

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

A Framework for Constraint-Programming based Configuration

Queva, Matthieu Stéphane Benoit; Probst, Christian W.

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Queva, M. S. B., & Probst, C. W. (2011). A Framework for Constraint-Programming based Configuration. Kgs.
Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2011; No. 260).

http://orbit.dtu.dk/en/publications/a-framework-for-constraintprogramming-based-configuration(0761c348-a483-41ab-9867-f962739b97f2).html

A Framework for
Constraint-Programming based

Configuration

Matthieu Quéva

Kongens Lyngby 2011
IMM-PHD-2011-260

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Product configuration systems play an important role in the development of
Mass Customisation, allowing the companies to reduce their costs while offering
highly customised products. Such systems are often based on a configuration
model, representing the product knowledge necessary to perform the configura-
tion task. Several challenges arise when dealing with product configuration. One
of those issues concerns how to model a configurable product family, i.e. how to
represent the different types of configuration knowledge and their interactions.
Another challenge is to provide adequate formalisms and efficient algorithms to
solve the dependencies of the models at runtime.

In this dissertation, we present a constraint-based framework for configuration.
The design of this framework is partly based on a study of product configuration
requirements as well as a comparison of several general modelling languages. We
then develop ProCoLa, a configuration-specific modelling language based on a
conceptual framework that synthesizes, unifies and extends several approaches
to modelling configuration in different design disciplines, e.g. physical products,
software or services. A rigorous formalisation of the ProCoLa language is given
and used to verify and analyse the configuration models.

Another goal of this dissertation is to describe the semantics of ProCoLa by pro-
viding a translation to a Constraint Satisfaction Problem (CSP) representation.
For that purpose, several CSP formalisms are discussed and a new algorithm
DnSTR is developed in order to solve the dynamic addition and retraction of
table constraints at runtime. Finally, we present and evaluate a prototype im-
plementation of ProCoLa and the configuration framework, including the inte-
gration in a development environment, tool support and interaction with UML,
databases and spreadsheet applications.

ii

Resumé

Produktkonfigurationssystemer har stort indflydelse p̊a udviklingen af mass cus-
tomization, fordi deres brug kan resultere i at virksomhederne reducerer omkost-
ninger og samtidigt kan tilbyde specielt tilpassede produkter. Disse systemer
baseres ofte p̊a et konfigurationsmodel, der repræsenterer viden om produktet,
som er nødvendigt til at gennemføre konfigurationsprocessen. Produktkonfig-
uration er en kompleks process med mange udfordringer, blandt andet hvor-
dan man modellerer konfigurerbare produktfamilier, det vil sige, hvordan man
repræsenterer forskellige slags viden om produktet og deres vekselvirkning.

Et andet problem er udviklingen af passende formalismer samt virksomme al-
goritmer til at løse modelafhængigheder. I denne afhandling præsenteres et
constraint-baseret rammeværk for konfiguration. Rammeværkets struktur er
delvist baseret p̊a en studie af krav til produktkonfigurering samt en samligning
af flere produktmodelleringssprog. Baseret p̊a det udvikles sproget ProCoLa,
et konfigureringsspecifik modelleringsprog baseret p̊a et abstrakt rammeværk
som kombinerer og udvider forskellige tilgang til konfiguration, b̊ade af produk-
ter, software, og services. Konfigurationsmodellerne er verificeret og analyseret
baseret p̊a semantikken af ProCoLa.

Derudover beskriver afhandling semantikken af ProCoLa med hjælp af en over-
sættelse til et Constraint Satisfaction Problem (CSP). Baseret p̊a en diskussion
af forskellige tilgang til løsning af CSPs, en ny algoritme DnSTR er udviklet, som
understøtter dynamisk tilføjelse og fjernelse af tabelle-constraints. Afsluttende
præsenteres og evalueres en prototype af ProCoLa og konfigurationsrammevær-
ket, samt deres integrations i en udviklingsomgivelse, værktøjunderstøttelse og
interaktion med UML, samt databaser og regnearkprogrammer.

iv

Preface

This thesis was prepared at the department of DTU Informatics, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Ph.D. degree in Computer Science.

The PhD study has been carried out in the period of March 2008 to May 2011
under the supervision of Associate Professor Christian W. Probst, as well as
Per Vikkelsøe (until August 2009) and Laurent Ricci (since September 2009)
from Microsoft Development Center Copenhagen. This PhD project has been
conducted in the context of the Industrial PhD programme from the Danish
Ministry of Science, Technology and Innovation.

Most of the work behind this dissertation has been carried out independently
and I take full responsibility for its contents. A part of the scientific work in this
thesis is based on our published work in [75, 78, 79] with my supervisors as co-
authors. Another part is based on our work that has been done in collaboration
with Tomi Männistö from Aalto University, Finland, including published work
[77] and a journal paper in preparation [76].

Lyngby, May 2011

Matthieu Quéva

vi

Acknowledgements

First, my thanks go to Christian Probst and Jens Clausen, my supervisors at
DTU, as well as Per Vikkelsøe and Laurent Ricci, who was kind enough to take
on the supervision of the project after Per left the company. I extend those
thanks to Lars Hvam, who helped me see the industry-side of configuration.

I would also like to thank Tomi Männistö for his contribution to the modelling
part of the dissertation as well as Mikko Raatikainen and Juha Tiihonen for
their help and warm welcome during my stay at Aalto University.

I wish to thank current and former members of the Language-Based Technol-
ogy group at DTU: Alejandro Hernandez, Carroline Ramil, Ender Yuksel, Eva
Bing, Fan Yang, Flemming Nielson, Fuyuan Zhang, Han Gao, Hanne Riis Niel-
son, Henrik Pilegaard, Jose Quaresma, Lijun Zhang, Marian Adler, Michael
Smith, Michal Terepata, Nataliya Skrypnyuk, Piotr Filipiuk, Sebastian Nanz,
Sebastian Mödersheim, Ye Zhang for creating a friendly and stimulating working
environment.

I am also indebted to all my colleagues at Microsoft, including the ones that
work in the Product Configuration group: Alexey Ovsyannikov, Andre Lamego,
Brian Elgaard Bennett, Dennis Conrad, Lars Frandsen, Najimi Sebghatullah
and Sverre Thune, that helped me integrate within the company and gave me
inspiration for my research.

Finally, special thanks to Julie Chambon and my family, who supported me
when I went through tough times during these three years, and without whom
it would probably never have been possible to finish this project. A last thank
you to all my friends in Denmark and elsewhere, who keep entertaining me in
their own special way every day of my life.

viii

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Mass Customisation . 2

1.2 Product configuration . 4

1.3 Outline of the Thesis and Overview of the Contribution 5

I Modelling in Product Configuration 7

2 Setting the Scene 9

2.1 Background . 10

2.2 Case Study . 11

2.3 Modelling Requirements for Product Configuration 14

3 General Purpose Modelling Languages 21

3.1 UML and OCL . 22

3.2 SysML . 32

3.3 EXPRESS/STEP (ISO 10303) 38

3.4 Comparison and Conclusion . 43

x CONTENTS

II Heterogeneous Products 47

4 Research Problem 49
4.1 Background . 50
4.2 Research Questions . 55

5 Conceptual Modelling Framework 59
5.1 Overview of the Approach . 59
5.2 Description of the Views . 63
5.3 Dependencies Within and Between Views 74
5.4 Feature Views Hierarchy . 78
5.5 Discussion . 81
5.6 Comparison with related work . 85

6 Framework Implementation 89
6.1 The ProCoLa Modelling Language 89
6.2 Formalism Definition . 95
6.3 Formalising ProCoLa . 109
6.4 Analysing ProCoLa Models . 122
6.5 Summary . 136

III Constraint Solving 139

7 Constraint Satisfaction Problems and Configuration 141
7.1 Classic CSP . 142
7.2 Extensions to CSP . 145
7.3 CSP with Non-Binary Constraints 147

8 Non-binary Dynamic CSP with Simple Tabular Reduction 153
8.1 The DnSTR Algorithm . 154
8.2 Analysis . 162
8.3 Experimental Results . 165

9 CSP Formalisation of the Configuration Framework 167
9.1 CSP Formalism Chosen . 167
9.2 CSP Semantics of the Model . 168
9.3 Discussion . 180

IV Prototype and Evaluation 183

10 Prototype Implementation of the Framework 185
10.1 Language Integration . 185
10.2 Tool Support for Modelling . 186

CONTENTS xi

10.3 Runtime Implementation . 190
10.4 Debugging . 191
10.5 Summary and Discussion . 193

11 Framework Evaluation 197
11.1 Benchmark models . 198
11.2 Results . 200

12 Conclusion 205
12.1 Further Work . 206
12.2 Contributions and Concluding Remarks 207

A Case Study in EXPRESS 209

B Formalisation of Structure and Realisation Views 213

xii CONTENTS

Chapter 1

Introduction

There has been an important need for companies to reduce their costs while
proposing highly customised products. Today’s customers demand indeed prod-
ucts with lower prices, higher quality and faster delivery, but they also want
products customised to match their unique needs. To meet these demands,
manufacturers have to adapt their business model to mass customisation [73],
allowing customers to order customised products, often choosing among hun-
dreds of product features and options, for a competitive price.

However, mass customisation can result in an expansion of the specification pro-
cess, causing iterations to be developed in the process, and information tech-
nologies like product configuration systems are essential to implement this new
concept.

Product configuration has received a lot of interest for these past years. How-
ever, manufactured products are getting more and more complex, and tech-
niques like product configuration need to evolve all the time in order to meet
the requirements for managing these products. The main focus of this thesis
is to analyse modelling and constraint-based solving methods for product con-
figuration, and design and implement a framework for creating and configuring
modern product models.

2 Introduction

1.1 Mass Customisation

We start this dissertation by introducing mass customisation and the need for
product configuration systems. The main issue with mass customisation is that
it can result in an expansion of the specification process, causing iterations to
be developed in the process. This process represents the tasks that are done
on an individual order before production, and that defines the product to be
manufactured (Figure 1.1).

The concept of mass customisation thus differs from previous industrial pro-
cesses (Figure 1.2) such as:

• Mass production consists in producing a large amount of the same stan-
dard items, with no option to customise them. This type of process was
popularised by Henry Ford, who was describing it by:

“Any customer can have a car painted in any colour he wants, as long as
it is black.”

• One-of-a-kind production consists in producing a small amount of items,
but with a wide panel of different options to customise these few items.
This type of process is usually used when producing large, highly complex
and specific products.

• Small series production consists in manufacturing customised products in
small series. Companies working with this type of process do usually not
produce as much as in mass production, and neither are they customising
their products as in one-of-a-kind production.

Figure 1.1: Tasks in a typical specification process [51]

1.1 Mass Customisation 3

Figure 1.2: Three main types of processes [51]

To successfully implement mass customisation, manufacturers have to overcome
three major challenges ([109]):

1. Lead time: producing a custom configuration for each product becomes
a highly complex and time-consuming task. As the number of parts in-
creases, a simple product can easily end up generating thousands of prod-
uct variations. This can affect the specification process, increasing the
lead time in a significant proportion.

2. Quality assurance: producing a significant amount of product variations
involving hundreds of configurable parts increases the possibility of making
errors in the process. This can create major schedule slips and can lead
to costly unplanned iterations in the process.

3. Expertise: being able to configure complex products requires a compre-
hensive product knowledge and expertise from the engineers that are in
charge of the configuration process. This results in a need for substantial
training, which may even be repeated along the years, as technical changes
occur frequently.

These issues can make the implementation of mass customisation very chal-
lenging for the companies, or even become barriers. In order to improve this
implementation, it is important to develop significant information technology
capabilities. One of these technologies is a product configuration system.

4 Introduction

1.2 Product configuration

The product configuration problem is defined by Junker in [85] as characterised
by two constituents:

1. A catalogue which describes the generic components in terms of their func-
tional and technical properties and the relationship between both.

2. User requirements and user preferences about the functional characteris-
tics of the desired configuration.

and the configuration task, which consists in finding the following answer:

1. One or more configurations that satisfy all requirements and that optimise
the preferences if those requirements are consistent.

2. An explanation of failure in the other case.

Product configuration is applied during the specification processes, as can be
seen in Figure 1.3. It can be implemented through the use of a product config-
urator : a software tool that captures the customer’s requirements as input and
automatically generates customised product designs matching the customer’s
specific needs, based on predefined design constraints.

Figure 1.3: Specification process with configuration [51]

1.3 Outline of the Thesis and Overview of the Contribution 5

There are actually two main issues in the configuration problem:

1. The first one concerns the modelling time, i.e., the time where a design en-
gineer will define a model for the product. At this time, there is a need to
find efficient and easy-to-use ways to express the product knowledge, i.e.,
all the characteristics of the product, from the definition of the attributes,
the different subparts, or the constraints applying to the various combi-
nations possible. The more complex the product is, the more important
this part is.

2. The second issue concerns how to solve, at configuration time, the con-
straints expressed at modelling time. At this time, a sales person will
assign values to the different attributes of the product, so there is a need
for an efficient solving engine, that should be able to solve in real-time the
constraints defined previously.

1.3 Outline of the Thesis and Overview of the
Contribution

We present in this Section the organisation of this dissertation. The thesis is
separated into four parts, each of them composed by several chapters.

In Part I, we focus on requirements for the configuration of manufactured
products. We introduce an example case study and use it to describe and
review several well-known general-purpose modelling languages in the context
of configuration.

We consider in Part II product families that are not restricted to manufactur-
ing parts, but also contain software and service-related components. Most of the
previous approaches in configuration research only consider each specific type of
product knowledge separately. However, many products nowadays are hetero-
geneous, i.e., different design disciplines are taken into account within the same
products. We thus define a conceptual framework for modelling heterogeneous
product families, and provide clear semantics using a new modelling language
called ProCoLa. ProCoLa is then formalised and several model analyses are
presented.

Part III focuses on identifying and analysing the relevant constraint program-
ming techniques for solving configuration in our framework. Our main approach
is based on Dynamic Constraint Satisfaction Problems to allow efficient addi-
tion and removal of the model constraints and user requirements at runtime.

6 Introduction

One of the most used types of constraints used in product configuration is a
table constraint. We describe the design of a novel algorithm for handling dy-
namic solving with table constraints. Finally, the interpretation of the ProCoLa
language used in our configuration framework is detailed and discussed.

Part IV deals with the practical implementation of the ProCoLa modelling
language. We describe the language’s integration in a development environ-
ment, the analyses implementation, tool support and debugging assistance. An
evaluation of the capabilities of the language is also presented through practical
experiments.

To conclude the thesis, Chapter 12 sums up the results and gives an outlook
on future research. The appendix contains additional material on the ProCoLa
language and the case study used throughout this thesis and during evaluation.

Part I

Modelling in Product
Configuration

Chapter 2

Setting the Scene

Modelling the product knowledge (i.e., the data representing the characteristics
of the products) represents a significant part in the configuration process. It
consists in defining the model of a product family that will then be configured
by the end-user. Development and maintenance of product knowledge bases are
of primary importance, and the representation formalism must be thoroughly
considered when choosing a product configuration system. Major vendors of
configuration systems already use declarative knowledge modelling [47,70].

We discuss in this first part the different features that are required from a mod-
elling tool in order to support efficient product knowledge modelling. Deciding
on the right modelling language to represent the product knowledge is not an
easy task, and many options are available. Therefore, we present in this part
several general purpose modelling languages and then evaluate their capabilities
in the context of product configuration.

We start by introducing in this chapter relevant background on product knowl-
edge modelling, and describe a case study to illustrate requirements for config-
uration modelling languages.

10 Setting the Scene

2.1 Background

Several approaches for modelling product configuration data have been studied
over the years. The original rule-based approach used in the R1/XCON sys-
tem [10, 64] has the disadvantage that it incurs important maintenance issues,
due to rules having influence on both directed relationships (i.e., compatibili-
ties, dependencies, etc.) and actions (related to a solution’s computation). In
contrast, model-based configuration is based on a strict separation between the
product knowledge and the problem solving knowledge (i.e., the mechanisms
used to ensure the consistency of the customised product). As the solving pro-
cess is independent from the product knowledge, this separation provides a bet-
ter robustness, compositionality, and reusability, making model-based systems
the prime choice for configuring large and more complex models [88].

Model-based knowledge representation has become the standard way of dealing
with product configuration modelling in recent years. A configurable product
family is composed of components or functions that are connected together [37,
93]. It can have a large number of variants, and is represented as a product model.
The model also contains constraints that limit the number of possible variants,
e.g., by restricting the combinations of values allowed for the different attributes
of the product. A common method for modelling in product configuration is the
type-instance approach [93]: the model defines a number of types, that contain
attributes and other properties of the components. Attributes express technical
properties of each type, such as, e.g., the storage capacity of a hard drive in
a computer model; attribute values are usually limited to a set of potential
values. Types are organised in a partonomic tree: each type can define a number
of subcomponents from other types. The model can be represented as a tree
rooted by a component type. Types are then instantiated as individuals during
the configuration process to store the actual data of each configured component
(e.g., values for attributes). Note that several component individuals can be
instances of the same component type, e.g., in case the type was involved in
several subcomponent relations.

Configuration systems (or configurators) are used to support an end-user in find-
ing a configured product that matches his needs, while respecting the modelled
constraints. It takes the product model as input and lets the end-user configure
the product during a configuration process. Such systems often output a specifi-
cation of the configured product to be manufactured, usually as bill-of-materials
(or BOM) or operations routes.

A BOM defines the list of materials that composes an end-item. It represents
the product in the manufacturing perspective. BOMs can be hierarchical and
define all the sub-assemblies of the product. In this case, they are called Modular

2.2 Case Study 11

Model
instantiation

Configuration system

Configuration
Product
model

Product
specifications

(BOM, Routes)

Knowledge
engineer

End-user

Figure 2.1: Basic architecture of a configuration system

BOM. An example is a BOM for a Personal Computer: this BOM would list the
computer and its major sub-assemblies (power supply, mother board, chassis,
modem, keyboard, display, etc.), as well as additional materials needed for a
complete saleable product – shipping box, user manual, packaging, packaging
labels, etc.

Operations (or production) routes describe the list of operations that will have
to be performed in order to assemble all the elements of the product. Such
production routes can differ depending on the tool used, but often include oper-
ators, work load or machine description for example. These routes can also have
a hierarchical structure, where operations can have sub-operations, representing
the basic units for the production environment. Routes for a Personal Computer
could for example include the fixing of the motherboard, or the mounting of the
processor.

The creation of both BOMs and production routes can be done in a dynamic
way. Indeed, both can differ according to each configuration instance.

2.2 Case Study

In order to illustrate requirements for modelling product configuration knowl-
edge, we designed a product family as a case study for our work. This case study
is used as a basis on which to evaluate modelling languages for configuration,
and will be used and extended throughout this thesis. The aim of this product
family is to present a simple realistic model in order to illustrate the different
features required in product configuration.

12 Setting the Scene

This section presents the physical model of a Mobile Device product family. The
following subsections gives an overview of the product family, and describes the
different customisation options and constraints of the model.

2.2.1 Overview of the case study

The Mobile Device model (Figure 2.2) represents a family of portable computing
devices such as netbooks, tablets or smartphones. It contains a motherboard and
several chips that take care of the processing and the communication capabilities
of the device. Some chips are optional, like a GPS receiver that may be added
to the product or not. Several components of the same type may also be part
of the final product in order to fulfill different functionalities, such as wireless
chips for bluetooth, wifi or FM radio. Each device also possesses a screen and
a storage drive that are also customisable.

The Mobile Device product family can be customised in the following way:

• A device can have different ports, such as a video port or an Ethernet
port. In some cases, an video adapter can be provided with the device to
provide additional functionalities.

• Along with the different wireless chips available, other types of chips can be
added to the motherboard, such as a compass, an accelerometer or a GPS
chip. Phone capabilities can also be provided via a Radio Frequency card.
Finally, several options are available for the motherboard’s processor.

Motherboard, chips
Wireless, Ethernet
Processor
GPS
RF Card

Screen
Technology
Size
Touch screen
Stylus

Storage drive
Capacity
HDD
SSD

Enclosure
Size
Color
Ports

Figure 2.2: Overview of the case study

2.2 Case Study 13

• Different types of screens can be chosen for the device, e.g., an OLED
screen or an LCD one. The size of the screen is also variable, depending on
the type of device chosen. Also, in certain cases, a touch screen (resistive or
capacitive) can be chosen, with additional options like oleophobic coating,
that can be applied on the screen to avoid fingerprints. In case of a
resistive touch screen, a stylus needs to be provided with the device, and
the enclosure must have an allocated slot to store it.

