4,502 research outputs found

    A real-time virtual sculpting application with a haptic device

    Get PDF
    In this paper, a 3D virtual sculpting application is developed for 3D virtual models with removing or adding materials by using Boolean operations. Virtual sculpting simulation reads 3D virtual models in a variety of file formats such as raw and stl consisting of a triangle poligon mesh and voxelizes its outer surface and interiror volĂŒme to generate its volumetric dataset. We used octree and hashing techniques to reduce the memory requirement needed for volumetric dataset. The surface is locally reconstructed using Marching Cubes algorithm known as the most popular isosurface extraction algorithm after removing or adding material to the 3D virtual model. The user interacts with the model by using a haptic device to give the force-feedback like real-life sculpting.Publisher's Versio

    Developing an Accessible 3D Printing Pipeline

    Get PDF
    Digital technology provides an opportunity for people with disabilities to be involved in artistic activities, such as virtual sculpting whose output can be fabricated using 3D printing. Existing accessible solutions, however, present mainly a set of separate tools rather than a whole cohesive production pipeline which takes into an account the specific needs of the user group. Challenges include accessible user interfaces for all pipeline steps, suitable shape modelling operations, ”3D Print” button and model data formats that require no post-processing or clean-up operations for the Direct Fabrication step. In this paper we discuss an accessible pipeline which includes 3D modelling and 3D printing, providing an example of a 3D modelling system with developed special-purpose applications allowing children with complex disabilities to participate in sculpting activities through accessible interfaces such as eye-gaze control

    Virtual prototyping with surface reconstruction and freeform geometric modeling using level-set method

    Get PDF
    More and more products with complex geometries are being designed and manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies. Freeform surface is a geometrical feature widely used in modern products like car bodies, airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently design and generate digital prototypes with freeform surfaces is an important issue in CAD. This paper presents the development of a Virtual Sculpting system and addresses the issues of surface reconstruction from dexel data structures and freeform geometric modeling using the level-set method from distance field structure. Our virtual sculpting method is based on the metaphor of carving a solid block into a 3D freeform object using a 3D haptic input device integrated with the computer visualization. This dissertation presents the result of the study and consists primarily of four papers --Abstract, page iv

    Digitally interpreting traditional folk crafts

    Get PDF
    The cultural heritage preservation requires that objects persist throughout time to continue to communicate an intended meaning. The necessity of computer-based preservation and interpretation of traditional folk crafts is validated by the decreasing number of masters, fading technologies, and crafts losing economic ground. We present a long-term applied research project on the development of a mathematical basis, software tools, and technology for application of desktop or personal fabrication using compact, cheap, and environmentally friendly fabrication devices, including '3D printers', in traditional crafts. We illustrate the properties of this new modeling and fabrication system using several case studies involving the digital capture of traditional objects and craft patterns, which we also reuse in modern designs. The test application areas for the development are traditional crafts from different cultural backgrounds, namely Japanese lacquer ware and Norwegian carvings. Our project includes modeling existing artifacts, Web presentations of the models, automation of the models fabrication, and the experimental manufacturing of new designs and forms

    A novel updating modelling methodology for free-form surface modifications in the early stages of design

    Get PDF
    The paper describes the first implementation of a method in which an initial CAD model is updated from a physical model. The method is based on image-mapping in which an initial CAD model is updated from images of a soft rapid prototype model (RPM) which has been sculpted in order to carry out formal developments. The RP model is made by a 3Dimensional-colour printer, has a built-in contrasting grid composed by parallel planes in the X, Y and/or Z co-ordinates and has special consistency allowing it to be easily sculpted with hand modifications. During the sculpting process changes on the surface affect the lines on the RPM, which are the external presence of the internal grid planes and are corresponding to the initial CAD construction lines. These lines (profiles) then are visually contrasted by making use of identical perspective transformations and viewpoints for the virtual model and the RP model image. The initial CAD model is then updated by modifying the surface’s construction lines to match the lines on the RP image by moving control points, such as in the Z direction

