-Conquer strategy while still achieving optimality? Our answer is based on a decomposition framework supported by the Primal-Dual analysis of the path-based ILP model. This dissertation also attempts to address issues in two frontiers of network virtualization: survivability, and integration of optical substrate. In the third part, we address the survivable network embedding (SNE) problem from a network flow perspective, considering both splittable and non-splittable flows. In addition, the explosive growth of the Internet traffic calls for the support of a bandwidth abundant optical substrate, despite the extra dimensions of complexity caused by the heterogeneities of optical resources, and the physical feature of optical transmission. In this fourth part, we present a holistic view of motivation, architecture, and challenges on the way towards a virtualized optical substrate that supports network virtualization

    Network Function Virtualization Service Delivery In Future Internet

    Get PDF
    This dissertation investigates the Network Function Virtualization (NFV) service delivery problems in the future Internet. With the emerging Internet of everything, 5G communication and multi-access edge computing techniques, tremendous end-user devices are connected to the Internet. The massive quantity of end-user devices facilitates various services between the end-user devices and the cloud/edge servers. To improve the service quality and agility, NFV is applied. In NFV, the customer\u27s data from these services will go through multiple Service Functions (SFs) for processing or analysis. Unlike traditional point-to-point data transmission, a particular set of SFs and customized service requirements are needed to be applied to the customer\u27s traffic flow, which makes the traditional point-to-point data transmission methods not directly used. As the traditional point-to-point data transmission methods cannot be directly applied, there should be a body of novel mechanisms that effectively deliver the NFV services with customized~requirements. As a result, this dissertation proposes a series of mechanisms for delivering NFV services with diverse requirements. First, we study how to deliver the traditional NFV service with a provable boundary in unique function networks. Secondly, considering both forward and backward traffic, we investigate how to effectively deliver the NFV service when the SFs required in forward and backward traffic is not the same. Thirdly, we investigate how to efficiently deliver the NFV service when the required SFs have specific executing order constraints. We also provide detailed analysis and discussion for proposed mechanisms and validate their performance via extensive simulations. The results demonstrate that the proposed mechanisms can efficiently and effectively deliver the NFV services under different requirements and networking conditions. At last, we also propose two future research topics for further investigation. The first topic focuses on parallelism-aware service function chaining and embedding. The second topic investigates the survivability of NFV services

    Impact of Processing-Resource Sharing on the Placement of Chained Virtual Network Functions

    Full text link
    Network Function Virtualization (NFV) provides higher flexibility for network operators and reduces the complexity in network service deployment. Using NFV, Virtual Network Functions (VNF) can be located in various network nodes and chained together in a Service Function Chain (SFC) to provide a specific service. Consolidating multiple VNFs in a smaller number of locations would allow decreasing capital expenditures. However, excessive consolidation of VNFs might cause additional latency penalties due to processing-resource sharing, and this is undesirable, as SFCs are bounded by service-specific latency requirements. In this paper, we identify two different types of penalties (referred as "costs") related to the processingresource sharing among multiple VNFs: the context switching costs and the upscaling costs. Context switching costs arise when multiple CPU processes (e.g., supporting different VNFs) share the same CPU and thus repeated loading/saving of their context is required. Upscaling costs are incurred by VNFs requiring multi-core implementations, since they suffer a penalty due to the load-balancing needs among CPU cores. These costs affect how the chained VNFs are placed in the network to meet the performance requirement of the SFCs. We evaluate their impact while considering SFCs with different bandwidth and latency requirements in a scenario of VNF consolidation.Comment: Accepted for publication in IEEE Transactions on Cloud Computin

    Baguette:towards end-to-end service orchestration in heterogeneous networks

    Get PDF
    Network services are the key mechanism for operators to introduce intelligence and generate profit from their infrastructures. The growth of the number of network users and the stricter application network requirements have highlighted a number of challenges in orchestrating services using existing production management and configuration protocols and mechanisms. Recent networking paradigms like Software Defined Networking (SDN) and Network Function Virtualization (NFV), provide a set of novel control and management interfaces that enable unprecedented automation, flexibility and openness capabilities in operator infrastructure management. This paper presents Baguette, a novel and open service orchestration framework for operators. Baguette supports a wide range of network technologies, namely optical and wired Ethernet technologies, and allows service providers to automate the deployment and dynamic re-optimization of network services. We present the design of the orchestrator and elaborate on the integration of Baguette with existing low-level network and cloud management frameworks

    On the benefits of resource disaggregation for virtual data centre provisioning in optical data centres

    Get PDF
    Virtual Data Centre (VDC) allocation requires the provisioning of both computing and network resources. Their joint provisioning allows for an optimal utilization of the physical Data Centre (DC) infrastructure resources. However, traditional DCs can suffer from computing resource underutilization due to the rigid capacity configurations of the server units, resulting in high computing resource fragmentation across the DC servers. To overcome these limitations, the disaggregated DC paradigm has been recently introduced. Thanks to resource disaggregation, it is possible to allocate the exact amount of resources needed to provision a VDC instance. In this paper, we focus on the static planning of a shared optically interconnected disaggregated DC infrastructure to support a known set of VDC instances to be deployed on top. To this end, we provide optimal and sub-optimal techniques to determine the necessary capacity (both in terms of computing and network resources) required to support the expected set of VDC demands. Next, we quantitatively evaluate the benefits yielded by the disaggregated DC paradigm in front of traditional DC architectures, considering various VDC profiles and Data Centre Network (DCN) topologies.Peer ReviewedPostprint (author's final draft

    Survivable virtual network mapping with content connectivity against multiple link failures in optical metro networks

    Get PDF
    Network connectivity, i.e., the reachability of any network node from all other nodes, is often considered as the default network survivability metric against failures. However, in the case of a large-scale disaster disconnecting multiple network components, network connectivity may not be achievable. On the other hand, with the shifting service paradigm towards the cloud in today's networks, most services can still be provided as long as at least a content replica is available in all disconnected network partitions. As a result, the concept of content connectivity has been introduced as a new network survivability metric under a large-scale disaster. Content connectivity is defined as the reachability of content from every node in a network under a specific failure scenario. In this work, we investigate how to ensure content connectivity in optical metro networks. We derive necessary and sufficient conditions and develop what we believe to be a novel mathematical formulation to map a virtual network over a physical network such that content connectivity for the virtual network is ensured against multiple link failures in the physical network. In our numerical results, obtained under various network settings, we compare the performance of mapping with content connectivity and network connectivity and show that mapping with content connectivity can guarantee higher survivability, lower network bandwidth utilization, and significant improvement of service availability

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking
    • …
    corecore