• Finally, several types of storage drives are available. A Solid State Drive
(Flash or DRAM) or a Hard Disk Drive can be picked, with different
memory capacities.

These characteristics of the product family can be represented as types and val-
ued attributes that will be used for configuration. For example, a Motherboard
type is related to the main (root) component as a subcomponent, and contains
itself several subcomponents defined by types such as a Processor type. The
Processor type then has a frequency attribute that can have a value of 600 Mhz,
1 GHz or 1.6 GHz.

Asides from those elements, the motherboard provides some chip slots, depend-
ing on its size and the chips already on it. Any other chip that may be added to
the device, such as the processor or the GPS receiver also needs some room on
the motherboard. It is thus necessary that the number of slots available must
always be bigger or equal than the number of slots used, in order to avoid a
product design impossible to manufacture.

The product model is also subject to constraints that restrict the model ele-
ments. These are detailed in the next section.

2.2.2 Constraints

This section introduces several constraints that prevent incompatibilities in the
Mobile Device model:

• If a touch screen is chosen for the device, the motherboard should contain
specific chips to handle the touch capabilities of the device. Moreover, in
the case of a resistive touch screen, a stylus should be added to the device
and the enclosure should have a stylus slot. Finally, the size of the stylus
should be adapted to the overall size of the device’s enclosure: in case of
a small enclosure, only a compact stylus should be available.

14 Setting the Scene

• In case an internal Ethernet card is added to the motherboard, the enclo-
sure must have an Ethernet port, and vice versa. The type of video port
on the device’s enclosure should also match the size of the device: if the
device is small (e.g., a smartphone), only a special video port (miniUSB)
can fit. In that case, it may be possible to choose a miniUSB video adapter
with the device.

• The capacity of the storage drive depends on the type of drive chosen: an
SSD cannot exceed 64 GB, while for an HDD the capacity is over 64 GB.

• Table 2.1 shows a set of combinations of values relating the size of the
enclosure with the size of the screen and the number of available chip
slots on the motherboard.

These constraints should always be satisfied to ensure that the final configura-
tion of the product family is consistent with the specifications of the proposed
devices.

Enclosure size Available chip slots Screen size
115x58 6 3 inches
240x190 10 9 inches
266x178 12 10 inches
295x210 14 12 inches

Table 2.1: Combinations of allowed attributes values depending of the size of
the enclosure

2.3 Modelling Requirements for Product Con-
figuration

In this section, we discuss several key requirements for modelling product fam-
ilies in product configuration. These requirements are derived from various
sources in the literature as well as discussion with industrial partners. Together
with the case study presented earlier, this list will be used in the next chapter to
evaluate several existing modelling languages for product configuration. They
also form a basis on which to build a modern modelling environment for product
configuration. Although some of these requirements are more important than
others, it is important to consider all of them when designing a configuration
framework.

We first present general requirements, followed by more specific requirements re-
lated to representing the structure of the product and for modelling constraints.

2.3 Modelling Requirements for Product Configuration 15

When possible, an example is given referring to the case study introduced in
the previous section.

2.3.1 General modelling requirements

In this part we present the general requirements for a modelling environment:

1. Separation between product modelling and configuration pro-
cess: The first requirement concerns the structure of the configuration
framework itself. As underlined in [4], product knowledge modelling should
be clearly separated from the configuration process. Indeed, these two
tasks are usually performed by different persons, most of the time with
different skills: the modelling task would usually be performed by a design
engineer, while the configuration task would be performed by a sales per-
son. Thus this abstraction is needed so that there is no confusion between
these two parts.

2. Easy-to-use: The persons that will interact with the modelling environ-
ment are usually design engineers, often possessing only basic program-
ming skills. The modelling environment should therefore be accessible
without advanced training in programming, and support easy development
through tools for a fast implementation. Also, the terms used should be
based on a widely accepted terminology, e.g., following well-known concep-
tualizations of configuration [37,93]. Finally, creating a product model is a
tedious and error-prone process. Providing a modelling environment with
development support is essential to improve the modeller’s productivity.
Tools should be provided to assist the modeller in defining constraints or
managing the model.

3. Support of object-oriented concepts: This approach has been favoured
by many researchers [7,51,52,61,85]; it is indeed very suitable for product
modelling, as product components can naturally be seen as objects.

Example: The structure of the Mobile Device product family described
in section 2.2 is object-oriented. It follows a type-instance approach: the
model defines a number of component types, such as a Motherboard type
or a Screen and Touch Screen types, that contain the attributes and con-
straints of the product family. Those types are then instantiated as indi-
viduals during the configuration process to store the actual data of each
configured component. Note that several component individuals can be in-
stances of the same component types: for example, a Wireless Chip com-
ponent type may have up to three different instances (e.g., for a wifi, a
bluetooth and a FM radio chip) during configuration time.

16 Setting the Scene

Figure 2.3: PVM view of a Clock model

4. Graphical representation: Providing a graphical representation to the
user is important for an easy comprehension and a lower maintenance
effort [4, 52]. Thus the modelling environment should be able either to
provide directly a graphical view, or to have a structure such that the
implementation of a Graphical User Interface on top of it is possible. Such
a graphical representation should contain information about the different
attributes of the products as well as their structure.

Example: An example of a graphical representation can be the Product
Variant Master (PVM), developed by [51] (Figure 2.3).

5. Extensibility: Companies use many applications around configurators.
The system should provide an easy integration of CAD tools, databases,
ERP or other systems in the configuration process.

2.3 Modelling Requirements for Product Configuration 17

2.3.2 Structure modelling

One part of modelling in configuration deals with representing the structure of
the product. Several key features can be highlighted:

1. (Dynamic) partonomy relations: Partonomy (or part-of) relations
define a subcomponent hierarchy in the product model. The multiplicity
of these relations corresponds to the number of subcomponents to con-
sider. Providing support for a variable multiplicity allows a better reuse
of component types in the model.

Example: In the case of the motherboard that may contain several wire-
less chips, the Motherboard component type is involved in a partonomy
relation with the Wireless type as a subcomponent. The multiplicity is dy-
namic, as there may be from 0 to 3 instances of the wireless chips during
configuration, depending on the choice of the end-user and the different
constraints in the system.

2. Taxonomy relations: Taxonomy (or kind-of/specialisation) relations
permit the use of generic base components to group features that are com-
mon to several subcomponents, which eases modelling and maintenance
of the model.

Example: The Mobile Device model features a screen that can be spe-
cialised as a touch screen. The Touch Screen component type reuses the
same attributes as the Screen type, and declares new ones, e.g., its type
(resistive or capacitive). Thus, if the attributes or constraints of the Screen
type evolves, there is no need to change the Touch Screen type, reducing
the problem of maintenance.

3. Data types and units: A product can be complex and contain many
different data types. That is why data types such as enumerations, sets,
or integers can be needed. It should be possible to declare different units,
in order to make the model’s creation and maintenance easier.

Example: The frequency of the processor, the size of the screen, or the
capacity of the storage drive can all be defined as integer numbers. How-
ever, they all have different units: the frequency is in Megahertz, the size
in inches, and the capacity in Gigabytes, which should be included in the
model, to avoid ambiguities when dealing with these different dimensions,
and to make the model specification closer to the actual product family.

4. Connection ports: Connection ports represent non-hierarchical rela-
tions between components that may be located in different subtrees of the
model. Specific attributes can also be added in order to provide configu-
ration possibilities to these relations.

18 Setting the Scene

Example: The Stylus component type in the Mobile Device model con-
nects the Touch Screen and the Enclosure types in a relation that do not
involve any parent-child relationship. Furthermore, an attribute (the size
of the stylus) is attached to this relation.

5. Default values: Another useful feature is the possibility to declare de-
fault values for the attributes of the models, as pointed out in [52] . These
values will then be assigned to the attributes when the configuration pro-
cess is started, and the user would have the possibility to change them
during configuration time.

This permits to improve the configuration experience, avoiding long de-
fault set-up of the models during configuration.

Example: Any attribute in the case study could be associated a default
value. For example, it can be decided that there should be no miniUSB
adapter in the configuration by default, although the end-user can decide
to add one.

6. Hidden/Read-only attributes: Providing the possibility to specify the
visibility of attributes helps the designer to create models easier to main-
tain [52], as some of the attributes may be used as intermediary data
containers, and thus may not be accessible to the end-user. Some other
attributes can also be used as read-only, in order to provide the customer
with some unmodifiable information.

Example: A hidden attribute can be defined in the Motherboard compo-
nent type that describes the actual number of chips already on the mother-
board, depending on the number of touch chips and whether an accelerom-
eter or a compass chip is chosen. This attribute will not be presented to
the end-user, but can be used in constraints or to specify the actual number
of chip slots used on the motherboard.

7. Production attributes: Industrial product configurators are usually
meant to be integrated with production management software, like En-
terprise Resource Planning system (ERPs). This includes mapping the
configuration output to a bill-of-materials (BOM) and operations routes
that can be used in sales and manufacturing.

Allowing the definition of production attributes that model how theb
BOMs and routes will be constructed from the product model’s compo-
nents is an important step towards the automatic generation of production
data.

2.3 Modelling Requirements for Product Configuration 19

2.3.3 Constraint modelling

Another important aspect of product modelling is the definition of constraints
on the model. Requirements for constraint modelling are:

1. Built-in functions: A panel of built-in functions and constraints should
be made available to the modeller: aside from simple arithmetic and logical
constraints, advanced functions (e.g., sum) or constraints (e.g., allEqual)
provide better support to the product modeller.

2. Product catalogues: More and more real product data is coming from
tables representing allowed combinations of attributes/components, for
example in product catalogues.

The ability to declare table constraints directly (instead of more complex
formulas) simplifies by far the creation and usability of the model. That is
why an easy-to-use modelling tool for these constraints should be available.

Example: The table constraint representing the allowed combinations for
the screen size and the number of chip slots on the motherboard depend-
ing on the enclosure size is a typical product catalogue. Defining such
constraints as tables (instead of long series of value assignments) involves
less repetitions of attributes, which make them easier to maintain. They
can also be taken from various tools such as databases.

3. Balance of resources: Products are often configured according to the
resources they produce/consume, such as the energy produced and con-
sumed in a system for example. These resources can then be used in
constraints, enabling the configuration tool to ensure the consistency of
the system.

Example:The number of available chip slots on the motherboard can be
define as one of the system’s resources. The motherboard is producing
this resource depending on the number of chips pre-installed on it, while
additional chips may consume this resource.

4. Hard/Soft constraints: Hard constraints are constraints that must not
be violated, while soft constraints may be violated if they are overridden
by a user selection or indirectly as a consequence of a constraint with
higher priority.

This kind of distinction provides the designer with the ability to guide the
configuration process with specific “recommendations”, as he has a solid
knowledge of the product, though it is still possible for the customer not
to follow them.

20 Setting the Scene

Example: Soft constraints could be added to the Mobile Device to act
as recommendations. One might add a constraint specifying that a large
touch screen (size bigger than 9) should be a resistive screen, although the
end-user might overrule this.

Now that these requirements have been motivated and listed, we will in the next
chapter model our case study in three general purpose modelling languages, and
discuss the advantages and pitfalls of each.

Chapter 3

General Purpose Modelling
Languages

In this chapter, we present and analyse three general purpose modelling lan-
guages in the context of Product Knowledge Modelling. A modelling language
is a language that is used to represent knowledge or information in a structured
way. It can be used to express a lot of different systems, from the Enterprise
Architecture ([57]), to Software Engineering ([104]), through products archi-
tecture, among others. Representing these concepts in a formal way can have
several advantages, including:

• Providing formal specifications that can be reused and exchanged, improv-
ing team understanding and communication.

• Defining the conceptual design of a system, which allows to avoid mistakes
due to the lack of a clear vision of the system’s architecture.

• Formalizing a system’s structure and requirements, and providing a ba-
sis for a clear and well-defined structure for implementation (in case of
software development), manufacturing (e.g. for a product), etc.

A modelling language is defined by two fundamental parts: its syntax (the rules
defining how to write a model) and its semantic (how the language should be

22 General Purpose Modelling Languages

interpreted). The syntax of a modelling language consists usually of abstract
syntax and concrete syntax. The concrete syntax represents the visual part
of the language that will be interfaced to the user, while the abstract syntax
expresses the inner representation of the data from the models. Not all modelling
languages are executable, however, and in the case of product configuration, at
least a link to an executable language is required in order to interface with a
solving engine.

Modelling languages usually fit into two main categories: graphical and textual
modelling languages [48]:

• Graphical languages contain diagrams with symbols to express the differ-
ent concepts needed to represent a specific information. The symbols are
usually linked together by lines that represent the relationships between
them. The concrete syntax of these languages is thus their graphical no-
tation.

• Textual languages contain standardized keywords as concrete syntax
in order to structure the knowledge representation. This representation is
usually interpreted by a computer in the abstract syntax.

The languages discussed in this chapter are object-oriented languages. As previ-
ously discussed, object-oriented concepts have great advantages when it comes
to product configuration models. These languages have been chosen because
of their wide use and their well-known ability to model systems. We use the
requirements and the case study described in the previous chapter in order to
assess the potential of these languages for use in modern product configuration
modelling environments, and discuss each advantages and pitfalls.

3.1 UML and OCL

This first section presents the Unified Modelling Language (UML), associated
with the Object Constraint Language (OCL).

3.1.1 The Unified Modelling Language

The Unified Modelling Language (UML) is an international standard de-
fined in 1997 by the Object Management Group (OMG). It started as version

3.1 UML and OCL 23

1.1, and a major revision has followed, with the adoption of the UML 2.0 version
in 2003 by the OMG. The current version is 2.3.

UML is a visual specification language for object-oriented modelling. It has
been created as a general-purpose modelling language, and includes a graphical
notation used to create an abstract model of a system, that is referred to as a
UML model.

UML 2.0 contains 13 types of diagrams, that are organized hierarchically (Fig-
ure 3.1).

There exists a relatively important amount of concepts used in UML 2.0 for
object-oriented design, from structure concepts (e.g., classes, components, pack-
ages) to relationships (e.g., aggregations, associations, generalization) through
behavioural concepts (e.g., events, messages, methods).

In order to model products for product configuration, only a subset of all these
concepts and diagrams is used. Indeed, most of the interest in product modelling
for configuration lies in the product structure, its attributes, subcomponents,
and the constraints around all of them. The UML class diagram is of prime
interest as it contains the structural elements that can help us represent the
product configuration models.

Figure 3.1: UML diagrams [104]

24 General Purpose Modelling Languages

We detail several UML modelling concepts relevant to this chapter:

• UML contains different types of relations between components, including:

1. An Association establishes a semantic relationship between two com-
ponents. A good way to illustrate this is by comparing it to a mar-
riage: an association is binding a man and a woman. In the case
of the marriage, the multiplicity is one-to-one, but in general it can
have different multiplicities.

2. An Aggregation is a specialized form of association, and can be either
shared or composite. It represents typical whole-part relationships,
where a notion of ownership exists. In the case of a shared Aggrega-
tion, all objects have their own life cycle. For example, an object rep-
resenting a Department can have a shared Aggregation relationship
with a Professor object: the Professor belongs to this Department,
but if the Department is deleted, the Professor will still exist. On
the contrary, for the composite Aggregation (or Composition), the
life-cycle of the child is linked to the life cycle of the parent: if the
parent is deleted, then the child will be, too.

3. The Generalisation is used to model inheritance for data and code
reuse: the child element inherits all the properties of its parent, and
can define new ones.

• UML 2.0 contains an extension mechanism called Stereotypes. A stereo-
type allows designers to extend UML by creating new model elements
from existing ones. The new nodes are then stereotyped, which is re-
flected graphically by adding a name enclosed by quotes above the name
of another element. Each stereotype can contain tagged values, which
represent values specific to the stereotyped elements.

An example of a very simple model of car can be seen in Figure 3.2. The
Car Class represents the Car component, and has two Attributes: color, that
can be either Black or White, and a boolean hasSunRoof. It also has four
wheels, that are modelled by an Aggregation relation with the Wheel class,
and an engine, thanks to the aggregation with the Engine class. Finally, it
has a constraint that specifies that “If there is a sun roof, the color is White”.
Moreover, the Car is the Generalisation of two classes: a Standard car and a
Cabriolet, which is more constrained, as “it has no sun roof and it has no spare
tire”.

3.1 UML and OCL 25

+volume : String

Engine

+isSpareTire : Boolean

Wheel

+hasSunRoof : Boolean
+color: {White, Black}

Car

Standard Cabriolet

{If there is a sun roof, the color is White}

{It has no spare tire, it has no sun roof}

wheels engine14

Figure 3.2: A simple car model, with generalization and aggregation relation-
ships

3.1.2 The Object Constraint Language

It should be pointed out that the constraints in Figure 3.2 are expressed in
natural language. Another way to express constraints in UML is by using a
programming language. What is missing in UML is the ability to describe
constraints in a more formal way than natural language or raw code. This is
what the Object Constraint Language (OCL) is being used for.

OCL is an extension to UML that allows to write standardized constraints. It
is actually a textual language that provides constraint and object query expres-
sions that cannot be expressed using notations like diagrams. The aim of OCL
is to provide an unambiguous language for constraint specifications, but that
can stay accessible to persons with few or no programming skills. OCL is a pure
specification language, which means that an OCL expression has no any side
effects. Indeed, when an OCL expression is evaluated, it simply returns a value,
and does not change anything in the model.

An OCL statement is always evaluated in a specific context. The context defines
the situation in which the statement is valid, e.g., a class. Then the body of
the constraint is defined. OCL statements can contain navigation expressions
such as c.hasSunRoof, which, if c is a Car, results in fetching the value of its
attribute hasSunRoof. Finally, OCL constraints can be invariants for a specific
class, or pre/post conditions for a specific operation, though only invariants are
used in product configuration, as components do not contain operations. In this
work, we only use a subset of the OCL constraints. For a complete overview,
refer to [72].

26 General Purpose Modelling Languages

It is now possible to express the constraints of Figure 3.2 using OCL (note that
the keyword self refers to an object of the class being constrained, though it
can be left out in most cases, when the context is clear):

• For the constraint on the Car “If there is a sun roof, the color is White”:

context Car

inv: hasSunRoof implies color = ’’White’’

• Specifying that a Cabriolet has no sun roof can be done in two ways,
depending whether the constraint has to be evaluated in the context of
the Car or of the Cabriolet itself:

context Cabriolet

inv: hasSunRoof = false

context Car

inv: self.oclIsTypeOf(Cabriolet) implies hasSunRoof =

false

The OCL function oclIsTypeOf(Type t) checks if a given instance is an
instance of type t.

• Finally, specifying that a Cabriolet has no spare tire:

context Car

inv: self.oclIsTypeOf(Cabriolet)

implies wheels -> forall(w:Wheel | w.isSpareTire =

false)

The operator -> is used to call an operation on a collection, in the following
way:

collection ->operation(arguments)

Also, the forall construct permits to test a boolean expression on all
elements of a collection. The declaration of the elements’ type (w:Wheel)
can be left out when unambiguous.

3.1 UML and OCL 27

+
m

in
iU

S
B

A
da

pt
er

:{
no

n
e,

V
G

A
,D

V
I,H

D
M

I}
 =

 n
o

ne

«R
oo

tC
om

po
ne

nt
T

yp
e

»
D
ev
ic
e

+
po

rt
: {

no
ne

,V
G

A
,D

V
I,

H
D

M
I,m

in
iU

S
B

}
+

D
V

D
sl

ot
 :

B
oo

le
an

+
et

he
rn

et
P

or
t :

 B
oo

le
a

n
+

ha
sS

ty
lu

sS
lo

t :
 B

oo
le

an
+

si
ze

: {
11

5x
58

,2
40

x1
9

0,
26

8x
17

8,
29

5x
21

0}

«C
om

po
ne

nt
T

yp
e»

E
n
cl
o
su
re

+
nb

T
ou

ch
C

hi
ps

: [
0.

