126 research outputs found

    A Framework for Constraint-Programming based Configuration

    Get PDF

    Role-based Adaptation of Business Reference Models to Application Models: An Enterprise Modeling Methodology for Software Construction

    Get PDF
    Large software systems are in need of a construction plan to determine and define every concept and element used in order to not end up in complex, unusable, and cost-intensive systems. Different modeling languages, like UML, support the development of these construction plans and visualize them for the system’s stakeholders. Reference models are a specific kind of construction plan, used as templates for information systems and already capture business domain knowledge for reuse and tailoring. By adaptation, reference models are tailored to enterprise-specific application models, which can be used for software construction and maintenance. However, current adaptation methods suffer from the limitations of pure object-oriented development (e.g., identity issues, large inheritance trees, and inflexibility). In this thesis, the usage of roles as the sole adaptation mechanism is proposed to solve these challenges. With the help of conceptual roles, it is possible to create rich model variations and adaptations from existing (industry standard) reference models, and it is simpler to react to model evolution and changing business logic. Adaptations can be specified with more precision by maintaining or even increasing the model’s expressiveness. As a consequence, the role-enriched final application model can be used to describe software systems in more detail, with different perspectives, and, if available, can be implemented with a role supporting programming language. However, even without this step, the application model itself will provide valuable insights into the overall construction plan of a software system by the combination of structure and behavior and a clear separation of relatively stable domain knowledge from its use case specific adaptation

    Semantics and Verification of UML Activity Diagrams for Workflow Modelling

    Get PDF
    This thesis defines a formal semantics for UML activity diagrams that is suitable for workflow modelling. The semantics allows verification of functional requirements using model checking. Since a workflow specification prescribes how a workflow system behaves, the semantics is defined and motivated in terms of workflow systems. As workflow systems are reactive and coordinate activities, the defined semantics reflects these aspects. In fact, two formal semantics are defined, which are completely different. Both semantics are defined directly in terms of activity diagrams and not by a mapping of activity diagrams to some existing formal notation. The requirements-level semantics, based on the Statemate semantics of statecharts, assumes that workflow systems are infinitely fast w.r.t. their environment and react immediately to input events (this assumption is called the perfect synchrony hypothesis). The implementation-level semantics, based on the UML semantics of statecharts, does not make this assumption. Due to the perfect synchrony hypothesis, the requirements-level semantics is unrealistic, but easy to use for verification. On the other hand, the implementation-level semantics is realistic, but difficult to use for verification. A class of activity diagrams and a class of functional requirements is identified for which the outcome of the verification does not depend upon the particular semantics being used, i.e., both semantics give the same result. For such activity diagrams and such functional requirements, the requirements-level semantics is as realistic as the implementation-level semantics, even though the requirements-level semantics makes the perfect synchrony hypothesis. The requirements-level semantics has been implemented in a verification tool. The tool interfaces with a model checker by translating an activity diagram into an input for a model checker according to the requirements-level semantics. The model checker checks the desired functional requirement against the input model. If the model checker returns a counterexample, the tool translates this counterexample back into the activity diagram by highlighting a path corresponding to the counterexample. The tool supports verification of workflow models that have event-driven behaviour, data, real time, and loops. Only model checkers supporting strong fairness model checking turn out to be useful. The feasibility of the approach is demonstrated by using the tool to verify some real-life workflow models

    Quality of (Digital) Services in e-Government

    Get PDF
    Internet growth in the nineties supported government ambition to provide better services to citizens through the development of Information and Communication Technologies based solutions. Thanks to the Lisbon conference, which in 2000 covered and investigated this topic, e-government has been recognized as one of the major priorities in Public Administration innovation process. As a matter of\ud fact in the last 10 years the number of services provided to citizens through Information and Communication Technologies has increased rapidly. Nevertheless the increasing rate, the access and usage of digital services do not follow the same trend. Nowadays Public Administrations deliver many electronic services which\ud are seldom used by citizens. Different reasons contribute to the highlighted situation.\ud The main assumption of the thesis is that quality of e-government digital services strongly affects real access to services by citizens. According to the complexity of quality in e-government, one of the main challenges was to define a suitable quality model. To reach such aim, domain-dependent characteristics on the services delivery have been investigated. The defined model refers to citizen,\ud technology and service related quality characteristics. Correspondingly a suitable way to represent, assess, and continuously improve services quality according to\ud such domain requirements has been introduced.\ud Concerning the service related quality aspects a methodology and a tool permitting to formally and automatically assess the quality of a designed service with\ud respect to the quality model has been defined. Starting from an user friendly notation, both for service and quality requirements, the proposed methodology has\ud been implemented as an user friendly tool supported by a mapping from user friendly notations to formal language. The tool allows to verify formally via model checking, if the given service satisfies one by one the quality requirements addressed by the quality model.\ud Additionally in some case an unique view on e-government service quality is quite useful. A mathematical model provides a single value for quality starting from the assessment of all the requirements defined in the quality model. It relies on the following activities: homogeneity, interaction and grouping.\ud A set of experiments has been performed in order to validate the goodness of the work. Services already implemented in a local Public Administration has\ud been considered. Literature review and domain experts knowledge were the main drivers of this work. It proofs the goodness of the quality model, the application of formal techniques in the complex field of study such as e-government and the quality aggregation via the mathematical model.\ud This thesis introduces advance research in e-government by providing the contributions that quality oriented service delivery in Public Administration promotes services used by the citizens. Further applications of the proposed approaches could be investigated in the areas of practical benchmarking and Service Level Agreement specification

    Verification of Model Transformations

    Get PDF

    Domain specific modeling and analysis

    Get PDF
    It is desirable to model software systems in such a way that analysis of the systems, and tool development for such analysis, is readily possible and feasible in the context of large scientific research projects. This thesis emphasizes the methodology that serves as a basis for such developments. I focus on methods for the design of data-languages and their corresponding tools.UBL - phd migration 201

    Event-B in the Institutional Framework: Defining a Semantics, Modularisation Constructs and Interoperability for a Specification Language

    Get PDF
    Event-B is an industrial-strength specification language for verifying the properties of a given system’s specification. It is supported by its Eclipse-based IDE, Rodin, and uses the process of refinement to model systems at different levels of abstraction. Although a mature formalism, Event-B has a number of limitations. In this thesis, we demonstrate that Event-B lacks formally defined modularisation constructs. Additionally, interoperability between Event-B and other formalisms has been achieved in an ad hoc manner. Moreover, although a formal language, Event-B does not have a formal semantics. We address each of these limitations in this thesis using the theory of institutions. The theory of institutions provides a category-theoretic way of representing a formalism. Formalisms that have been represented as institutions gain access to an array of generic specification-building operators that can be used to modularise specifications in a formalismindependent manner. In the theory of institutions, there are constructs (known as institution (co)morphisms) that provide us with the facility to create interoperability between formalisms in a mathematically sound way. The main contribution of this thesis is the definition of an institution for Event-B, EVT, which allows us to address its identified limitations. To this end, we formally define a translational semantics from Event- B to EVT. We show how specification-building operators can provide a unified set of modularisation constructs for Event-B. In fact, the institutional framework that we have incorporated Event-B into is more accommodating to modularisation than the current state-of-the-art for Rodin. Furthermore, we present institution morphisms that facilitate interoperability between the respective institutions for Event-B and UML. This approach is more generic than the current approach to interoperability for Event-B and in fact, allows access to any formalism or logic that has already been defined as an institution. Finally, by defining EVT, we have outlined the steps required in order to include similar formalisms into the institutional framework. Hence, this thesis acts as a template for defining an institution for a specification language
    corecore