Role-based Adaptation of Business Reference Models to Application Models: An Enterprise Modeling Methodology for Software Construction

Abstract

Large software systems are in need of a construction plan to determine and define every concept and element used in order to not end up in complex, unusable, and cost-intensive systems. Different modeling languages, like UML, support the development of these construction plans and visualize them for the system’s stakeholders. Reference models are a specific kind of construction plan, used as templates for information systems and already capture business domain knowledge for reuse and tailoring. By adaptation, reference models are tailored to enterprise-specific application models, which can be used for software construction and maintenance. However, current adaptation methods suffer from the limitations of pure object-oriented development (e.g., identity issues, large inheritance trees, and inflexibility). In this thesis, the usage of roles as the sole adaptation mechanism is proposed to solve these challenges. With the help of conceptual roles, it is possible to create rich model variations and adaptations from existing (industry standard) reference models, and it is simpler to react to model evolution and changing business logic. Adaptations can be specified with more precision by maintaining or even increasing the model’s expressiveness. As a consequence, the role-enriched final application model can be used to describe software systems in more detail, with different perspectives, and, if available, can be implemented with a role supporting programming language. However, even without this step, the application model itself will provide valuable insights into the overall construction plan of a software system by the combination of structure and behavior and a clear separation of relatively stable domain knowledge from its use case specific adaptation

    Similar works