.3
]

+
ha

sC
om

pa
ss

C
hi

p
: B

o
ol

ea
n

+
ha

sA
cc

el
er

om
et

er
 :

B
oo

le
an

+
nb

S
lo

ts
: {

6,
10

,1
2,

14
}

-n
bC

hi
ps

: [
0.

.5
]

«C
om

po
ne

nt
T

yp
e»

M
o
th
er
b
o
ar
d

«C
om

po
ne

nt
T

yp
e»

E
th
er
n
et
C
ar
d

+
pp

i:
{1

32
,3

30
}

+
si

ze
: {

3,
9,

10
,1

2}
+

te
ch

no
lo

gy
 :

S
cr

ee
nT

ec
hn

ol
og

y

«C
om

po
ne

nt
T

yp
e»

S
cr
ee
n

«C
om

po
ne

nt
T

yp
e»

G
P
S
R
ec
ei
ve
r

+
ch

ip
T

yp
e:

 {
w

ifi
, b

lu
et

o
ot

h,
 F

M
}

«C
om

po
ne

nt
T

yp
e»

W
ir
el
es
sC
h
ip

+
fr

eq
ue

nc
y:

 {
60

0,
10

00
,1

60
0}

«C
om

po
ne

nt
T

yp
e»

P
ro
ce
ss
o
r

+
ty

pe
: {

ca
pa

ci
tiv

e,
re

si
st

iv
e}

+
ol

eo
ph

ob
ic

C
oa

tin
g

: B
oo

le
an

«C
om

po
ne

nt
T

yp
e»

T
o
u
ch
S
cr
ee
n

[0
..1

]

[0
..1

]

[0
..3

]

+
si

ze
: {

co
m

pa
ct

,la
rg

e}

«P
or

tT
yp

e»
S
ty
lu
s

[0
..1

]
[0

..1
]

+
ty

pe
: {

G
S

M
,G

S
M

/U
M

T
S

}

«C
om

po
ne

nt
T

yp
e»

R
F
C
ar
d

[0
..1

]

m
ot

he
rb

oa
rd

rf
C

ar
d

pr
oc

es
so

r
gp

s

w
ire

le
ss

C
hi

pet
he

rn
et

sc
re

en

en
cl

os
ur

e

st
yl

us
st

yl
us

«R
es

ou
rc

e»
A
va
ila
b
le
S
lo
ts

«c
on

su
m

es
»

{v
al

ue
 =

 1
}

«c
on

su
m

es
»

{v
al

ue
 =

 1
}

«c
on

su
m

es
»

{v
al

ue
 =

 1
}

«c
on

su
m

es
»

{v
al

ue
 =

 1
}

«p
ro

du
ce

s»
{v

al
ue

 =
 n

bS
lo

ts
 –

nb
C

hi
ps

}

«c
on

su
m

es
»

{v
al

ue
 =

 1
}

+
ca

pa
ci

ty
: {

16
,3

2,
64

,1
2

8,
25

6,
32

0,
50

0}

«C
om

po
ne

nt
T

yp
e»

S
to
ra
g
eD
ri
ve

+
ty

pe
: {

fla
sh

,D
R

A
M

}

«C
om

po
ne

nt
T

yp
e»

S
S
D

«C
om

po
ne

nt
T

yp
e»

H
D
D

dr
iv

e

O
LE

D
LC

D

«e
nu

m
er

at
io

n»
S
cr
ee
n
T
ec
h
n
o
lo
g
y

F
ig

u
re

3
.3

:
U

M
L

m
o
d

el
fo

r
th

e
M

o
b

il
e

D
ev

ic
e

ca
se

st
u

d
y

28 General Purpose Modelling Languages

3.1.3 Implementation of the case study in UML/OCL

This part presents the implementation of the Mobile Device case study intro-
duced in Chapter 2 in UML/OCL. The UML diagrams have been extended
here using stereotypes in order to reflect the product configuration concepts,
following Felfernig et al. [40, 41]. The stereotypes ComponentType, RootCom-
ponentType, Port, and Resource have been defined from the UML metamodel
element Class, while the consumes and produces are from the UML metamodel
element Dependency. The stereotype PortType has also been defined on the
Class element.

Figure 3.3 shows the Mobile Device model implemented in UML 2.0. Several
points are worth being highlighted:

• It is not possible to specify units like GB (Gigabytes) or MHz (Mega
Hertz) for the capacity attribute of the StorageDrive component type or
the frequency attribute of the Processor for example. Indeed, only basic
data types are available. Thus these attributes are declared as integers.

• It is possible to declare the StorageDrive class as abstract. This means
that an instance of the Storage Drive type will need to be specialised into
one of its subtypes (SSD or HDD) in a final component instance.

• Each partonomy relation has been represented as a UML (shared) Aggre-
gation, as it is often the case in product configuration that the child (or
subcomponent) is independent from its parent and could be reused in other
partonomy relations. The multiplicity of each aggregation represents the
multiplicity of the partonomy relation, with expressions like “0..3” mean-
ing that 0 to 3 instances of the component types can be present in the
final configuration. Note that a default multiplicity of 1 is implicit when
it is not specified.

• Taxonomy (or kind-of) relations are represented by UML Generalisation.
The TouchScreen component type is for example related to the Screen type
by a UML Generalisation, inheriting all the attributes and operations of
the Screen type.

• Each attribute is represented by its visibility, its name and its type:

– A public attribute (represented by a “+”) is an attribute that is vis-
ible by all, while a private attribute (represented by a “-”) is hidden
(e.g., the attribute nbChips of the Motherboard type).

– Different predefined data type are available in UML, including all the
most classic ones (Integer, Boolean ...). Moreover, it is possible to

3.1 UML and OCL 29

define a specific enumeration each time the domain of an attribute
is composed by predefined values (e.g., the attribute technology of
the Screen type uses the ScreenTechnology enumeration). However,
it is possible to display those enumerations inline in the attribute def-
initions when only used once (e.g., the attribute type of the RFCard
type), although it has to be written in the attribute name, which
does not fit the right UML specifications.

– It is also possible to define locked parameters in UML 2.0 using the
{read-only} keyword after the attribute’s definition.

– An initial value can be provided to act as the default value of an
attribute, e.g., the miniUSBAdapter attribute of the Device type is
initially set to “none”.

• The connection port between the touch screen and the enclosure is here
represented using a UML Association with a multiplicity of 0..1 on each
sides. This denotes that it is possible to have a Stylus instance associ-
ated to both instances (Touch Screen and Enclosure) during configura-
tion, although it is not mandatory. A port type, called Stylus, contains
information on the size of the stylus used in the final product.

• Moreover, the number of available slots in the motherboard has been
modelled using a UML Class AvailableSlots annotated with the Resource
stereotype. Then, a component produces some of this resource (the moth-
erboard) while others need some of it (the chips).

Using OCL, it is possible to specify some rules in order to describe the correct
usage of the stereotypes [40]. For example:

-- Comment: the component classes does not have

operations

context ComponentType

inv: self.allOperations ->size = 0

In this example, the OCL allOperations attribute represents the collection of all
operations defined in a class. This constraint specifies that no UML Operations
should be defined in a UML Class with the ComponentType stereotype.

Following the UML implementation, it is still necessary to define, using OCL,
some of the constraints that cannot be represented graphically:

• The following constraints represent the need for touch-enabling chips for
touch screen devices, the presence of a stylus for resistive screen and its
impact on the device’s enclosure:

30 General Purpose Modelling Languages

context Device

inv: (screen.oclIsKindOf(TouchScreen)) = (motherboard.

nbTouchChips > 0)

context TouchScreen

inv: (screenType = ’resistive ’) = (stylus -> size() = 1)

context Enclosure

inv: (hasStylusSlot) = (stylus -> size() = 1)

and (size = ’115 x58’) = (stylus.size = ’compact ’)

• These other constraints ensure that an Ethernet port is present if an Eth-
ernet card is added to the device, and govern whether a miniUSB adapter
is available.

context Device inv:

(motherboard.ethernetCard -> size() = 1) = (enclosure.

ethernetPort)

and (enclosure.port <> ’miniUSB ’) implies (

miniUSBAdapter = ’none’)

context Enclosure

inv: (size = ’115 x58’) = (port = ’miniUSB ’)

• The constraints on the capacity of the storage drive are defined as follows:

context SSD

inv: capacity <= 64

context HDD

inv: capacity > 64

• Product catalogues: no expression for table constraints has been imple-
mented in UML/OCL. This does not make impossible the implementation
of product catalogues (i.e., table) constraints, but it makes it much more
tedious to write, and thus to maintain, as it has to be converted into a
logical expression. The constraint from Table 2.1 can thus be written in
OCL as:

context Device inv:

(motherboard.nbSlots = 6 and (enclosure.size= ’115x58’

and screen.size = 3) or

(motherboard.nbSlots = 10 and (enclosure.size= ’240 x190’

and screen.size = 9) or

(motherboard.nbSlots = 12 and (enclosure.size= ’266 x178’

and screen.size = 10) or

(motherboard.nbSlots = 14 and (enclosure.size= ’295 x210’

and screen.size = 12)

3.1 UML and OCL 31

3.1.4 Discussion

This part summarizes the insights that have been provided by the experience in
modelling the case study using UML 2.0 and OCL.

UML provides a direct graphical view of object-oriented structures such as soft-
ware architecture or product architecture in the case of this dissertation. This
permits to have a clear view of how the components are related to each other.
Moreover, as UML is widely applied in industrial software development as a
standard model design, its concepts are relatively well known, which makes it
an accessible modelling tool. The UML diagram library contains an impor-
tant amount of object-oriented diagrams, and the use of stereotypes permits
to extend the existing concepts to configuration-specific concepts.

The integration of the Object Constraint Language (OCL) allows the designer
to define complex constraints in a relatively accessible language, that does not
require advanced programming skills either. OCL contains a wide variety of
constraints, which would be sufficient for most configuration problems.

However, there are some issue with UML and OCL. First of all, the UML
language is not aimed specifically at general product modelling, and even less
for product configuration, and it can be thus difficult for knowledge engineers
to adapt it to product configuration: the UML language itself had indeed to
be extended through the use of stereotypes to fit the configuration problem. All
the concepts are aimed at software engineering, which is illustrated by the fact
that it is not possible to directly declare new units other than the ones used in
programming languages (Integer, Boolean...). The lack of support for product
configuration specific constraints is also a problem: indeed, constraints defining
product catalogues or soft constraints do not have a specific implementation in
UML. Although a series of logical constraints can represent product catalogues,
a specific support for table constraints would improve the modelling experience
and add maintainability to the model.

There is also no specific concept in UML that allows to represent production
attributes such as BOM and operation routes. One solution could be to use
UML Classes with new stereotypes, and map them to the types describing the
product family structure. OCL constraints may then be used to ensure that the
right item or operation is present depending on the values of the component
type’s attributes.

Finally, one of the biggest drawbacks in using UML and OCL is the problem
of interpretation of the language. It is indeed necessary to be able to interpret
the models into a declarative representation of the configuration knowledge, in

32 General Purpose Modelling Languages

order to apply solving algorithms. Felfernig et al. [41] have provided UML/OCL
interpretation in first order logic in order to be able to use it in a configurator.
Again, this type of automatic interpretation requires a strictly defined UML
profile for product modelling in configuration. Research has also been going on
in this area [1, 2], but more remains to be done in order to provide a strong
tool support and debugging facilities to the modeller in the context of product
configuration with UML/OCL. A few tools to check the validity of UML/OCL
models exist (e.g., USE [45]), but they usually do not permit to find solution to
the configuration problem.

3.2 SysML

The Systems Modelling Language (SysML) is a recent modelling language spec-
ified by the OMG. It is actually a UML profile, and thus inherits the char-
acteristics of UML. The aim of SysML is to represent systems and product
architectures, as well as their behaviour and functionalities, where UML was
used for software engineering. The relationship between UML and SysML can
be seen in Figure 3.4.

The development team of SysML aimed on the one hand at limiting the concepts
semantically too close from software engineering, and on the other hand at sim-
plifying UML original notations by limiting the number of diagrams available,
in order to make it easier to use. Figure 3.5 shows the SysML diagrams.

Figure 3.4: Overview of SysML/UML interrelationship [96]

3.2 SysML 33

Figure 3.5: SysML diagrams [96]

Some diagrams, like the UML Class Diagram, renamed Block Diagram, have
just been modified through the concept of Block, that allows to express any
structural element of a system.

Two new diagrams are also present in SysML:

• The Requirement Diagram is used to specify the needs of the system.
These requirements can be mapped together and to the different compo-
nents of the system.

• The Parametric Diagram is the second new diagram. It is used to specify
mathematical expressions between the different elements of the model.

These new diagrams aim at making the system and product modelling more
complete. The Parametric Diagram is particularly interesting as it permits to
declare complex constraints on systems, using mathematical expressions or any
other constraint mechanism already available before. Figure 3.6(a) represents a
Block Definition Diagram for defining constraints on a special car model, while
Figure 3.6(b) uses the equations in a Parametric Diagram to constrain value
properties of the model.

These new concepts directly implemented in SysML bring interesting improve-
ments for product modelling, especially concerning product configuration. An-
other interesting feature is the possibility to declare one’s own dimension and
units, that can thus be used in the model.

34 General Purpose Modelling Languages

(a) Block Diagram

(b) Parametric Diagram

Figure 3.6: Block and Parametric Diagrams for HSUV vehicle dynamics [96]

3.2.1 Implementation of the case study

The implementation of the case study in SysML is decomposed in several differ-
ent diagrams. Indeed, SysML allows the definition of all the constraints using
Parametric Diagrams, which can be practical when combined with other dia-
grams such as Requirement Diagrams, if the whole product specification is to be
done in SysML. Figure 3.8 shows the Block Definition Diagram for the Mobile
Device product family.

3.2 SysML 35

A first point is that this block diagram looks like the one built in UML (with
blocks, aggregations, packages...). Modelling using SysML is very similar than
doing so with UML, except that almost no user-defined stereotype is needed.
Indeed, only the resource stereotype on resources have been added on a UML
Class. Units are shown in Figure 3.7. The advantage of declaring units lies in the
more acurate modelling experience, as well as the fact that it helps maintaining
the model, by providing clearer specification of the product.

As described before, it is possible to describe parametrized constraints using
Parametric Diagrams in SysML. Figure 3.9 shows the definition of the con-
straints that are used in the model, while Figure 3.10 represents the Parametric
Diagrams for the Device root block.

The goal of these Parametric Diagrams is to map the inner attribute of a block
to the constraints. This allows to reuse constraints in a more structured way
than with raw OCL declaration. However, it must be pointed out that the
constraints can still be written as formulas or OCL statements.

Figure 3.7: Units definition with SysML

36 General Purpose Modelling Languages

F
ig

u
re

3
.8

:
S

y
sM

L
B

lo
ck

D
efi

n
it

io
n

D
ia

g
ra

m
fo

r
th

e
M

o
b

il
e

D
ev

ic
e

ca
se

st
u

d
y

3.2 SysML 37

Figure 3.9: Block Definition Diagrams defining the constraints used

Figure 3.10: Parametric Diagrams for the Device block

38 General Purpose Modelling Languages

3.2.2 Discussion

SysML represents an interesting and powerful extension of UML when it comes
to modelling systems and products. It is indeed possible for a knowledge en-
gineer to design a product model for configuration in SysML almost without
adding any new user-defined concepts. The power of SysML also lies in its
simplicity compared to UML (fewer diagrams), and the possibility to design
a complete product model, including requirements, that can be added to the
structural model that is needed for product configuration, though no specific
feature is introduced to define a mapping to BOM or routes information.

In a product configuration-only point of view, several interesting features are
added compared to UML. The possibility to introduce constraints in dia-
grams, and to map a model’s internal attributes to their use in the constraints,
brings a much clearer view for knowledge engineers not used to raw program-
ming language file, though OCL is still needed in complex constraints.

Thanks to this graphical view, it is also possible to group constraints linked
together (see example in Figure 3.6(a)), and to declare them in a parametric
way, so they can be generalized and reused. SysML also permits the declaration
of user-defined units, making the model closer to the physical product, and
allowing a much easier maintenance of the system, especially in the case several
different engineers are using it.

However, there are still things missing in SysML. Table constraints are still
not available, though it is still possible to implement them using OCL, as in
UML. Some concepts, like resources produced/consumed, had also to be added
using stereotypes, though less than in UML. It is also not possible to declare
which block is the root element without using stereotypes.

Finally, the interpretation of the language stays an open issue: as SysML is
a graphical language, it needs to be efficiently converted so that a constraint
engine can be used, as well as to support tools to assist the knowledge engineer
during the model’s creation.

3.3 EXPRESS/STEP (ISO 10303)

This section introduces the International Standard ISO 10303, which is refer-
enced as STEP (STandard for the Exchange of Product data).

3.3 EXPRESS/STEP (ISO 10303) 39

STEP was first released in 1994, and is published as a series of Parts:

• Part 1 provides an overview;

• Parts 11, etc., specify description methods (the EXPRESS family of in-
formation modelling languages);

• Parts 21, etc., specify implementation methods (data exchange mecha-
nisms);

• Parts 31, etc., specify conformance testing methodology and framework;

• Parts 41, etc., specify integrated generic information models;

• Parts 101, etc., specify integrated application resource models;

• Parts 201, etc., specify Application Protocols (specific models targeted for
product data exchange);

• Parts 301, etc., specify Abstract Test Suites (corresponding to the Appli-
cation Protocol series);

• Parts 501, etc., specify Application Interpreted Constructs (interpreted
models common to two or more Application Protocols).

The goal of STEP is to allow the exchange of data describing a product be-
tween Computer Aided systems (CAD, CAM, etc). STEP is based on Integrated
Generic Resources, that are refined for different industrial areas as Application
Protocols (AP). Those AP are first defined independently of STEP, according
to the concepts of the specific industrial area they refer to, and are then imple-
mented in STEP using the EXPRESS language.

EXPRESS [36] is thus a data modelling language standardized as the Part 11 of
STEP. It consists of two different representations: textual, or graphical (called
EXPRESS-G). However, EXPRESS-G is not able to represent all details that
can be formulated in the textual form, on which we will concentrate in this part.

3.3.1 Implementation of the case study

It is possible to use the concepts behind EXPRESS in order to define product
configuration models. The whole implementation of the case study in EXPRESS
can be seen in Appendix A. This part describes relevant parts of the model.

40 General Purpose Modelling Languages

EXPRESS supports object-oriented concepts: component types are defined in
EXPRESS as entities, and they are composed by attributes that can be of basic
types or entities themselves, representing partonomy relations in the model:

ENTITY Motherboard;

rfCard: SET [0:1] OF RFCard;

processor: Processor;

gps: SET [0:1] OF GPSReceiver;

wirelessChip: SET [0:3] OF WirelessChip;

ethernet: EthernetCard;

nbTouchChips: INTEGER;

nbSlots: INTEGER;

hasCompassChip: BOOLEAN;

hasAccelerometer: BOOLEAN;

...

END_ENTITY;

As can be seen in the definition of the Device structure, the entities can be ag-
gregated as sets (among other lists, bags, ...) with dynamic multiplicity, ([0:3]
means 0-to-3 multiplicity).

Taxonomy relations are also available through the use of inheritance and ab-
stract classes:

(* Abstract base component for storage drives *)

ENTITY StorageDrive ABSTRACT SUPERTYPE;

capacity: GB;

END_ENTITY;

ENTITY SSD SUBTYPE OF (StorageDrive);

...

END_ENTITY;

These concepts permit to model the partonomy and taxonomy structures of
component types in the model, though there is no way to define which compo-
nent is the root.

It is also possible to declare named types and units, which help to clarify the
meaning and the context of the variable of these types.

