7 research outputs found

    A Data Structure for Spatio-Temporal Databases

    Get PDF
    The advantages and applications of spatial mechanisms are well documented; however, there are very few being designed. The principal hinderance to the design of spatial mechanisms is the great difficulty involved in specifying spatial problems and in interpreting spatial solutions. Similarly, the development of spatial codes to implement these techniques is held back by the lack of means to easily visualize and verify solutions, particularly in the realm of relational databases. If spatial mechanisms are to be successful, the designer must be able to synthesize, analyse and evaluate, as well as load and extract information, using a single code representing a spatial structure. This entails the implementation of spatial relationships involving spatial data structures. It is with this in mind that the Canadian Hydrographic Service database group embarked on the development of a new type of spatial database structure based on the quadtree concept

    Three--dimensional medical imaging: Algorithms and computer systems

    Get PDF
    This paper presents an introduction to the field of three-dimensional medical imaging It presents medical imaging terms and concepts, summarizes the basic operations performed in three-dimensional medical imaging, and describes sample algorithms for accomplishing these operations. The paper contains a synopsis of the architectures and algorithms used in eight machines to render three-dimensional medical images, with particular emphasis paid to their distinctive contributions. It compares the performance of the machines along several dimensions, including image resolution, elapsed time to form an image, imaging algorithms used in the machine, and the degree of parallelism used in the architecture. The paper concludes with general trends for future developments in this field and references on three-dimensional medical imaging

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work

    Murray polygons as a tool in image processing

    Get PDF
    This thesis reports on some applications of murray polygons, which are a generalization of space filling curves and of Peano polygons in particular, to process digital image data. Murray techniques have been used on 2-dimensional and 3-dimensional images, which are in cartesian/polar co-ordinates. Attempts have been made to resolve many associated aspects of image processing, such as connected components labelling, hidden surface removal, scaling, shading, set operations, smoothing, superimposition of images, and scan conversion. Initially different techniques which involve quadtree, octree, and linear run length encoding, for processing images are reviewed. Several image processing problems which are solved using different techniques are described in detail. The steps of the development from Peano polygons via multiple radix arithmetic to murray polygons is described. The outline of a software implementation of the basic and fast algorithms are given and some hints for a hardware implementation are described The application of murray polygons to scan arbitrary images is explained. The use of murray run length encodings to resolve some image processing problems is described. The problem of finding connected components, scaling an image, hidden surface removal, shading, set operations, superimposition of images, and scan conversion are discussed. Most of the operations described in this work are on murray run lengths. Some operations on the images themselves are explained. The results obtained by using murray scan techniques are compared with those obtained by using standard methods such as linear scans, quadtrees, and octrees. All the algorithms obtained using murray scan techniques are finally presented in a menu format work bench. Algorithms are coded in PS-algol and the C language

    Coherencia de objetos, coherencia de rayos y paralelismo, en la aceleración del trazado de rayos

    Get PDF
    El problema central que se ha abordado en esta tesis consiste en el análisis, desarrollo e implementación de algoritmos que permitan acelerar el método clásico de generación de imágenes foto-realistas a través de las técnicas de trazado de rayos. Para ello, se ha pretendido estudiar los principales métodos de aceleración presentados hasta este momento y proponer una nueva alternativa que, teniendo presentes los beneficios esperados de la aplicación individual de cada propuesta, ofrezca además nuevas ventajas fruto de la unión, en una alternativa conjunta, de las diferentes propuestas individuales
    corecore