    Haptic Gdraw: A fun and Easy to Use 3D Haptically Enhanced Sculpting Program

    Get PDF
    We have developed a simple haptically-enhanced 3D sculpting application which utilizes Hermite spline-based primitives as building blocks to construct more complex solid models. To accomplish this, we have constructed a VR work environment which is intuitive and whose control affordances are made clear through the use of graspable handles. Haptics is used to support handle selection and provide physical constraints on handle movements consistent with their visual affordances. Our goal is to demonstrate how relatively simple haptic force constraints can combine with a visually intuitive and compelling environment to enable a program that is fun and easy to use

    Maintaining authenticity: transferring patina from the real world to the digital to retain narrative value

    Get PDF
    This research is concerned with utilizing new technologies to harvest existing narrative, symbolic and emotive value for use in a digital environment enabling "emotional durability" (Chapman, 2005) in future design. The projects discussed in this paper have been conducted as part of PhD research by Rosemary Wallin into 'Technology for Sustainable Luxury' at University of the Arts London, and visual effects technology research undertaken by Florian Stephens at University of West London. Jonathan Chapman describes vast consumer waste being "symptomatic of failed relationships" between consumers and the goods they buy, and suggests approaches for designing love, dependency, and even cherishability into products to give them a longer lifespan. 'Failed relationships' might also be observed in the transference of physical objects to their virtual cousins. Consider the throwaway nature of digital photography when compared to the carefully preserved prints in a family album. Apple often use a skeuomorphic (Hobbs, 2012) approach to user interface design, to digitally replicate the patina and 'value' of real objects. However, true transference of physical form and texture presumably occurs when an object is scanned and a virtual 3D model is created. This paper presents three practice-based approaches to storing and transferring patina from an original object, utilizing high resolution scanning, photogrammetry, mobile applications and 3D print technologies. The objective is not merely accuracy, but evocation of the emotive data connecting the digital and physical realm. As the human face holds experience in the lines and wrinkles of the skin, so the surface of an object holds its narrative. From the signs of the craftsman to the bumps and scratches that accumulate over the life of an item over time and generations, marks gather like evidence to be read by a familiar or a trained eye. According to the time and the culture these marks are read within, they will either add to or detract from its value. These marks can be captured via complex 3D modelling and scanning technologies, which allow detailed forms to be recreated as dense 3D wireframe, but the result is often unsatisfying. 3D greyscale surfaces can never fully capture the richness of patina. Authentic surfaces require other qualities such as colour, texture and depth, but there is something else - more difficult to define. Donald A. Norman expands on the idea of emotion and objects by describing three 'levels’ of design "visceral, behavioural and reflective". Visceral is based on "look, feel and sound", behavioural is focused on an object’s use, and reflective is concerned with its message. New technology is commonly seen in terms of its ability to increase efficiency, but this research has longer-term objectives: to repair or even rebuild Chapman's 'broken relationships' and enable ‘emotionally durable' design. The PhD that has formed the context for this paper examines the concept of luxury value, and how and why the value of patina has been replaced by fashion. Luxury goods are aspirational items often emulated in the bulk of mass production. If we are to alter behaviour around consumption, one approach might be to use technology to harvest patina as a way to retain emotional, symbolic and poetic value with a view to maintaining a relationship with the things we buy

    IUPUC Spatial Innovation Lab

    Get PDF
    During the summer of 2016 the IUPUC ME Division envi-sioned the concept of an “Imagineering Lab” based largely on academic makerspace concepts. Important sub-sections of the Imagineering Lab are its “Actualization Lab” (mecha-tronics, actuators, sensors, DAQ devices etc.) and a “Spatial Innovation Lab” (SIL) based on developing “dream stations” (computer work stations) equipped with exciting new tech-nology in intuitive 2D and 3D image creation and Virtual Reality (VR) technology. The objective of the SIL is to cre-ate a work flow converting intuitively created imagery to an-imation, engineering simulation and analysis and computer driven manufacturing interfaces. This paper discusses the challenges and methods being used to create a sustainable Spatial Innovation Lab
    • 

    corecore