TYPE GB = INTEGER;

WHERE

SELF >= 0;

END_TYPE;

TYPE SSD_TYPE = ENUMERATION OF (flash ,DRAM);

END_TYPE;

3.3 EXPRESS/STEP (ISO 10303) 41

Constraints can be declared both locally and globally in EXPRESS, though only
local constraints are used in the implementation of the Mobile Device product
family. These local constraints are written within the entities using the WHERE
keyboard:

ENTITY Device;

motherboard: Motherboard;

screen: Screen;

drive: StorageDrive;

enclosure: Enclosure;

miniUSBAdapter: MINIUSBADAPTER_TYPE;

WHERE

((motherboard.nbSlots = 6) AND (enclosure.size = 115 x58)

AND (screen.size = 3)) OR

((motherboard.nbSlots = 10) AND (enclosure.size = 240 x190)

AND (screen.size = 9)) OR

((motherboard.nbSlots = 12) AND (enclosure.size = 266 x178)

AND (screen.size = 10)) OR

((motherboard.nbSlots = 14) AND (enclosure.size = 295 x210)

AND (screen.size = 12));

(TYPEOF(screen) = TouchScreen) = (motherboard.

nbTouchChips > 0);

...

END_ENTITY;

As can be seen in those examples, one of the issues with writing constraints
in EXPRESS concerns the support of product catalogues: as other languages
shown in this Chapter, the only formulation available for product catalogs is
using a heavy logical disjunction.

EXPRESS also lacks built-in functions like sum, or built-in navigation within
collections (such as forAll or forEach functions). It is however possible for the
user to declare his own functions that can be used in the entities, for example
to calculate the actual number of slots made available by the motherboard:

FUNCTION SumChips(mb:Motherboard): INTEGER;

LOCAL

result: INTEGER := mb.nbTouchChips;

END_LOCAL;

IF (mb.hasAccelerometer)

result := result + 1;

END_IF;

IF (mb.hasCompassChip)

result := result + 1;

END_IF;

RETURN(result);

42 General Purpose Modelling Languages

END_FUNCTION;

ENTITY Motherboard;

...

DERIVE

nbChips : INTEGER := SumChips(SELF);

END_ENTITY;

Being able to declare functions extends the possibilities in the model, but it
requires some programming skills. Thus it should be reserved for complex func-
tions, while functions like sum should be supported out-of-the-box.

Finally, other points need to be noticed:

• EXPRESS does not provide any support for connection ports: the one
in the Mobile Device case study is defined in the Enclosure entity and
declared as INVERSE reference in the TouchScreen. It however brings a
relation of parent-child that should not be present in this kind of relations.

• EXPRESS does not provide any way to declare resource consumption and
production.

• It is not possible to declare read-only attributes. On the other hand,
derived attributes must be used as hidden attributes, though their value
has to be directly associated to a function.

• Finally, EXPRESS does not support the declaration of soft constraints.

3.3.2 Discussion

EXPRESS is an interesting language for product modelling. It supports object-
oriented concepts and a complex multiple inheritance mechanism, which makes
it suitable for the modelling of most of the product configuration problem. This
is complemented by the possibility to use a full procedural programming lan-
guage to define functions and constraints on data instances. It also includes
nice features such as units and constant declaration or dynamic multiplicity.
Another point is the possibility to produce a graphical representation of the
model defined in EXPRESS using EXPRESS-G. This can be a real advantage
when modelling, and so is worth being pointed out.

However, the EXPRESS language seems too general and is not suitable for
knowledge engineers that are not expert in the language itself. The definition

3.4 Comparison and Conclusion 43

of functions requires advanced programming skills, and writing a complex
model without these functions can be very difficult or impossible, as a lot of
functions are not built-in (min/max, sum, forAll, ...). Other product configu-
ration specific features are also missing, such as the declaration of a root
element, read-only and default attributes, support for resources, soft and table
constraints or connection ports definitions.

Moreover, the use of EXPRESS for product configuration modelling is restricted.
The major problem comes from the STEP standard itself. EXPRESS is meant
to be used to describe application protocols as part of the standard, and should
thus not include company-specific data, such as company-specific configuration
models. Männistö et al. describe in [63] a way to extend STEP in order to
permit the definition of such models in STEP, where the AP would be used to
declare the area-specific part of the model, while company-specific extensions
would be added as instances of the AP concepts. However, this could reduce
the freedom of the modeller, as he would have to comply to a basic structure for
its model, according to the corresponding AP. Other issues arise as well, such
as the definition of constraints in the model, as a STEP schema is supposed to
describe only valid instances [63].

3.4 Comparison and Conclusion

Table 3.1 retains the main insights retrieved all along this chapter for the dif-
ferent modelling languages.

This table shows the differences between the languages, and first of all highlights
the capabilities of the graphical languages, in both the clear view they provide
and the completeness of their specifications. The difference of capabilities is
greatly due to the fact that defining these languages with a lot of features is
easy while interpreting them is more difficult. This is shown by the research
done in the interpretation of UML-based model for product configuration [1,2].

However, a language like UML is too general for configuration and its concepts
too specific to software engineering. That is why SysML has been introduced,
and it brings some clarity on product-related concepts, adding interesting fea-
tures that can be used for product configuration modelling.

The advantage of textual languages is obviously that they can be directly inter-
preted as such. They also usually make possible to create a graphical represen-
tation on top of them, like EXPRESS-G. EXPRESS provides a full support of
all object-oriented featured discussed in the requirements section.

44 General Purpose Modelling Languages
L

an
gu

ag
e

T
y
p

e
R

eq
u

ir
em

en
ts

F
ea

tu
re

s
G

en
er

a
l

u
se

U
M

L
/O

C
L

G
ra

p
h

ic
a
l

-
F

u
ll

O
O

su
p

p
o
rt

-
C

le
a
r

v
ie

w
o
f

th
e

st
ru

ct
u

re
+

te
x
tu

a
l

-
D

y
n

a
m

ic
m

u
lt

ip
li

ci
ty

-
N

ee
d

a
d

a
p

ta
ti

o
n

b
y

th
e

u
se

r
co

n
st

ra
in

ts
-

E
x
te

n
si

b
le

th
ro

u
g
h

st
er

eo
ty

p
es

u
si

n
g

st
er

eo
ty

p
es

-
C

o
m

p
le

te
co

n
st

ra
in

t
la

n
g
u

a
g
e

-
S

tr
u

ct
u

re
a
n

d
co

n
st

ra
in

ts
-

M
is

si
n

g
:

u
n

it
s,

ta
b

le
co

n
st

ra
in

ts
a
re

se
p

a
ra

te
d

S
y
sM

L

G
ra

p
h

ic
a
l

-
In

h
er

it
s

fe
a
tu

re
s

fr
o
m

U
M

L
-

M
o
st

o
f

p
ro

d
u

ct
o
ri

en
te

d
+

te
x
tu

a
l

-
M

a
p

p
in

g
b

et
w

ee
n

b
lo

ck
s/

co
n

st
ra

in
ts

sy
n
ta

x
a
lr

ea
d

y
in

p
la

ce
co

n
st

ra
in

ts
-

P
a
ra

m
et

ri
c

co
n

st
ra

in
ts

-
S

u
p

p
o
rt

fo
r

o
th

er
p

ro
d
u

ct
-

U
n

it
s

sp
ec

ifi
ca

ti
o
n

s
a
p

a
rt

fr
o
m

-
S

o
m

e
st

er
eo

ty
p

es
st

il
l

n
ee

d
ed

p
ro

d
u

ct
co

n
fi

g
u

ra
ti

o
n

o
n

es
-

M
is

si
n

g
:

ta
b

le
co

n
st

ra
in

ts

E
X

P
R

E
S

S

T
ex

tu
a
l

-
F

u
ll

O
O

su
p

p
o
rt

-
P

o
ss

ib
le

g
ra

p
h

ic
a
l

+
g
ra

p
h

ic
a
l

-
D

y
n

a
m

ic
m

u
lt

ip
li

ci
ty

re
p

re
se

n
ta

ti
o
n

re
p

re
se

n
ta

ti
o
n

-
U

n
it

s
a
n

d
co

n
st

a
n
ts

d
ec

la
ra

ti
o
n

-
N

ee
d

s
p

ro
g
ra

m
m

in
g

sk
il

ls
-

U
se

r-
d

efi
n

ed
fu

n
ct

io
n

s
-

L
a
ck

o
f

b
u

il
t-

in
fu

n
ct

io
n

s
-

M
is

si
n

g
:

re
a
d

-o
n

ly
a
n

d
d

ef
a
u

lt
a
tt

ri
b

u
te

s,
ta

b
le

co
n

st
ra

in
ts

,
co

n
n

ec
ti

o
n

p
o
rt

s,
re

so
u

rc
es

,

T
a
b

le
3
.1

:
C

o
m

p
a
ri

so
n

o
f

th
e

m
o
d

el
li

n
g

la
n

g
u

a
g
es

3.4 Comparison and Conclusion 45

However, the definition of the constraints on the entities is made difficult by
the lack of built-in functions or navigation within the aggregation collections.
The possibility to declare functions using a full procedural programming lan-
guage permits to do almost everything, but it then requires more advanced pro-
gramming skills. Moreover, the use of EXPRESS for configuration is restricted
because of its belonging to the STEP standard (see section 3.2.2).

None of the three languages compared here includes support for mapping struc-
tural component types and production attributes (BOM and operation routes).
Although this feature may be specific to the underlying ERP or PDM software
in charge of production management, it may be very useful in some cases, e.g.,
for standalone configuration system.

Using a general purpose modelling language for such a specific problem as prod-
uct configuration has advantages, including the fact that most of these languages
are well-known and have many interesting features. However, these languages
are quite complex and very general, and it is not always an easy task to adapt
them to product configuration and its specific concepts.

In this part, we have shown that, although these general languages have some in-
teresting capabilities for modelling configurable product families, they are miss-
ing some important concepts, and languages like UML and SysML have limita-
tions when it comes to dealing with modelling configuration-specific constraints
or providing tool support. The next parts will thus introduce a new configura-
tion framework supported by a configuration-specific modelling language that
make use of the lessons learned from this study.

46 General Purpose Modelling Languages

Part II

Heterogeneous Products

Chapter 4

Research Problem

This chapter introduces the Research Problem motivating our work in this part,
with the following question: how to uniformly support the configuration and
management of heterogeneous product families? What we refer to as a het-
erogeneous product family is a family of products integrating separate design
disciplines interacting with each others. Such design disciplines involved in con-
figurable product families can be, e.g., physical product design, software design,
or service design. In the rest of this thesis, we refer to these design disciplines
as the dimensions of a product family. Modelling configuration in such prod-
uct families yields various issues, due to the diversity of the product knowledge
necessary to address these different dimensions. Indeed, the model of a hetero-
geneous product family can be very complex, and involves several types of users
with different skills and objectives. Finally, the different dimensions in such a
product family are not independent, and it is primordial to take the interactions
between dimensions into account.

We first introduce the literature background relevant to this part, and then we
derive several Research Questions from our motivation problem.

50 Research Problem

4.1 Background

This section describes different areas of research on which this work is based,
beside product configuration (Section 2.1). We start by providing an overview
of related work on software product lines. Thereafter, we describe research on
service configuration.

4.1.1 Software Product Lines

In this subsection, we briefly describe software product lines and some research
on how to model them.

Software product lines (SPL), also known as software product families, is a set
of software systems sharing a common set of features that “satisfy the specific
needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way” [24]. The concept of SPL
has been proposed to improve software development and control the complexity
and variability of software products. An SPL is based on a common software
architecture and a common set of components implemented during a first phase
called development [20]. This phase makes the core of the software system,
which is then adapted to software products in a second phase called deployment.
The deployment phase is aimed at deriving an individual product based on the
software product line architecture that fits the requirement of a specific market
or customer.

Several methods have been used to model efficiently software product lines,
in particular two types of approaches, based on the modelling of the system’s
features or its architecture. The rest of this section gives an overview of some
of the feature modelling approaches and modelling in software architecture.

4.1.1.1 Feature modelling

Feature modelling approaches are based on the concept of features, which has
had several definitions over the years. The first feature modelling language,
FODA (Feature-Oriented Domain Analysis) [53], defines a feature as “a promi-
nent or distinctive user-visible aspect, quality, or characteristic of a system”.
Some other definitions have been given, including “an increment in program
functionality” [12] or “a system property that is relevant to some stakeholder” [30].

4.1 Background 51

Figure 4.1: Example of a FODA model [53]

FODA is based on feature models that describe the different features of the
software product line and the variability in it. An example of a FODA model
can be seen in Figure 4.1. A feature model is a tree starting at a root feature.
Each feature can have other features as subfeatures. In Figure 4.1, the root
feature is Car, which has Transmission, Horsepower and Air conditioning as
subfeatures. Moreover, Manual and Automatic are subfeatures of Transmission.

Variability is addressed using different relations between features and subfea-
tures, including mandatory subfeatures (must be selected if its parent is), op-
tional subfeatures (may or may not be selected), or alternative subfeatures. An
alternative subfeature consists of a set of features where one and only one fea-
ture must be selected if the parent is; Manual and Automatic are alternative
subfeatures of Transmission in Figure 4.1. Feature models can be configured
to represent individual products. In order to obtain a valid configuration, the
subset of selected features must obey the rules defined in the feature model, i.e
the different rules concerning which subfeatures are allowed to be selected or
not.

An important number of extensions have been made to FODA. New feature
modelling methods includes feature models formed as directed acyclic graphs [29,
54], where subfeatures can be shared by more than one parent. Subfeatures
have also been given a feature cardinality [23] to specify how many times the
subfeature may or must appear in a valid configuration. Feature attributes have
also been added to feature models: a feature may have at most one attribute [30]
or several [27]. Another improvement to feature models includes feature groups
[28], which consists of a number of features (the group cardinality) that must be
selected. In order to avoid confusion, subfeatures not members of any feature
group are referred to as solitary features. Finally, Forfamel [7] describes a feature
modelling approach synthesizing most of the previous approaches, along with
type-instance semantics and subfeature names for more flexibility in establishing
the different roles of the shared subfeatures.

52 Research Problem

4.1.1.2 Software architecture

Another type of approach considers software product lines from an architectural
point of view. Architecture description languages (ADLs) have been proposed
to describe the SPLs in terms of their structure, including their components,
interfaces, or communication protocols. Despite the large number of existing
ADLs, only a few have been developed to handle variability in SPLs.

Koala [105] relies on a model with components and interfaces. Components
are the basic “encapsulated” blocks of software, and interfaces and can be used
to provide or require different functions to/from different components. As with
product configuration, partonomy and taxonomy structures can also be created.
A component can contain one or more interfaces, specified using interface types
described as “small sets of semantically related functions”. Each interface thus
has a type, a name, and a direction (required or provided), and interfaces with
matching directions can be connected together. Parameters can be used in Koala
as variability mechanisms. Those parameters influence the functionality of a
system: it may for example affect which interfaces are connected. Interfaces can
also be declared optional, i.e., the parent component may not have the interface
in the final configuration. Figure 4.2 shows a Parking product modelled with
Koala.

Koalish [8] extends Koala by adding more variability features such as attribute
domains and constraints. It specifies the attributes and constraints of Koala
components in a textual representation, as shown in Figure 4.3.

Figure 4.2: Parking model in Koala [91]

4.1 Background 53

Figure 4.3: Koalish integration of variability in the Parking model from Figure
4.2 [91]

Other architecture description languages have been proposed, e.g., [42], although
few contain concepts for variability. An exception is xADL 2.0 [31], which per-
mits to define customised ADLs using the Extended Markup Language (XML).
Basic modelling elements in xADL 2.0 are component types, interface types, and
connector types. Those elements are organised in a partonomy and can be op-
tional (it is not required to be included), variant (it represents a choice between
two or more elements), or optional variant. Boolean expressions are used to
define whether to include an optional element or which variant to select.

4.1.1.3 Multi-layer models

Several approaches have tried to bring together the two modelling methods
described above [13, 18, 90]. In particular, Czarnecki et al. [26] illustrate a
multi-level modelling approach with four layers: feature configuration, analysis
models, architecture and design models‘, and code. Boolean conditions or OCL
constraints can be used to relate elements in the different layers. Asikainen et
al. created Kumbang [6] by merging two previous languages, Forfamel (feature
modelling) and Koalish (Koala-based architecture description language). In
Kumbang, the two different views are related using implementation constraints,
defined in a specific constraint language.

Other methods have extended feature models to different levels. Czarnecki
et al. [29] propose a specialisation of feature models using specialisation steps
that includes refining feature and group cardinalities, removing/selecting a sub-
feature from a group, assigning an attribute value, or cloning a solitary feature.
The aim of this approach is to perform staged configuration of feature mod-
els, i.e., to allow the specification of family members in several stages, where
each stage eliminates some configuration choices. Reiser and Weber [82] also
propose a multi-level approach. Reference feature models serve as a template
and guideline for new models, called referring models. Reiser and Weber define
several deviations representing the difference between a reference model and its
referring model. One major difference between this approach and the one from

54 Research Problem

Czarnecki et al. is that in Reiser and Weber’s work, feature models are not
organised according to a specialisation hierarchy: in multi-level feature trees a
valid product of a referring feature model does not necessarily have to be a valid
product of the corresponding reference feature model. This aims at tackling for
example the situation when changes are included locally in referring feature
models before being pushed up the feature tree at a later time. Finally, Zaid et
al. [111] propose a new modelling technique called Feature Assembly Modelling
(FAM), based on the concept of perspectives. In order to improve the designing
of feature models, this method advocates the separation of concerns approach
via proposing different perspectives, e.g., System perspective, Users perspective,
or Functional perspective. Aside from composition and specialisation relations,
classic dependencies relations (e.g., requires, excludes, incompatible) are used
to connect the different features, whether or not they belong to the same per-
spective.

4.1.2 Service configuration

Services are usually defined as products with a significant service dimension [56].
Configurable services represent services that can be customised from a set of pre-
defined options, in order to fit the needs of individual customers. Research on
configurable services and how to model them for configuration is a relatively
recent topic, with limited work available. Several authors have been discussing
the configuration of different types of services, including IT services [19], in-
surance [108], or maintenance services [65]. Other researchers [3, 49, 98, 107]
proposed more detailed conceptualisations for modelling services.

Akkermans et al. [3] present a model using three perspectives: value, offering,
and process. The value perspective represents what the customer needs, the of-
fering perspective what the supplier is providing, while the process perspective
describes the realisation of the service. Heiskala et al. [49] propose a concep-
tual model with four viewpoints, called worlds (Figure 4.4): the needs world,
representing the customer’s needs; the service solutions world, for the service’s
specifications; the process world, related to the service delivery; and finally the
object-of-services world, that is used to describe the service recipient and the
environment in which the service will be supplied.

Although the first three worlds are similar to the perspectives from the work
in [3], the last world can be beneficial as the characteristics of maintained equip-
ment or the service’s environment may affect the service definition and should
thus be included in the model. Each world is organised according to different
types: the need type from the needs world denotes a benefit that a customer
is looking for in the service; the service element type from the service solution

4.2 Research Questions 55

Figure 4.4: Overview of Four-Worlds model from [49]

world is used to describe the agreement about what is to be delivered by the
service; the service object type from the objects-of-service that describes the
recipient of the service, or the environment relevant to that recipient; and the
process module types that represent tasks carried out as part of the service
delivery process. These types can have valued attributes, and are organised in
the different worlds using partonomy and taxonomy relations, while constraints
specify the dependencies between the types that must hold to obtain a valid
configuration.

4.2 Research Questions

Based on the requirements from Part I, we specify in this section the main
research problem in more detail with the following Research Questions:

RQ1 What needs of the model’s user should be supported?

RQ2 What modelling constructs support addressing the heterogeneity?

RQ3 How to integrate the different dimensions of heterogeneity in the models?

RQ4 How to support the management of product families over time and for
different market situations?

In the rest of this part, we extend the motivation example presented in Sec-
tion 2.2. We present in Figure 4.5 a simplified version of the Mobile Device case
study.

56 Research Problem

It represents a configurable family of products consisting of:

• A set of physical elements, including a keyboard, a screen, a battery or a
motherboard for example. This part represents all the components of the
products that are manufactured, and that will be translated into BOMs
and operations routes.

• The configurable software running on the devices. This includes the dif-
ferent applications (e.g., phone, photo, or map applications) that are to
be deployed on the devices, as well as the libraries that will support them.
Deployment of such elements involves installing software packages in a
specific sequence.

• The services associated with the devices. The product family can be sold
with different services, including phone and data subscriptions, different
types of repair schemes, or synchronisation services.

Already this rather small case study illustrates how complex the modelling of
a heterogeneous product family can be. Indeed, the engineers responsible for
modelling the variability in the physical parts of the system often possess knowl-
edge different from the ones responsible for managing the software configuration
model, or creating the service model. As can be seen in Sections 2.1 and 4.1,
although the modelling approaches often use the same basis (types, parton-
omy, etc.), the high-level concepts behind each type of modelling are different,
and thus require different mindsets. One can therefore assume that the task of
managing the variability of the hardware, software and service parts for large
products is delegated to separate groups of knowledge engineers.

Configuring such a product family can be quite complex, due to the amount
of technical details represented in each different aspect of the products. Those
details are often not easily accessible to sales persons and end-users, who prefer
viewing the features (or functions) of product families, as described in [93].
Defining the feature set of the product family may be enough in some cases.
However, we identified several scenarios that illustrate different situations where
this feature set may need refinement:

• Market differentiation: The company selling the products proposes dif-
ferent feature sets for different markets. In our example, different mar-
kets, e.g., Europe and United States, requires different data signals to
be handled by the phones, as well as different regulations. The possible
combinations of features may just be restricted on those different markets.

• Feature set evolution: The product family’s feature set is evolving with
time. Devices may not arrive fully featured on the market, due to time

4.2 Research Questions 57

Hardware
• Screen
• Enclosure
• Chips
• Processor
• GPS
• Cards

Software
• Applications
• Networking
• Libraries
• User

Experience

Services
• Subscriptions
• Repair
• Synchronization
• Support
• Map Services

Markets
Differentiation

Distributors
Tailoring

Feature Set
Evolution

Market
Analysis

Figure 4.5: Overview of the extension of the Mobile Device case study. The
product family represents mobile devices and is configured according to three
dimensions, hardware, software and services, and needs to be adapted to differ-
ent scenarios, e.g., tailored to distributors and markets.

constraints or strategic decisions. A refined feature set may then be needed
for a specific time, with additional constraints that may disappear (or be
modified) in future evolution of the product family.

• Distributors tailoring : The producing company is distributing the prod-
ucts to different intermediary vendors. Products like the Mobile Device
may not be distributed directly by the manufacturer. This producer may
propose a feature set to vendors that can adapt it in order to forbid specific
combinations, or to create a more simple feature set for the end-customer.
For example, the example products may be sold by distributors by let-
ting the customer choose between different feature packages, limiting the
choices in configuration.

• Market analysis: The end-users can also be considered beforehand (instead
of the product family). A market study identifies the different needs of the
customers (or needs that the company wants to introduce in the market)
which are used to identify different feature sets to satisfy these needs,
aiming at creating a product family to fit those. In contrast to the first
three scenarios, this scenario considers the market needs as the basis for
designing the product family.

58 Research Problem

These scenarios provide a more concrete characterisation of how the function-
alities of the product family may need to evolve depending on its use and dis-
tribution, as introduced in Research Question 4.

Chapter 5

Conceptual Modelling
Framework

In this chapter we present a framework for modelling heterogeneous product
families. This framework synthesizes, unifies, and extends different approaches
to modelling configuration in the different design disciplines, e.g., physical prod-
ucts, software, or services. We first give an overview of the approach, and then
detail the different conceptual elements and the dependencies between them.
The framework and related work are discussed at the end of the chapter.

5.1 Overview of the Approach

Our approach is based on the concept of modelling views. Those views are used
to model different aspects of the product family, according to the different roles
of the modellers. The main assumption is that each product family considered
consists of different dimensions, and that all these dimensions need (and benefit
from) configuration. An overview of the basic concepts can be seen in Figure
5.1.

Configuration models are often created and maintained by knowledge engineers
based on various details provided by domain experts. However, heterogeneous

60 Conceptual Modelling Framework

Realisation
View

Realisation
View

Realisation
View

Structure
View

Structure
View

Structure
View

Feature Views HierarchyFeatures

Structure

Realisation

D
eg

re
e

of
 te

ch
ni

ca
lit

y

abstract

concrete Product dimensions

Implementation

Mapping

... ...

... ...

Figure 5.1: Overview of the conceptual framework. Realisation and structure
views are specific to each dimension of the product family, while feature views
are organised in a feature views hierarchy (Figure 5.2) and represent the whole
product family.

product families with multiple dimensions may require different kinds of domain
experts with different roles and sets of skills, according to the degree of tech-
nicality or the dimension considered. That is why our framework is based on
different types of views: feature views, structure views and realisation views.

Feature views provide a view of a product family from a high level of abstraction.
Technical details of a product family are not suitable for all types of users:
feature views are therefore used to express the different functionalities of the
product family. These views are targeted at sales persons or end-users that need
to have an understanding of what the product can do, instead of how they can
do it. The aim is indeed to differentiate between what functionalities the end-
user needs from the product family versus how those needs can technically be
achieved. In our conceptual approach, feature views are not separated according
to the different dimensions of the product family. The relations between the
concepts described in feature views are related to the product as a whole, and
as such should not be dimension-specific. Products can indeed be characterised
by the features (or functions) they provide, independently from the way they
are structured.

Structure views define the different design components that implement the de-
scribed features of the product family, and the relations between them. Structure-

5.1 Overview of the Approach 61

based approaches for configuration are widely used [93], as the compositional
structure of the product families is often used to represent the product data
knowledge. The structure views communicate the aspects of the architecture
of interest to those involved in designing the system. They provide more con-
crete models of a product family, as they represent the specifications of the
components of the system. Structure views are thus mainly aimed at design or
maintenance, and are for example targeted at product design engineers, software
architects, or service contractors.

Realisation views offer a detailed technical view of how the products are re-
alised. Compared to structure views, whose purpose is to represent the design
of a specific dimension of the product family, realisation views are aimed at
describing the elements necessary for the concrete realisation of the system for
that dimension. They are thus targeted at highly specialised engineers, e.g.,
product engineers, software developers, or service deliverers, and represent the
lowest abstraction level in our conceptual configuration framework. Each real-
isation view is associated with a dimension, which defines its proper meaning:
physical products use this view to represent manufacturing data, while software
involves the solution deployment, and services the delivery process.

While feature views are related to the whole product, different structure and
realisation views must be considered for each dimension, providing a two dimen-
sional modelling of the product family, according to the degree of technicality
of the view (structure versus realisation view) and the domain of expertise (de-
pending on the dimension considered). This also means that structure and
realisation views from different dimensions do not influence each other. This
is motivated by the fact that each type of view is handled by engineers with
different roles and skills, e.g., the architecture of the software should be inde-
pendent from the structure of the physical product, although some elements
may be combined to provide specific features in the feature views.

Feature views are related to structure views using implementation. This inter-
action is primordial as it models the dependencies between the feature view and
the different structure views. The implementation of a specific feature in the
model has indeed to be provided by the structural capabilities of the product
family, whether it comes from a specific dimension or a combination of factors
from different dimensions. Moreover, structure views and realisation views are
related using mappings. Those mechanisms are described in more details in the
next sections.

In order to address with our approach the different scenarios discussed in the
previous chapter, feature views are organised in a specialisation hierarchy called
a feature views hierarchy (Figure 5.2). Each model defines a base feature view,
which will contain all the features available for the modelled product family,

62 Conceptual Modelling Framework

Base feature view

Feature View
A

Feature View
B

Feature View
C

...
Implementation
Reference
Refinement

Implementation
Reference
Refinement

Feature views hierarchy

Figure 5.2: Feature views hierarchy

and should be implemented by the structural views. This view can then be
refined in specialised feature views, in order to model specific sets of products.
In contrast to the structural and realisation views organisation, the feature
views hierarchy is a dynamic hierarchy, in the sense that feature views can be
added or removed in that hierarchy in order to fit specific needs. The scenarios
defined previously can be supported by the feature views hierarchy by using
a fully featured base view and specialised views for different markets (Markets
differentiation scenario), for each evolution of the product family (Feature set
evolution scenario), or for distributors’ own feature sets (Distributors tailoring
scenario). The last scenario (Market analysis scenario) can also be supported
in a top-down approach: higher level feature views can be built according to a
market study; those views can then be merged into one base feature view, from
which the company can see whether all necessary features can be implemented by
its current offering, or whether some changes need to be done. Feature views in
the feature views hierarchy are related by specialisation operations (refinement
or reference) or by implementation.

In the next section, the different views are described in more details, illustrated
by our case study example. Section 5.3 then addresses the different types of de-
pendencies and constraints used in the framework and their semantics. Finally,
we detail in Section 5.4 the mechanisms used to relate feature views and types
in the feature views hierarchy. We refer to the case study extended in Section
4.2 for illustrative examples.

5.2 Description of the Views 63

5.2 Description of the Views

Modelling views fit different modelling purposes, and are therefore split into
feature views, structure views, and realisation views. Each type of view is char-
acterised by a set of concepts with a specific organisation. Modelling views can
also interact with other views in various ways, depending on their types.

Each view follows a type-instance approach. Types represent classes of distin-
guishable entities in the modelled product family, and serve as a description of
its individuals, or instances. Each of the following subsections describes one
type of view in detail, defining the associated concepts using UML meta models
and how they are used when modelling the different product dimensions.

5.2.1 Feature Views

Feature views provide a view of a the functionalities of a product family. The
UML meta model defining the concepts used in feature views can be seen in
Figure 5.3, while Figure 5.4 shows the feature types of the base feature view of
our case study. UML is used to represent the case study, although no constraints
are shown here. Note also that the model of the Device Mobile product family
presented in the rest of this chapter are subparts of a larger model available
used in Chapter 11 and available at [74].

A feature view is composed of feature types. Individuals instantiated by those
types represent features that a product family can provide. Adapting the defini-
tion from [93], we define a feature as “an increment in the system functionality
that the product provides to the customer, the user of the product, or the envi-
ronment in which the product instance will be situated”.

Feature types define a partonomy structure: each type can define one or several
subfeature relationships with other feature types. A subfeature is a decomposi-
tion of a feature type, and provides a part of the functionality that its parent
is defined for. Subfeature relations have a cardinality, defining the number of
feature instances that are involved in each relation. Several feature types can
thus be grouped together to express the fact that they are providing similar
functionalities or are part of the functionalities of a larger feature type, in an
incremental way. Subfeature relations can also be used to model optional fea-
ture or feature group as in [29], expressing a choice over different subfeatures.
This also permits a better model maintainability, as the model becomes more
modular, and the parent feature type (i.e., the “head” of a subfeature relation)
can be reused as the subfeature of different feature types, limiting the number

64 Conceptual Modelling Framework

name: String
isAbstract: Boolean
isRefinement: Boolean

FeatureType

isReference: Boolean
name: String
cardinality: Range
isReadOnly: Boolean
isHidden: Boolean

AttributeDefinition

CompatibilityConstraint

name: String
values: Set

Domain

FeatureView

isReference: Boolean
name: String
cardinality: Range

SubfeatureDefinition

root

1

*

*

*

*

1

*

*

*

0..1

1

1..*

*

subtype of

of
 ty

pe
 ►

contains ►

*

ImplementationConstraint

specialization of

1
*

Figure 5.3: UML meta model for feature views

of relations declared without limiting the expressiveness of the model.

Example 1 Consider the base feature view of our case study (Figure 5.4). Mo-
bile Devices can propose features such as device localisation, telephony capabil-
ities or different types of input and display. We thus define feature types such
as Localisation or Input. The Phone feature type is a subfeature of Communi-
cation, and may not be used during configuration, as its cardinality is 0 or 1.

The feature types in a feature view are also organised in a taxonomy: each type
can be related to other types via a kind-of relation. In such a relation, there is a
subtype and a supertype. Individuals instantiated from subtypes also contain the
properties of their supertypes and their constraints. Types can have multiple
subtypes and multiple supertypes, provided that the names given to each su-
pertype’s properties do not collide with the properties of the others supertypes.
This means that the instance of the subtype inherits from its supertypes, e.g.,
when it provides functionalities derived from all of them. Finally, a type may
be declared abstract, in which case instances of this type must be assigned one
of its concrete subtypes during configuration.

Attributes are valued properties of a feature instance. They represent the char-
acteristics of a feature type, i.e., some variable information that must be chosen

5.2 Description of the Views 65

type: {netbook,tablet,smartphone}
color: {Black,White,Alu}

«FeatureType»
DeviceFeatures*

physicalKeyboard: boolean
backlitKeyboard: boolean
touchInput:{none,
stylusBased,multitouch}

«FeatureType»
Input

size: {normal, large}
autoTurnOff: boolean
autoSensibility: boolean
fingerprintResistant: boolean
landscapeMode: boolean

«FeatureType»
Display

internetAccess: boolean
socialNetworking: boolean

«FeatureType»
Communication

directionDetection: boolean
orientationDetection: boolean
deviceLocalization: boolean
mapDownload: {none,all,
automaticDownload,Europe,
America, Asia}

«FeatureType»
Localisation

3G: boolean
planType: {social,family,
nomad,individual,prepaid,
dataOnly,business}
dataPlan: {none,medium,
high,business}

«FeatureType»
Phone

wifi: boolean
bluetooth: boolean
ethernetAccess: boolean

«FeatureType»
Network

[0..1]

type: {classic,extended,pro}

«FeatureType»
Assistance

localisation

comm

phone
network

assistance

display

input

capacity: GB{1,5,16,32}

«FeatureType»
CardStorage

storage[0..1]

Figure 5.4: Types structure of the base feature view for the Mobile Device
product family, presented in UML notation. UML Aggregations are used to
represent subfeature relationships, including names and cardinalities. The root
feature type is designated by a star(*) and thick lines. Compatibility constraints
are not shown here.

a value during configuration. Each feature type can define attributes using at-
tribute definitions. Those definitions define the name of the attribute, and the
number of elements it refers to, using a cardinality. Each attribute can take dif-
ferent values, which are specified in a named domain. An attribute can also be
defined as read-only or hidden. If an attribute is read-only, it will not be mod-
ifiable during configuration by an end-user. In case it is hidden, it is not even
visible. These options are useful when providing information to the end-user
or declaring attributes for computational purposes and ease of modelling. At-
tributes and subfeatures are from now on referred as the properties of a feature
type.

Example 2 The feature type Display has an attribute size, which represents
whether the display of the mobile device should be of normal or large size. The
Input type also contains attributes, for example, to specify whether the input
should be touch-based, and whether the device should have a backlit keyboard.

Types can define compatibility constraints and implementation constraints. These
constraints permit to model the dependencies within feature views and with
other views as well. Dependencies and constraints will be described in more
details in Section 5.3.

66 Conceptual Modelling Framework

Semantics. In a valid configuration, there must exist at most one root feature
type, which would be the root of the partonomy tree. However, due to the
presence of a feature views hierarchy and the potential specialisation operations
between the feature views (see Section 5.4), it is possible that no root is defined,
in which case the root feature type is assumed to be the root feature type of
the immediate parent feature view in the hierarchy. A special case is the base
feature view, which must declare a root feature type, as it is at the root of the
feature views hierarchy. Moreover, there should be no cycle in the partonomy
and taxonomy, as those relations are hierarchical and form a tree. The number of
instances of feature types defined as subfeatures should satisfy the cardinality
of the subfeature relations they are declared in. Finally, a valid instance of
a feature type contains all the attributes of its type and its supertype; each
attribute must have a value that has its declared type, and which is chosen
within its declared domain.

5.2.2 Structure Views

Structure views define the different design components that realise the described
features of the product family. The UML meta model defining the concepts
used in structure views can be seen in Figure 5.5, while Figure 5.6 shows the
three structure views for our case study, corresponding to the physical, software,
and service dimensions, in UML representation. It is worth pointing out that,
although the UML representation of the physical structure view is very similar
to the UML model seen in Chapter 3 (Figure 3.3), the model shown here is
merely using UML symbols to represent the concepts defined in our framework,
while the model from Chapter 3 used the actual UML concepts to represent the
product family.

The basic building blocks in structure views are structure types, which can be
either component types or association types. Each structure type is associated
to a structure view.

Instances of component types represent structural elements of the system, and
can be composed of subcomponents, thanks to partonomy relations. Each struc-
ture view contains one root component type, which becomes the component type
from which the partonomy starts. Subcomponent relations are also associated a
cardinality, that may be static (a specific number of subcomponents is specified)
or dynamic (a range of possible cardinalities is declared). Note that the com-
ponent types involved in a subcomponent relationship must be associated with
the same structure view: this prevents that the partonomy of a view extends to
another structure view describing another dimension. Also, as in feature views,
no cycle can exist in the partonomy.

5.2 Description of the Views 67

name: String
isAbstract: Boolean

StructureType

ComponentType AssociationType

name: String
cardinality: Range
isReadOnly: Boolean
isHidden: Boolean

AttributeDefinition

CompatibilityConstraint

name: String
values: Set

Domain

direction: {required, provided, none}
cardinality: Range
name: String

AssociationDefinition

StructureView

name: String
cardinality: Range

SubcomponentDefinition

root

1 *

*

*

*

* *

1
1

*

*
*

*

*

1

1

1..*

**

subtype of subtype of

of
 ty

pe
 ►

of
 ty

pe
 ►

◄ involves

contains ►

useType: {consumes,produces}
value: Expression

UseDefinition

name: String

Resource

*

*

1

1

*contains ►

us
es

 ►

Figure 5.5: UML meta model for structure views

Association types represent types that can be involved in an association rela-
tion. Associations are non-hierarchical relationships between components. A
component type can define an association of a specific association type. This
association type can be bound to a specific number of component types that
are allowed to use it. Association relations also define the direction of the rela-
tion: a component type defining an association can either provide a connection
point, require one, or simply be involved in a non-directional relationship. As
for subcomponent definitions, cardinalities can be used to define the number of
individuals potentially involved in the association definition. Component types
defining the same type of association can be connected if the directions match
(one is required and the other one is provided, or both have no direction).

A taxonomy structure can also be created, as structure types can be subtypes
of other structure types, provided that they are of the same nature (component
or association types). As with feature types, the subtype of a structure type
contains all the latter’s properties, and may define additional ones.

The different concepts used in structure views have a specific meaning accord-
ing to which dimension each view refers to. For example, a physical structure
view represents the physical structure of the product family. Component types

68 Conceptual Modelling Framework

are entities whose individuals are physical components involved in the physi-
cal design, while associations are used to model non-directional physical links
between two components. A software structure view describes the architecture
of the software system involved in the product family. Instances of component
types represent software components, and associations can be defined to model
interfaces, whether they provide software functions or require some. Also, a
service structure view describes the specifications of the service to be deliv-
ered. Component types are service element types, and describe contractual
agreements of what to be delivered, similar to what is modelled in the service
solutions world of Heiskala et al. [49].

Example 3 The Mobile Device product family (Figure 5.6) is composed of de-
vices that include for example a screen and a motherboard. Subcomponent def-
initions are represented using UML Aggregations, and generalisation are repre-
sented using UML Generalisations. The root component types are designated
by a star(*) and thick lines. In the physical structure view, association defini-
tions are shown using UML Associations. Resource use definitions are shown
as dashed arrows, their use types symbolised by the directions of the arrows. In
the software structure view, association definitions are shown using UML Inter-
face (provided) and UML Socket (required), depending on the direction of the
association.

The WirelessChip component type represents different chips that can be installed
on the motherboard: it is thus involved in a subcomponent relations with the
Motherboard component type, with a cardinality of 0 to 3, i.e., up to 3 instances
of WirelessChip can be present in a valid configuration. The Stylus association
type models a stylus: it has no specific parent in the partonomy, but is associated
with the TouchScreen type (which may need a stylus) and the Enclosure of the
device (which may have a specific slot to store the stylus).

The software running on the devices is composed by several layers, including two
subject to configuration: the middleware layer and the User Experience layer
(UX). The UX layer describes the different applications that can be installed,
while the middleware layer relates to the libraries behind those applications.
Other layers, such as the software kernel, are not configurable, and thus do not
appear in the configuration model. The UX component type is abstract, and
has to be specialised as a HandsetUX or NetbookUX during configuration time.
Also, the ILoc interface is modelled as an association type between the library
LocationLib that provides it and the MapsApp application that requires it.

Finally, the devices come with different services, including phone and data sub-
scriptions, after-sales support, and map downloading services. The service struc-
ture view thus contains component types such as PhoneSubscription, that may
appear in the service contract if the device is sold with a phone subscription.

5.2 Description of the Views 69

+miniUSBAdapter:{none,VGA,DVI,HDMI}

«ComponentType»
DevicePhysical*

+port: {none,VGA,DVI,HDMI,miniUSB}
+DVDslot : Boolean
+ethernetPort : Boolean
+hasStylusSlot : Boolean
+size: {115x58,240x190,268x178,295x210}

«ComponentType»
Enclosure

+nbTouchChips: [0..3]
+hasCompassChip : Boolean
+hasAccelerometer : Boolean
+nbSlots: {6,10,12,14}
-nbChips: [0..5]

«ComponentType»
Motherboard

«ComponentType»
EthernetCard

+ppi: {132,330}
+size: inch{3,9,10,12}
+technology: {OLED,LCD}

«ComponentType»
Screen

«ComponentType»
GPSReceiver

+chipType: {wifi, bluetooth, FM}

«ComponentType»
WirelessChip

+frequency: MHz{600,1000,1600}

«ComponentType»
Processor

+type: {capacitive,resistive}
+oleophobicCoating : Boolean

«ComponentType»
TouchScreen

[0..1][0..1]

[0..3]

+size: {compact,large}

«AssociationType»
Stylus

[0..1][0..1]

+type: {GSM,GSM/UMTS}

«ComponentType»
RFCard

[0..1]

motherboard

rfCard

processor

gps

wirelessChip

ethernet

screen

enclosure

stylus stylus

«Resource»
AvailableSlots

+capacity: GB{1,5,16,32}

«ComponentType»
SDCard

[0..1]

sdCard

(a)

«ComponentType»
DeviceSoftware*

«ComponentType»
UX

«ComponentType»
CommsSW

«ComponentType»
Middleware

«ComponentType»
NetbookUX

touchFrmk: boolean

«ComponentType»
HandsetUX

«ComponentType»
MapsApp

«ComponentType»
BrowserApp

«ComponentType»
TelephonyLib

«ComponentType»
PhoneApp

ethernetPlugin: boolean
wifiPlugin: boolean
bluetoothPlugin: boolean
3GPlugin: boolean

«ComponentType»
ConnectionMngr

«ComponentType»
BluetoothLib

[0..1]

[0..1]

ux

phone

browser

[0..1]

maps

middleware

bluetooth

connMgr

telephony

[0..1]

[0..1]

comms

«ComponentType»
InternetSW

«ComponentType»
LocationLib

«ComponentType»
LayoutEngine [0..1]

location

layout

internet

«AssociationType»
ILoc

«AssociationType»
IRender

«AssociationType»
IPhoneAPI

(b)

«ComponentType»
DeviceServices*

softwareUpdates:{OTA,USBSync}

«ComponentType»
Support

duration: {90d,1y,2y,3y}
networkSupport: boolean
appsSupport: boolean

«ComponentType»
SoftwareSupport

duration: years[1..3]
accessoriesCoverage: boolean

«ComponentType»
RepairCoverage

talkTime: {prepaid,1h,2h,3h,6h}
SMS: {170,210,250,unlimited}
internationalPlan: {none,Europe,America,unlimited}
unlimitedEvenings: boolean
favoriteNumbers: {0,2,5}

«ComponentType»
PhoneSubscription

monthlyData:{200MB,2GB,nlimited}
wifiHotspotAccess:boolean

«ComponentType»
DataSubscription

autoDownload: boolean
france: boolean
germany: boolean
italy:boolean
spain:boolean
UK:boolean
USA:boolean
canada:boolean
brazil:boolean
argentina:boolean
russia:boolean
china:boolean

«ComponentType»
MapService

[0..1]

[0..1][0..1]

support

software
repair

data

phone

map

(c)

Figure 5.6: Structure views of the Mobile Device product family. (a) Physical
structure view. (b) Software structure view. (c) Services structure view.

70 Conceptual Modelling Framework

Structure types can have attributes and compatibility constraints, in the same
way as feature types. Those attributes represent valued characteristics of the
instances, and the compatibility constraints describe the dependencies within
the structure view (detailed in Section 5.3). Attributes, subcomponent, and
association relations will from now on be referred to as the properties of a
structure type.

Example 4 The SoftwareSupport component type in the service structure view
(Figure 5.6(c)) has a duration attribute (which ranges from 90 days to 3 years),
while the Stylus association type in the physical structure view may have a com-
pact or large value for its size.

Finally, resources can be declared in structure views, and their production and
consumption by component types is declared by use definitions. Resources can
model any quantifiable entity that needs to be (at least) balanced in the system.

The value of a resource use definition is specified with the same kind of expres-
sion as compatibility constraints (Section 5.3) and must evaluate to a quantity.

Example 5 Resources make the most sense in physical structure views. The
AvailableSlot resource in the Mobile Device product family represents the num-
ber of chip slots available on the motherboard: it is produced by the motherboard
itself, depending on the size made available within the enclosure, and is con-
sumed by each chip installed on the motherboard.

Semantics. In a valid configuration, there must exist exactly one root compo-
nent type. No cycle cannot appear in the partonomy and taxonomy trees. The
number of instances of component types defined as subfeatures should satisfy
the cardinality of the subfeature relations they are declared in.

Moreover, each association instance present in the configuration should be con-
nected to component types matching the direction of their association definitions
(if a definition is provided).

Resources must also be balanced: the difference between all the productions
from the different type instances and all the consumptions must be greater or
equal to 0 in a valid configuration. Finally, as for feature views, a valid instance
of a structure type contains all the attributes of its type and its supertype; each
attribute must have a value that has its declared type, and that is chosen within
the declared domain.

5.2 Description of the Views 71

5.2.3 Realisation Views

How each product family design is mapped to production data depends often on
the backend of the configuration tool used (i.e., whether the tool is standalone,
or integrated in an ERP system, etc).

However, we define here a model for realisation views aiming at providing the
base for a common conceptualisation of the realisation phase in configuration.
The UML meta model defining the concepts used in realisation views can be
seen in Figure 5.7.

The building blocks of a realisation view are realisation types. There are three
possible realisation types: item types, operation types, and resource types. Each
realisation view is associated with a structure view (representing the same di-
mension), and this interaction is responsible for the presence of structure types
in the meta model, although they do not belong to the realisation view.

Item types represent the production components used to realise products. This
can be a BOM item for manufactured parts, a software package when dealing
with software, or an object to be produced when delivering a service (e.g.,
a contract or a bill). Contrary to structure views, realisation views are not
starting with a single root type. Instead, the structure and realisation views are
associated via a mapping between the structure types and the corresponding
item and operation types necessary to realise the product.

A mapping condition is specified to determine whether an item (or operation)

RealisationType

itemId: String

ItemType

name: String

OperationType

StructureType

RealisationView

cardinality: Range

SubItemDefinition

*

1

*

1

11..*

of
 ty

pe
 ►

◄ contains

name: String

ResourceType

MappingCondition

*

1

0..1 0..1

cardinality: Range

SubOperationDefinition

*

of
 ty

pe
 ►

*

1

*
*

successor

uses ►

* *

StructureView

1

1

associated w
ith

►

1 1..*◄ contains

Figure 5.7: UML meta model for realisation views

72 Conceptual Modelling Framework

type is to be produced or not. Mapping conditions are written as constraints,
and will be described in Section 5.3. Since structure views provide a higher level
of abstraction of the product family, there are often much more item types than
structure types. Each item type mapped to a structure type thus defines its
own tree of subitem types, providing a more detailed breakdown of the actual
production components.

Example 6 Figure 5.8 shows a part of the realisation view for the physical di-
mension of our case study example. It represents the realisation of the Screen
and TouchScreen structure types. The Screen type can be mapped to different
items, depending on the mapping conditions specified in the relationships. These
conditions may involve elements from the structure view, such as attributes val-
ues or any other properties.

For example, if the individual is an instance of the TouchScreen type, the BOM
may be composed by the item #8920, which is in turn composed of two items
#235 and two items #239.

Operation types are used to specify a set of operations needed during the pro-
duction of configured products. As for item types, a mapping is done with
structure types, and suboperations can be defined.

Different production operations must often be performed in a specific order.
Operation types can thus be linked by successor relations. In case a successor
relationship is defined between two operation types, the operation individuals
instantiated must respect the order in which they are carried out if they are both
involved in the realisation process. The operation types correspond for example
to sequences of manufacturing operations for physical parts, deployment actions
(with dependencies) for software, and delivery processes for services.

Example 7 The Coating operation (for applying coating to the screen) is spe-
cific to instances of the TouchScreen type. Also, the different operations are
ordered, in such a way that the thermal tempering must be done before the coat-
ing (if needed), and before the assembling. This is defined using the successor
relation between the ThermalTempering and the Assemble types.

Finally, resource types can be defined to represent resources used in the op-
erations. Those resource types may describe a machine, an operator, some
information, or anything that may be necessary to complete the operations.

Example 8 The Coating operation type uses the CoatingInjector resource type,
as an injector is need during the coating of a touch screen.

5.2 Description of the Views 73

Semantics. In a valid configuration, for each item or operation type, the
following applies:

1. If the type is mapped to a structure type via a mapping condition, an
instance of the realisation type should be present for each instance of the
structure type for which the mapping condition is true.

2. If not, an instance (or more, depending on the cardinalities involved) of
the realisation type should be present if and only if it is involved in a
subitem (or suboperation) relation and its parent is present.

Moreover, an instance of a resource type should be present for each instance
of operation type that uses the resource type. Finally, the list of operation
instances should be ordered in according to the successor relation defined.

«StructureType»
Screen

«StructureType»
TouchScreen

«OperationType»
Assemble

«ResourceType»
CoatingInjector

«ItemType»
#8920

«ItemType»
#8900

«ItemType»
#240

«ItemType»
#239

«ItemType»
#238

«ItemType»
#235

«ItemType»
#8919

[2] [2]

[2] [2]

[4]

«OperationType»
Coating

«OperationType»
ThermalTempering

«ResourceType»
Furnace

«ResourceType»
Cooler

uses ►

uses ►

uses ►

◄ succ

◄
succ ◄

 su
cc

Figure 5.8: Part of the physical realisation view for the running example, pre-
sented in UML notation. Dashed arrows show the mapping between structure
types and item/operation types (associated conditions are not shown here).
Subitem relations are represented using UML Aggregations. The Screen and
TouchScreen structure types are shown here to illustrate the mapping relations,
although they are not part of the realisation view.

74 Conceptual Modelling Framework

5.3 Dependencies Within and Between Views

Attributes and other properties of types in feature and structure views handle
the variability in the product families. It is however necessary to restrict the
combination of values available in order to obtain a model that fits the actual
product family. Moreover, modelling heterogeneous product families is more
than modelling its different dimensions. These dimensions interact with each
other, and modelling those dependencies is essential in order to have a complete
and consistent modelling framework. Constraints can be used to specify de-
pendencies within or between views when other modelling mechanisms are not
sufficient to capture them.

A constraint is a Boolean condition relating different elements of the model. We
define different types of constraints in our conceptual framework: compatibil-
ity constraints, which aim at ensuring the consistency of a structure or feature
view independent from each other; mapping constraints, which define whether
individuals from the realisation views should be included or not in the final con-
figuration output; and implementation constraints, which are used to describe
the relations between the base feature view and the structure views, or between
two feature views related in the feature views hierarchy.

This section describes the different types of constraints. Examples of constraints
are given in a constraint language for illustrative purposes: this constraint lan-
guage will be given in more detail in the next chapter.

5.3.1 Compatibility Constraints

Compatibility constraints are fundamental in the modelling of the feature views
and the structure views, independently from the dimension considered, as they
remove possible inconsistencies between different properties of the instances
during configuration.

A compatibility constraint is specific to a particular view, and can only involve
properties of this view. As it models the compatibility of the different elements in
the system, such a constraint must be evaluated to true in a valid configuration
of the product family. A compatibility constraint belongs to a specific type: this
type is called the context of the constraint.

Example 9 Consider the physical structure view in Figure 5.6(a). In the con-
text of the DevicePhysical type, the following constraint specifies that the en-
closure of a device must contain a slot for an Ethernet port if and only if the

5.3 Dependencies Within and Between Views 75

motherboard contains an Ethernet card.

enclosure.ethernetPort = true⇔ Count(motherboard.ethernetCard) = 1

Properties of types are referenced using qualified names by navigating from the
context using a dot-notation. The constraint is an equivalence, specifying that
the ethernetPort attribute defined in the enclosure subpart of instances of De-
vicePhysical must be true if and only if the cardinality of the subpart definition
named ethernetCard in the motherboard subpart of DevicePhysical is equal
to 1.

Constraints may contain references to properties that are not always present in
the product instance being configured. This may occur if a constraint accesses
a subpart whose cardinality is not fixed, or an attribute from a subtype that
may not be chosen. In that case, we say that the term referring to this property
(attribute, subpart, subfeature, ...) may be inactive.

Example 10 Consider the base feature view in Figure 5.4. The following con-
straint, declared in the Communication feature type, specifies a phone feature
with 3G implies that the device has internet access:

phone.3G = true⇒ internetAccess = true

The term phone.3G may be inactive during configuration, as the cardinality of
the phone subfeature in Communication may be equal to 0. In such a case, the
above constraint would be directly evaluated to true.

Semantics. The evaluation of a constraint occurs during configuration, when
types are instantiated to individuals. Each instance of the context type in which
the constraint is declared must satisfy it. Also, each compatibility constraint
containing at least one inactive term is evaluated to true during configuration.

5.3.2 Implementation Constraints

The types defined in the base feature view represent all the functional character-
istics of the system, and the relations between those abstract concepts and the
more concrete ones, the structural elements of the product family, have to be
defined. Feature views use the concept of implementation. The implementation

76 Conceptual Modelling Framework

of a feature type is done using implementation constraints. Implementation con-
straints are essential to our framework, as they model the interactions between
the base feature view and the structure views, as well as between views in the
feature views hierarchy (Section 5.4). These constraints involve the properties
of the feature type they are declared in, as well as properties of the types from
the different structure views.

Implementation constraints model the interdependencies between a child view
and one or more parent views. These constraints may involve the base feature
view (child) and the structure views (parents), or a feature view and its parent
in the feature views hierarchy.

Implementation constraints are always defined in the child view. The main chal-
lenge with these constraints is to express what is the impact of features from the
child view on the elements of the parent view(s), e.g., what structural elements
can implement the desired feature. In order to reflect this, implementation con-
straints are composed of two expressions C and P involved in an implication,
an equivalence, or an equality constraint:

C ⇒ P
C ⇔ P
C = P

The expression C represents the features to be implemented by the constraint.
In a similar way as in the compatibility constraints, it takes the form of a relation
between properties from the child view, using the context of the feature type
declaring the constraint.

On the other hand, the expression P represents what is needed in the parent
view(s) to implement the features specified by C. Each term in P specifies a local
context defined by a dimension (if there are several parent views, from different
dimensions), and a type, independently of the global context of the implemen-
tation constraint. For example, the term Physical::TouchScreen.type refers
to the type attribute of the TouchScreen type in the physical structure view.

Semantics. By default, a relation involving a term defined using a local con-
text with type T is satisfied if there exists one individual of T satisfying it.
Existential quantifiers are implicitly used in the semantics of the right hand
side expression P, as a feature may exist if there is at least one combination
of structural elements implementing it. This permits to model the fact that a
feature is actually implemented if a combination of relevant factors are fulfilled.

5.3 Dependencies Within and Between Views 77

Example 11 Consider the following constraint from the base feature view (Fig-
ure 5.4), with Input as context feature type:

touchInput = multitouch ⇔ (Physical :: TouchScreen.type = capacitive
∧ Software :: HandsetUX.touchFrmk = true)

This implementation constraint specifies that a device has a multitouch input
if and only if there exists a capacitive touchscreen and a touch framework is
implemented in the software.

The present() function can also be used to assess whether a specific type exists
in the parent view.

Example 12 Consider the following constraint in the Localisation feature type:

deviceLocalisation ⇔
present(Physical :: GPSReceiver)∧present(Software :: LocationLib)

This constraint ensures that it is necessary to have both a physical GPS receiver
and a software location library to guarantee the device localisation feature.

Finally, implementation constraints handle inactive terms in two different ways,
depending on which part of the expression they are in. If the expression C
contains an inactive term, the constraint should be directly evaluated to true,
as for compatibility constraints. On the other hand, due to the use of (implicit)
quantifiers in the expression P , inactive term are directly taken into account in
the semantics of P.

5.3.3 Mapping Constraints

Mapping constraints are defined in realisation views to specify under which con-
ditions a realisation type should be included in the configuration results. They
specify a mapping between structure types and item and operation types, and
the latter should only be part of the final configuration if certain conditions are
met. Each item and operation type R thus declares a boolean mapping condi-
tion that use terms referencing properties from the structure type T they are
mapped to. Each individual r of type R is implicitly associated to a boolean
term present(r) representing whether or not r will be added to the final con-
figuration. During configuration, the mapping conditions cmap(t, r) for each

78 Conceptual Modelling Framework

individual t of type T are evaluated and must be equivalent to the value of
present(r).

Example 13 Consider the physical realisation view in Figure 5.8 (on page 73)
and the following mapping condition, declared in the Coating operation type :

cmap(TouchScreen, coating) : oleophobicCoating = true

which implicitly refers to the evaluated constraint

oleophobicCoating = true⇔ present(coating)

This condition maps an instance coating (of the Coating operation type) to the
TouchScreen structure type and specifies that the coating operation should be
done for each touch screen that needs an oleophobic coating.

A valid configuration thus ensures that the latter constraint is true for each
instance of the TouchScreen type, i.e., an instance of the Coating operation
type is present if and only if the attribute oleophobicCoating of touchScreen is
true.

Semantics. Just like compatibility constraints, mapping constraints have to
deal with inactive terms. This can happen when a mapping condition contains
terms accessing subparts with dynamic cardinalities, in which case it should be
ensured that an inactive term cannot provoke the inclusion of an item or opera-
tion type in the product realisation. Hence, a mapping condition containing at
least one inactive term is evaluated to false: in order to be satisfied, the evalu-
ated constraint (i.e., the implicit equivalence constraint) would then ensure that
the realisation type is not present in the final configuration.

5.4 Feature Views Hierarchy

As explained in the previous sections, different feature views can be defined, in
order to address the management and evolution of the product family (Research
Question 4) and the scenarios discussed in Section 4.2. The feature views hi-
erarchy starts from a base feature view, defining all the features implemented

5.4 Feature Views Hierarchy 79

by the product family components. This base feature view may then be spe-
cialised, as different versions or evolutions of the product family may require
special restrictions to the set of available features (Market differentiation and
Feature set evolution scenarios), or even more abstract feature views in order
to be presented to final customers (Distributors tailoring and Market analysis
scenarios).

The feature views hierarchy defines a specialisation tree, rooted by the base
feature view. A feature view F ′ is the child of another feature view F if F ′
is a specialisation of F . The specialisation of a feature view is done through
different concepts:

• Refinement and reference: Feature views can refine feature types from
their parent view. A refined feature type can transform the original type
by:

– Defining new attributes or subfeatures: New attributes can be de-
clared in the refined type, as well as new subfeature relationships
(with a new feature type).

– Refining referenced attribute definitions: Attribute definitions can
be refined. In that case, the refined feature type is referencing the
attribute definition, and can modify it by restricting its cardinality,
its domain, or its visibility (with the following hierarchy: “visible” >
“read-only” > “hidden”).

– Refining referenced subfeature definitions: As for attributes, existing
subfeature definitions can be referenced and restricted. A subset of
the cardinality can be used, or the target feature type can be changed
to one of its subtypes.

– Changing the type from concrete to abstract: In case the feature
type has subtypes, it can be defined as abstract to force the use of
its subtypes.

– Adding compatibility constraints: Asides from the transformations
above, new compatibility constraints can be added to the refined
feature type, involving any attributes from the current feature view
(if the type is new or refined) or from the parent view (if the type is
not refined).

Figure 5.9 shows an example of feature types refinement. Type F1 is
refined: the attribute a1 in F1 is declared as hidden, and a new attribute
a5 is declared. The feat3 subfeature definition is also refined, as the
cardinality is restricted to [1..2]. Note that the feature type F3 is not part
of the refined feature view, and is just shown here for illustrative purpose.

80 Conceptual Modelling Framework

«FeatureType»
F1

a1: {0,4,5}

[0..3]
«FeatureType»

F2

a2: [0..5]

«FeatureType»
F3

a3: [2..10]

«FeatureType»
F1'

a4: [0..10]

«FeatureType»
F4

<ref> <hidden> a1
a5: [0..2]

«FeatureType»
<refined> F1

<ref> a4: [0..1]

«FeatureType»
<refined> F4

«FeatureType»
F3

[1..2]

<ref> feat3feat3feat2 feat4

a6: [3]

«FeatureType»
F5

feat5

Parent Feature View Refined Feature View

Figure 5.9: Feature view refinement. Refined types are characterised by the
<refined> tag, while referenced definitions are tagged with <ref>. The type
F3 in the Refined Feature View is shown with a dashed outline, as only the
feat3 definition is part of the view, while the feature type is not.

«FeatureType»
<refined> DeviceFeatures

<ref> touchInput:{none,multitouch}

«FeatureType»
<refined> Input

«FeatureType»
<refined> Localisation

«FeatureType»
<refined> Phone

<ref>type: {classic,pro}

«FeatureType»
<refined> Assistance

«FeatureType»
CardStorage

<ref> storage[0]

{not directionDetection}

{not 3G}

Figure 5.10: Refined feature view for the case study. This feature view uses fea-
ture types from the base feature view: it refines their attributes and subfeature
definitions, and add new constraints.

Also, even though F ′1 is not directly modified, the type F4 is also refined:
the domain of a4 is reduced and a new subfeature is defined.

Example 14 The base feature view of the running example can be spe-
cialised in different ways. Figure 5.10 shows a feature view that refines
feature types from the base feature view. This refined feature view fulfils
the Feature set evolution scenario: several choices in the variability of the
product family are not available, due to a lack of financial resources for
example. It is preferable to keep the base feature view intact, in case it is
used for other scenarios or if the restrictions may disappear in the future.

In this figure, constraints are added to the Localisation and Phone types,
while the Assistance and Input types are refined by restricting the domain
of one of their attributes. Finally, the subfeature definition storage of
DeviceFeatures is refined as well, its cardinality set to 0.

5.5 Discussion 81

• Implementation: Aside from refining types from the parent view, a
specialised feature view F ′ can declare new feature types and attributes,
for example to define more abstract feature groups and properties. As for
the base feature view, the types in F ′ must use implementation constraints
to associate their properties to the feature view F , parent of F ′.

Example 15 Figure 5.11 presents another feature view, specialised from
the base feature view. This view declares new feature types, and divides
the functionalities of the product family in packages. The new types and
attributes are connected to the base feature view properties using imple-
mentation constraints, e.g., in the HomePackage feature type:

multitouch⇒
(ParentV iew :: Input.touchInput = ”multitouch”
∧¬ParentV iew :: Input.physicalKeyboard)

This constraint specifies that if multitouch is selected, there should be at
least one instance of the Input feature type in the parent view (i.e., the
base feature view) that has its touchInput attribute set to “multitouch”
and its physicalKeyboard attribute set to “false”.

Semantics. A specialised feature view is representing the features of the prod-
uct family as well, but in a more constrained way. During the configuration
process, one of the feature views in the hierarchy is chosen as the feature view
that will be focused on. This feature view is used for configuring the product
family, aside from the structure and realisation views. In a valid configuration,
instances of refined types should contain the unreferenced properties of the par-
ent view’s corresponding types as well as the referenced properties defined in
the refined view. Constraints of the chosen feature view should be satisfied,
including implementation constraints to the parent view. The root instance of
the feature view should be an instance of the root feature type of the chosen
refined view, or the one from its parent view if no one is declared.

5.5 Discussion

The different views provide a modelling framework as a contribution to address
the Research Questions (RQs) exposed in Section 4.2. Figure 5.12 shows the Mo-
bile Device product family example split into hardware, software, and services
components. The clear separation of concerns in the structural and realisation
data for each dimension is motivated by RQ1 (What needs of the model’s user

82 Conceptual Modelling Framework

deviceType: {netbook,tablet,smartphone}
color: {Black,White,Alu}

«FeatureType»
DevicePackages*

gaming: {limited,casual}

«FeatureType»
StudentPackage

hasCardStorage:bool
multitouch:bool

«FeatureType»
HomePackage

cardStorage:GB{5,16,32}

«FeatureType»
BusinessPackage

dataPlan:{medium,high,business}

«FeatureType»
HomePackage

planType: {social,family,nomad,
individual,prepaid,business}

«FeatureType»
PhonePackage

[0..1]

[0..1]

phone

data

Figure 5.11: Another example of refined feature view for the Mobile Device
product family. This minimal feature view uses new feature types to propose
the product family to the end-user as a choice of “packages”. Implementation
constraints ensure the link with the base view.

should be supported?) and previous work on modelling each dimension (Section
2.1 and 4.1).

Each view is targeted at a different audience: the structural model of the soft-
ware is handled by a software architect, while a production engineer may be
more adequate to handle bill-of-materials and manufacturing operations. More-
over, we argue that structural and realisation views from each dimension should
be considered independently from each others, and unified in the feature mod-
els they contribute to implement, defined in feature views. In Figure 5.12, the
sales persons working on the device features models the types of input that the
end-user may be interested in. How this feature is implemented is dependent on
several structural elements from different parts of the system: the touch screen
hardware and a touch framework component in the user experience software.
Those two elements can however be chosen independently from each others, but
will only provide the feature if they are both present in the final product.

The UML meta models (Figures 5.3, 5.5 and 5.7) provide a good basis in order to
address the problem of modelling the different dimensions of an heterogeneous
product family, as raised in RQ2 (What modelling constructs support address-
ing the heterogeneity?). Uniform modelling constructs and the different types
of inter-view constraints defined in the framework also contribute to the issue
posed in RQ3 (How to integrate the different dimensions of heterogeneity in the
models?): the implementation and mapping constraints permit to model the in-
terdependencies between the views, allowing a tight integration of the different
dimensions of the product family.

These inter-view constraints are the key to the modelling framework, as they
permit to model the product family as a whole, instead of configuring each di-
mension independently. The implementation constraints relate the views and

5.5 Discussion 83

«FeatureType»
DeviceFeatures

keyboard: bool
backlitKeys: bool
touchInput:{none,
stylusBased,multitouch}

«FeatureType»
Input

«ComponentType»
DevicePhysical

size: inch

«ComponentType»
Screen

coating: bool
type: {resistive,capacitive}

«ComponentType»
TouchScreen

«ItemType»
#8900

...

...

«ComponentType»
DeviceSoftware

«ComponentType»
UX

touchFrmk: bool

«ComponentType»
HandsetUX

...

...

«ComponentType»
Middleware

«ComponentType»
DeviceServices

...«ComponentType»
PhoneSubscription

...

«ItemType»
pkg_oFono

...

...

...

...

Device base features

Physical Design Software
Architecture

Services
specifications

BOM Items and Operations
Software Packages

Deployment Services Processes

implementation

mapping

Product designer

Sales person

Production engineer

Software architect

Software developer

Service contractor

Service deliverer

«ComponentType»
TelephonyLib

«FeatureType»
Localisation

[0..1]

[0..1]

implementation

[0..1]

mapping mapping

«OperationType»
Coating

«FeatureType»
<refined> DeviceFeatures

«FeatureType»
<refined> Input

«FeatureType»
<refined>...

«FeatureType»
CardStorage

«FeatureType»
DevicePackages*

«FeatureType»
StudentPackage

«FeatureType»
HomePackage

«FeatureType»
BusinessPackage

«FeatureType»
HomePackage

«FeatureType»
PhonePackage

[0..1]

[0..1]

[0..1]

implementation refinement & reference

Refined feature views

Figure 5.12: Overall view of the interdependencies in the running example be-
tween the different modelling views, depending on the three dimensions (physi-
cal, software, and services). Refined feature views are circled, while other views
are surrounded by a rectangle. For the sake of readability, only two refined
feature views in the hierarchy are shown.

84 Conceptual Modelling Framework

propagate choices from one view to another during configuration, making the
model globally consistent and reducing the number of errors and the time spent
in configuring the different parts of the product family. Modelling implemen-
tation constraints requires communication between the different stakeholders.
The sales person responsible for the touch input feature may inquire the prod-
uct designer in order to assess what hardware components are needed for the
requested feature. On the other hand, product designers and production engi-
neers need to confer on which items are available to realise the structural design
of the hardware.

Our modelling approach also extends the concept of feature model to a feature
views hierarchy, as a contribution to RQ4 (How to support the management of
product families over time and for different market situations?). Refinement
of the base feature views permits to create specific views tailored to even more
particular needs. The different scenarios defined in Section 4.2 can be modelled
using refined feature views:

• The Market differentiation scenario results in creating a specialised feature
view where domains of feature types’ attributes are narrowed in order to
match the restriction to the attached market.

• Refining feature types and adding temporary constraints in the feature
model can be used to limit the current capabilities of the device family,
e.g., to what currently can be produced. A more appropriate refined
feature view may be used instead in order to make up for the Feature set
evolution.

• Distributors tailoring can be achieved by allowing distributors to create
their own personalised feature view, as in Figure 5.11. The newly cre-
ated feature types are then linked to the lower-level feature views using
implementation constraints.

• In a Market analysis scenario, several feature views can be created in
order to match the product feature sets to introduce in the market. These
views may then be joined into one base feature view, by gathering common
elements or creating more abstract features that can be specialised to fit
the original views, via refinement or implementation.

The feature views hierarchy enables a unification of the product family manage-
ment and evolution at the feature level, independently from the heterogeneity
of the family, while each dimension may have its own separate mechanism for
coping with this issue (e.g., product data management). We also argue that a
child feature view in the feature views hierarchy is indeed a specialisation of its
parent view. The refinement and reference mechanisms restrict the model by

5.6 Comparison with related work 85

adding constraints explicitly or implicitly (e.g., removing values in an attribute’s
domain is equivalent to constraining that attribute so that it cannot take those
values anymore). However, the case of creating new feature types and attributes
could lead to larger feature sets and make the model less strict. Yet, each new
feature type and attribute has to be related to feature types and attributes from
the parent view using implementation constraints, and thus these new feature
types and attributes are just another way to represent the parent’s features,
with the possibility to add even more constraints.

Using modelling frameworks such as the one presented in this chapter is often a
cost-benefit problem. Having multiple views can make the model larger and thus
introduce extra work for the knowledge engineers responsible for it. A single in-
tegrated model has indeed the advantage that the different data about a part of
the system may be centralised in one particular type, while in our case they may
be split into separate views depending on the dimensions considered. However,
we argue that a compartmentalisation of the modelling framework is primor-
dial when one is dealing with model involving heterogeneous product family
like the Mobile Device case study. The different stakeholders can participate in
the model creation and maintenance according to their area of expertise, while
dependencies between the different views are handled by exchange and commu-
nication. Using refined views to model specific cases like the scenarios defined
at an earlier stage also permits to adapt the feature set of a product family
according to the requirements of the different stakeholders. Finally, the separa-
tion of the model into different views permits a more modular organisation of
the configuration model: the use of common concepts independently from each
dimension makes knowledge sharing easier, and more dimensions may be added
to the product model in the future if configuration models from other design
disciplines can semantically use the same basis of modelling concepts.

5.6 Comparison with related work

The conceptual basis of our modelling framework for heterogeneous product
families draws from a number of sources, mainly from research in product con-
figuration, software variability, and service configuration. One of the major
source of inspiration is the configuration ontology by [93]. Concepts such as
component types, resources, partonomy, and taxonomy derive from this well-
known ontology. Moreover, our association type concept is semantically close
to connection ports. Our framework is also described in three levels: a meta
level where the concepts are defined, the model level where the configuration
views and types are described using the concepts from the meta model, and
an instance level, where configuration types are instantiated for configuration.

86 Conceptual Modelling Framework

Aside from [93], this approach has also been considered by Cechticky et al. [23]
or Asikainen et al. [6].

Our concept of features is closely related to the one from feature modelling ap-
proaches. However, many of these approaches differ from our work, as most
of the techniques we use come from product configuration technology, and few
have adapted them to software product lines [6, 33]. Classic feature modelling
approaches, such as [53], do not use a type-instance approach, and define a
configuration as a subset of the features appearing in the feature model. On
the other hand, a configuration in our framework consists of a set of individuals
instantiated from the types of our configuration model. This has some impor-
tant consequences, in particular on the subfeature relationships: if a subfeature
is shared by several features, defining a configuration without a type-instance
approach will result into duplicating the subfeature instead of having two sep-
arate instances. The concept of feature cardinality defined in [23] raises the
same issue, as it is the same feature that occurs several times as a subfeature.
Czarnecki et al. [29] use context-free grammar to formalise feature models and
provide string representations in order to allow the repetitions of features.

Another difference between our approach on feature views and feature modelling
in software product lines comes from the complexity of the mechanisms used.
Classic feature models, as well as extensions like cardinality-based models [29]
do usually not consider taxonomy structure, or limit the variability in the model
to the different relations between features, while we provide the possibility to
use concrete compatibility constraints.

Multi-view models in feature modelling have also been studied. Czarnecki et al. [26]
sketch a model where different levels of customisation are modelled (including
feature and design view). Reiser and Weber [82] and work from Zaid et al. [111]
propose feature models with different perspectives, although they are all cen-
tered on software variability and feature modelling techniques only, and the lack
of specialisation hierarchy may make the task of implementing the unification
with different structured views difficult. Männistö et al. [62] define a specialisa-
tion tree for product structures called an element model hierarchy. In this work,
several configuration models (similar to our structure views) can be created for a
single product family, by using specialisation operations. One of the obvious dif-
ferences with our current work is that we use refinement on feature views in order
to solve specific scenarios (see Section 4.2), while Männistö et al. concentrate on
organising multiple structural models into a hierarchy for better management.
Another difference lies in the specialisation operations: asides from type and at-
tribute refinement (including adding new compatibility constraints), we permit
the creation of new feature types and attributes, linked to the parent feature
view using implementation constraints, which allows to handle a broader range
of scenarios (in particular the Distributors tailoring scenario).

5.6 Comparison with related work 87

The four worlds from Heiskala et al. [49] can be compared with the modelling
views of our framework when related to service configuration: the needs world
concerns the customer’s needs (in an abstract way), and is thus close to our fea-
ture views, which describes the abstract features that the customer may require;
the service solution world denotes the set of elements used to establish the ser-
vice’s specifications, as the structure views; the process world describes how the
service will be delivered, or realised, as in our realisation views. Note that there
is nothing in our conceptual approach that is similar to the object-of-services
world from [49], which specifies the service recipients or the environment rel-
evant to those recipient. From a modelling point of view, all these worlds are
based on the same meta model, using different types and attributes, as well
as taxonomy and partonomy structures, as in our approach. However, depen-
dencies between types of different worlds are simply modelled using classical
constraints, while we use implementation and mapping constraints. Moreover,
one important conceptual difference between our work and the four-worlds ap-
proach is that our framework is centered on the configured product, and thus
the services described in the services dimension are seen from the configured
product’s point of view, while the external environment is not considered. One
could then say that the only “object-of-services” in our approach is the config-
ured product itself. One potential solution to take the environment into account
could be the definition of another type of view, that could be associated to a
refined feature view, and where the different sales channels would define exter-
nally controlled elements (such as, in the running example, access to company
specific services or credentials, data transfer from an old device, etc.).

Kumbang [6] is the closest to our work on the software variability side, includ-
ing their type-instance approach. We consider our work to be an extension of
Kumbang, as we use implementation constraints to unify structure views from
the different dimensions (including manufactured products and services), and
we also model realisation data. Thus the main contribution of our work is to
provide conceptual and practical mechanisms to bring the different dimensions
together and unify them under feature models. The two views in Kumbang
are also solved separately from each other: both points of view are subject to
their own consistency rules, and implementation constraints may not modify
the consistency of a configuration. On the other hand, implementation con-
straints in our framework integrate the different views, so that the model must
be consistent as a whole.

88 Conceptual Modelling Framework

Chapter 6

Framework Implementation

The concepts developed in the previous chapter are the basis for modelling and
solving the configuration of heterogeneous product families. In this chapter, we
define a textual modelling language called ProCoLa that supports our concep-
tual approach. This language aims at providing a practical and well-defined way
to represent configuration models, as well as permitting a direct interpretation
of the models in order to assist the end-user with the actual configuration of the
product families.

We then propose a formal definition of our conceptual framework for modelling
variability in heterogeneous product families. This formalism is used to pro-
vide strict semantics to the framework and the ProCoLa modelling language,
by means of a type system and rules of well-formedness. Finally, we define
graph-based static analyses of the configuration models using ProCoLa and the
formalism defined, in order to assist the modeller in his task of maintaining
product models.

6.1 The ProCoLa Modelling Language

The ProCoLa modelling language is a textual object oriented language created
to fit the concepts developed in Chapter 5. Defining such a language permits to

90 Framework Implementation

FeatureView := featureView Idf [specialisationOf Ids]
[units:(UnitDecl)∗] [constants:(ConstDecl)∗]
featuresDeclaration: (FTypeDecl)∗

UnitDecl := Idu:TypeDecl;
ConstDecl := Idc [:Idu]:= c;

FTypeDecl := [[Root]] [refined] [abstract] featureType Idt

[subtypeOf Id1 (, Idi)
∗] [{ [description:[c;]]

[attributes:(AttrDecl)∗] [subFeatures:(SubFDecl)∗]
[constraints:(ConstrDecl)∗] [implementation:(ImplDecl)∗] }];

AttrDecl := [ref] Visibility Ida [[C]]: TypeDecl;
Visibility := readonly | hidden | ε
SubFDecl := [ref] Ids [[C1 [.. C2]]]: Idt;

ConstrDecl := { CSymExp }; | [Idc:]{ [description:[c;]] ConstrVal};
ConstrVal := [type:hard;] value:{ CSymExp };

| type:table[CSymExp (,CSymExp)∗]; value:{TableExpr};
ImplDecl := {ImplExp}; | [Idi:]{ [description:[c;]] value:ImplExp};
TypeDecl := Type [DomReduc]

DomReduc := { C1 (, C2)∗ } | [C1..C2] | [- inf..C2] | [C1..inf]

Type := Idu | integer | boolean | enum
C := c | Idc

Table 6.1: ProCoLa feature view syntax

support the conceptual approach in several ways:

• It defines configuration models in a format that can be shared easily with-
out the need for any special tool except a text editor.

• It has a precise and unambiguous syntax, compared to other modelling
languages such as UML, where profiles need to be defined and attached
to classes. Moreover, the profile mechanism has itself been criticised for
ambiguity, e.g., with respect to whether only classes or all metaclasses
may be extended, and problems in its semantics [50].

• It provides a machine-readable code for interpretation and analysis of the
models.

• It has the potential for an easy implementation of tool support and custom
User Interfaces.

6.1 The ProCoLa Modelling Language 91

StructureView := dimension Dimension; StructureDecl
Dimension := Physical | Software | Services

StructureDecl := [units:(UnitDecl)∗] [constants:(ConstDecl)∗]
[resources:(ResourceDecl)∗]
structureDeclaration:(STypeDecl)∗

UnitDecl := Idu:TypeDecl;
ConstDecl := Idc [:Idu]:= c;

ResourceDecl := Idr:Idu; | Idr:integer;

STypeDecl := CTypeDecl | ATypeDecl
CTypeDecl := [[Root]] [abstract] componentType Idt

[subtypeOf Id1 (, Idi)
∗] [{ [description:[c;]]

[attributes:(AttrDecl)∗] [subParts:(SubPDecl)∗]
[associations:(AssocDecl)∗] [produces:(ResourceUse)∗]
[consumes:(ResourceUse)∗] [constraints:(ConstrDecl)∗] }];

ATypeDecl := [abstract] associationType Ida

[subtypeOf Id1 (, Idi)
∗] [{ [description:[c;]]

[attributes:(AttrDecl)∗] [constraints:(ConstrDecl)∗] }];
AttrDecl := Visibility Ida [[C]]: TypeDecl;
Visibility := readonly | hidden | ε
SubPDecl := Ids [[C1 [.. C2]]]: Idt;

AssocDecl := Direction Ida [[C1 [.. C2]]]: Idt;

Direction := provides | requires | ε
ResourceUse := Idr:= CSymExp

ConstrDecl := { CSymExp }; | [Idc:]{ [description:[c;]] ConstrVal};
ConstrVal := [type:hard;] value:{ CSymExp };

| type:table[CSymExp (,CSymExp)∗]; value:{TableExp};
TypeDecl := Type [DomReduc]

DomReduc := { C1 (, C2)∗ } | [C1..C2] | [- inf..C2] | [C1..inf]

Type := Idu | integer | boolean | enum
C := c | Idc

Table 6.2: ProCoLa structure view syntax

The ProCoLa language defines configuration models in three different types of
files, representing the three different types of views introduced in Chapter 5. Ta-
bles 6.1, 6.2, and 6.3 present the syntax of ProCoLa for the feature, structure,
and realisation views, respectively. The syntax is shown as a context-free gram-
mar using regular expressions, in order to avoid the cumbersome derivations for
lists. Expressions are presented separately in Table 6.4.

92 Framework Implementation

RealisationView := dimension Dimension; itemsDeclaration:(ITypeDecl)∗

operationsDeclaration:(ORTypeDecl)∗

Dimension := Physical | Software | Services
ITypeDecl := itemType Idi

[{ [mapping:(MappingDecl)∗] [subItems:(SubEltDecl)∗] }];
ORTypeDecl := OTypeDecl | RTypeDecl

OTypeDecl := operationType Ido

[{ [mapping:(MappinDecl)∗] [successors:(Id;)∗]
[uses:(UseDecl)∗] [subOperations:(SubEltDecl)∗] }];

RTypeDecl := resourceType Idr;

MappingDecl := Idt: { CSymExp };
SubEltDecl := Ids [[c]]: Idt;

UseDecl := Idu: Idr;

Table 6.3: ProCoLa realisation view syntax

TableExp := [[C1 (,C2)∗] (, [Ci (,Cj)
∗])∗]

| MSSQL(Cconn) :: Ctable;

| Excel :: Cfile;

ImplExp := { CSymExpL } <-> { ISymExpR }
| { CSymExpL } -> { ISymExpR }
| { CSymExpL == ISymExpR }

CSymExp := Var | C | CSymExp Op CSymExp | not CSymExp
| (CSymExp) | Var is Idt | Func(Var1 (,Var2)∗)

ISymExp := IVar | C | ISymExp Op ISymExp
| not ISymExp | (ISymExp) | IVar is Idt

| Func(IVar1 (,IVar2)∗) | Present(Idt)

Op := -> | <-> | and | or | xor | = | != | < | <= | > | >=
| + | - | * | mod

Func := Count | Sum | Max | Min
IVar := Idt::Var
Var := Idv | Idv.Var

Table 6.4: ProCoLa expressions syntax

6.1 The ProCoLa Modelling Language 93

The keywords used in ProCoLa are closely related to the concepts defined in our
modelling framework: the syntax for feature views is based on the declaration
of feature types, while the one for structure views permits to declare component
types and association types, and the one for realisation views permits to declare
item, operation and resource types. Several sections can be declared in each
view. Feature and structure views may declare units and constants, and a
resource declaration section may also be added for structure views. Both feature
and structure views have a mandatory section where types are declared (with
a featuresDeclaration header for feature types and structureDeclaration

for structure types). Realisation views have two mandatory sections: one with
an itemsDeclaration header for declaring item types and one with the header
operationsDeclaration for operation and resource types.

Units can be used in feature and structure views in place of basic types in
order to provide more concrete information on the attributes defined. Units are
declared using an identifier, a basic type and optionally a domain reduction.

Example 16 A unit inch can be defined in a units section by

units:

inch: integer [0.. inf];

This specifies that the domain of each attribute with an inch unit will only con-
tain positive integers.

Constants represent identifiers that are assigned constant values, and can be
used in many places where an actual constant value can be used. The deriva-
tion C can be a constant identifier Idc or an explicit constant value c, which
represents a truth value (true or false), an integer, or a string.

Several types of expressions can be used in the different views. Compatibility
constraints (defined in the constraints sections of feature, component, and as-
sociation types) can use symbolic expressions (CSymExp) or table expressions
for declaring table constraints. Implementation constraints in feature views
(ImplExp) also use symbolic expressions, although the right hand side symbolic
expressions (ISymExp) are slightly different than the ones for compatibility con-
straints in that they use variables with explicit context (IVar) and can contain
function calls with the Present(...) function. Mapping conditions in realisation
views also use compatibility symbolic expressions (CSymExp). Table expres-
sions can be explicit, where all allowed tuples are defined in the ProCoLa file,
or can refer to a Microsoft SQL Server database or an Excel spreadsheet. More
information on the last two options is provided in Chapter 10.

94 Framework Implementation

Example 17 The following table constraint is declared in the ProCoLa model
of our case study’s physical structure view to define the relations between the
size of the device’s enclosure, the size of its screen and the number of available
chip slots on the motherboard:

TableSize: {

type:table[enclosure.size ,screen.size ,motherboard.nbSlots];

value: {

["115x58" , 3 , 6],

["240 x190", 9 , 10],

["268 x178", 10, 12],

["295 x210", 12, 14]

};

};

Example 18 As a more concrete example, here is the ProCoLa syntax for the
DeviceFeature feature type from our case study (Figure 5.4 on page 65).

featuresDeclaration:

[Root] featureType DeviceFeatures [

attributes:

deviceType: enum{"netbook", "tablet", "smartphone"};

color: enum{"Black", "White", "Alu"};

subFeatures:

localisation: Localisation;

communication: Communication;

assistance: Assistance;

input: Input;

cardStorage [0..1]: CardStorage;

constraints:

{ (deviceType = "smartphone" and input.physicalKeyboard)

-> input.backlitKeyboard };

implementation:

{ (not deviceType = "netbook") and input.touchInput = "

multitouch"} <-> { Physical :: TouchScreen.screenType =

"capacitive" };

{ color == Physical :: Enclosure.color };];

The feature type declaration defines the type as a root feature type, and specifies
its attributes, subfeatures, and constraints. For sake of brevity, only a handful
of constraints are presented here, in their inline form (i.e., without constraint
identifier or constraint type declaration). The compatibility constraint specifies
that if the device is a smartphone and it has a physical keyboard, then the backlit

6.2 Formalism Definition 95

keyboard must be selected. The two implementation constraints link the multi-
touch capability and the color of the device to its physical structure. The full
ProCoLa model of the extended case study is available in [74].

Defining the language syntax is only the first step in the implementation of the
modelling framework. The next section defines a formalism for the framework
that will be used to check and analyse ProCoLa models, as well as provide a
basis for defining the concrete semantics of the language.

6.2 Formalism Definition

We provide in this section some definitions aimed at establishing a formalism for
our conceptual framework for heterogeneous product families. The definitions
are provided in a top-down approach, starting with the ones on the level of
configuration models, and entering into details onwards. Examples related to
our case study are given when relevant. A type system and well-formedness
rules for this formalism are defined in Section 6.3.

6.2.1 Configuration Model

As pointed out previously, the broadest concept in our framework is the one of
a configuration model:

Definition 1 (Configuration model) A configuration model is a tuple M =
〈Vf ,Vs,Vr, SpM〉, where Vf is a set of feature views, Vs is a set of structure
views, and Vr is a set of realisation views of the model. The function SpM is
the specialisation function between feature views.

A configuration model thus contains the different views of the models, and
relates the feature views using the specialisation function, defined by:

Definition 2 (Specialisation function, base view) The specialisation func-
tion SpM ⊆ Vf × Vf is a bijective relation such that (F,F′) ∈ SpM if F is a
specialisation of F′ in the feature views hierarchy.
We then define Sp∗M as the transitive closure of SpM, so (F,F′) ∈ Sp∗M if F is
a descendant of F′ in the feature views hierarchy.
We finally define a base view baseM ∈ Vf as being a view which is not a spe-
cialisation of any other view, i.e., F ∈ baseM ⇔ @F′ s.t. (F,F′) ∈ SpM.

96 Framework Implementation

Example 19 Consider our case study of the Mobile Device product family de-
scribed in Chapter 5. The configuration model can be defined using the following
sets of views:

Vf = {Fbase ,Fpackages , . . .}
Vs = {Sphys ,Ssoft ,Sserv}
Vr = {Rphys ,Rsoft ,Rserv}

Fbase represents the base feature views, while Fpackages is one of the refined
feature views. They are thus related by the refinement function:

SpM(Fpackages) = Fbase

Vs contains the physical, software, and service structure views, while Vr contains
the physical, software, and service realisation views.

The next sections go into more detail by defining the feature views, structure
views, and realisation views. Finally, the constraint language is defined in Sec-
tion 6.2.5.

6.2.2 Feature Views

Feature views declare feature types and the relations between them, as well as
dependencies to other feature and structure views:

Definition 3 (Feature view) A feature view F ∈ Vf is defined by a tuple
F = 〈TF,Troot

F ,SF, IF,DF,≺F, CcF, CiF,M〉, where

• TF is a set of feature types, and a set T Ab
F ⊂ TF is defined to represent the

set of abstract types in F,

• Troot
F ∈ (TF ∪ TFP

) is the root of the feature view, with FP a potential
parent view of F (F = SpM(FP)),

• SF is a set of subfeature definitions,

• IF is the feature taxonomy relation between feature types,

• DF is a set of attribute definitions,

• ≺F is the reference relation between attribute and subfeature definitions,

• CcF is a set of compatibility constraints and

6.2 Formalism Definition 97

• CiF is a set of implementation constraints.

• The model M is repeated for practical purposes, although it is redundant.

Feature types are thus divided into two groups: abstract and concrete types.
The root feature type can belong to another feature view, parent of F, in case F
is a specialisation of another view and does not define such a root type. The
root type is then “inherited” from the parent view.

Example 20 Let’s consider the set of feature types in the base feature view of
our case study Fbase :

TFbase = {DeviceFeatures,Localisation,Communication,Assistance, . . .}

The root type of the base feature view is the DeviceFeatures type, which is for-
malised by

Troot
Fbase

= DeviceFeatures

Feature types can be refined from one feature view to another:

Definition 4 (Refined type) A type T is refined from FP ∈ Vf to F ∈ Vf if
and only if T ∈ TF ∪ TFP

and (F,FP) ∈ Sp∗M.

A type T is said directly refined from F′ to F if and only if:

• T is refined from F′ to F

• @F′′ s.t. T is refined from F′′ to F and (F′′,F′) ∈ Sp∗M

i.e., if there is no intermediary feature view F′′ from where T is refined.

This means that the feature type T is refined if it belongs to the two views F
and FP and if these two views are related in the feature views hierarchy (F is a
specialisation of FP).

Subfeature definitions relate feature types to form the partonomy tree in the
view:

Definition 5 (Subfeature definition) A subfeature definition in SF is a tu-
ple 〈name,Ts,Tt, r1, r2〉 where name is the string name of the subfeature, Ts ∈
TF is the source type and Tt ∈ TF the target type. The cardinality is given by a
minimum r1 and a maximum r2, denoted as [r1, r2].

98 Framework Implementation

The name of a subfeature definition is used to identify each relations so it can
be referred to in the different constraints of the model.

Example 21 Subfeature definitions for Fbase are contained in SFbase . The sub-
feature definition σphone ∈ SFbase specified by

σphone = 〈“phone”,Communication,Phone, 0, 1〉

describes the definition of the subfeature phone of type Phone within the feature
type Communication. The cardinality is [0, 1], which means that this subfeature
may not be included in the final configuration, depending on the user require-
ments and the constraints defined in the model.

Feature types are also organised in a taxonomy, thanks to the feature taxonomy
relation:

Definition 6 (Feature taxonomy relation) The feature taxonomy relation
IF ⊆ TF × TF is an irreflexive relation such that (T1,T2) ∈ IF if T1 is a direct
subtype of T2.

We define vF as the reflexive transitive closure of IF:
∀T,T′ ∈ TF,

T′ vF T⇔ T′ = T ∨ ∃T1, . . . ,Tn s.t. (T′,T1), (T1,T2), . . . , (Tn,T) ∈ IF.

This means for two types T and T ′, we have T′ vF T if T ′ is equal to T or is
one of its subtypes (direct or transitively).

We go on by defining attribute definitions:

Definition 7 (Attribute definition) An attribute definition in DF is a tuple
〈name,Ts,D, v, r〉 where l is the string name of the attribute, Ts ∈ TF is the
source type and D is a non-empty set of literal values called the domain of the at-
tribute. The cardinality r ∈ N denotes the number of individuals of this attribute
instantiated during configuration. Finally, v ∈ {Visible,ReadOnly,Hidden}
represents the visibility of the attribute definition. The set of visibility values is
totally ordered: Visible > ReadOnly > Hidden.

Domains represent the possible values that each instance of an attribute can
take during the configuration process. As for subfeature definitions, the name
of an attribute is used for display and identification purposes in constraints.

6.2 Formalism Definition 99

Example 22 Attribute definitions for Fbase are contained in DFbase . The at-
tribute definition αcolor ∈ DFbase specified by

αcolor = 〈“color”,DeviceFeatures,Dcolor,Visible, 1〉

describes the definition of the attribute color within the DeviceFeatures feature
type. The domain Dcolor contains three string values representing the potential
values the attribute can take:

Dcolor = {“Black”, “White”, “Alu”}

This attribute has the default cardinality of 1, so only one instance will appear
during configuration.

Refined feature types can reference subfeature and attribute definitions:

Definition 8 (Reference relation) The subfeature reference relation ≺s
F⊆

(SF ×
⋃

(F,F′)∈Sp∗M
SF′) is an irreflexive transitive relation between subfeature

definitions defined in the view F and subfeature definitions defined in its parent
views F′. For two subfeature definitions σ1 = 〈name1,Ts1,Tt1, r11, r21〉 and
σ2 = 〈name2,Ts2,Tt2, r12, r22〉, we have σ2 ≺s

F σ1 if and only if:

• Ts1 = Ts2 = Tref and name1 = name2

• ∃FP s.t. Tref is a feature type refined from FP to F and σ2 ∈ SFP

In a similar way, we define the attribute reference relation

≺a
F⊆ (DF ×

⋃
(F,F′)∈Sp∗M

DF′)

as an irreflexive transitive relation between attribute definitions defined in the
view F and attribute definitions defined in its parent views F′. For two attribute
definitions α1 = 〈name1,T1,D1, v1, r1〉 and α2 = 〈name2,T2,D2, v2, r2〉, we
have α2 ≺a

F α1 if and only if:

• T1 = T2 = Tref and name1 = name2

• ∃FP s.t. Tref is a feature type refined from FP to F and α2 ∈ DFP

100 Framework Implementation

Finally, we define the reference relation ≺F as the union of the two previously
defined functions:

≺F=≺s
F ⊕ ≺a

F

The subfeature (resp. attribute) reference relations apply to two subfeature
(resp. attribute) definitions where one is the refinement of the other. Hence,
it means that one belongs to a feature view which is a specialisation of the
other. However, this specialisation step may not be atomic, i.e., there may be
multiple refinements and references in between these two subfeature (resp. at-
tribute) definitions. We therefore need to specify a direct reference function.

Definition 9 (Direct reference function) The direct reference function Ref F

is defined as follows:

∀δ1, δ2, we have δ2 = Ref F(δ1) if and only if @δ3 s.t. δ2 ≺F δ3 ≺F δ1

i.e., there is no intermediary subfeature or attribute definition δ3 to which δ2 is
a reference.

Example 23 Consider the feature view refinement Fref presented in Figure 5.10
on page 80. The Assistance feature type is refined from Fbase to Fref , and the
two attribute definitions

αtype = 〈“type”,Assistance,Dtype ,Visible, 1〉 ∈ DFbase

αref
type = 〈“type”,Assistance,Dref

type ,Visible, 1〉 ∈ DFref

are related by

αref
type = RefF(αtype)

with Dtype = {“classic”, “extended”, “pro”}, Dref
type = {“classic”, “pro”} and

Dref
type ⊂ Dtype . The type attribute is thus refined from the feature view Fbase to

the feature view Fref as its domain is reduced from one view to the other.

We can now define compatibility and implementation constraints. Each con-
straint is assigned a context type that may serve during evaluation of the con-
straint expressions used. The expressions are not discussed in details here, and
will be explicitly defined in Section 6.2.5.

6.2 Formalism Definition 101

Definition 10 (Compatibility constraint) A compatibility constraint in CcF
is a pair 〈T, ec〉 where T ∈ TF is the context type and ec is a compatibility
expression.

Example 24 Consider the compatibility constraint cinternet ∈ CcFbase :

cinternet = 〈Communication, ecinternet〉

The constraint is defined in the context of the feature type Communication. The
compatibility expression ecinternet describes the following:

“The device has internet access if and only if it has a Wifi connection,
Ethernet access, or a 3G connection.”

This expression can be written using the constraint language described in Sec-
tion 6.2.5.

Definition 11 (Implementation constraint) An implementation constraint
in CiF is a tuple 〈T, ecC, eiP,Op〉 where T ∈ TF is the context type, ecC is a compat-
ibility expression (called the child expression), eiP is an implementation expres-
sion (called the parent expression), and Op ∈ {⇒,⇔,=} the binding operator.

Example 25 Consider the implementation constraint c3G ∈ CiFbase :

c3G = 〈Phone, ec3G, e
i
3G,⇔〉

The constraint is defined in the context of the feature type Phone. The compati-
bility expression ec3G tests whether the 3G option is selected, while the implemen-
tation expression ei3G makes sure that if so, the required physical and software
parts are present in the configuration:

“The phone can use a 3G connection if and only if there exists a RF card
supporting GSM/UMTS and the 3G plugin is installed in the software.”

How to define these two expressions using the constraint language is described
in Section 6.2.5.

This concludes the formal definition for the feature views of our framework. We
will now define the elements composing the structure and realisation views.

102 Framework Implementation

6.2.3 Structure Views

We present in this section the formalism for structure views.

Definition 12 (Structure view) A structure view S in Vs is defined by the
tuple S = 〈TS,Troot

S ,RS,US,SS,AS, IS,DS, CcS,M〉 in Vs where

• TS = T c
S ∪ T a

S is a set of structure types and contains both component
types T c

S and association types T a
S ; moreover, we also define the set T Ab

S ⊂
TS of abstract types in S,

• Troot
S ∈ T c

S is the root of the structure view,

• RS is a set of resources,

• US is a set of resource use definitions,

• SS is a set of subcomponent definitions,

• AS is a set of association definitions,

• IS ⊆ TS × TS is the structure taxonomy relation between structure types,

• DS is a set of attribute definitions and

• CcS is a set of compatibility constraints.

• As before, the model M is repeated for practical purposes.

Example 26 Consider now the structure types in Sphys .

T c
Sphys

= {DevicePhysical,Motherboard,Screen, . . .}
T a
Sphys

= {Stylus}

The DevicePhysical, Motherboard, and Screen types are component types, and
thus belongs to the T c

Sphys
set, while Stylus is an association type and is in T a

Sphys
.

The root type of the Sphys structure view is the DevicePhysical type:

Troot
Sphys

= DevicePhysical

Finally, the structure view Sphys also defines the AvailableSlots resource:

RSphys = {AvailableSlots}

6.2 Formalism Definition 103

Structure views have many similarities with feature views, and thus defines
similar formal concepts with some nuances:

• A subcomponent definition in SS is akin to subfeature definitions, and is
defined by a tuple 〈name,Ts,Tt, r1, r2〉 with (Ts,Tt) ∈ T c

S × T c
S .

• An attribute definition inDS is also represented by a tuple 〈name,Ts,D, v, r〉
with Ts ∈ TS.

• The structure taxonomy relation IS ⊆ TS × TS and its reflexive transitive
closure vS are defined in the same way as teh feature taxonomy relation
IF and vF.

• A compatibility constraint in CcS is also a pair 〈T, ec〉 with T ∈ TS.

Example 27 The types Screen and TouchScreen are related in the physical
structure view, in that TouchScreen is a subtype of Screen. We thus have

(TouchScreen,Screen) ∈ ISphys and TouchScreen vSphys Screen

Example 28 Compatibility constraints defined in structure views are similar to
the ones defined in feature views. Consider cprepaid ∈ CcSserv :

cprepaid = 〈PhoneSubscription, ecprepaid〉

The compatibility expression ecprepaid is used to describe the following condition:

“If the phone plan is a prepaid plan, the plan does not cover unlimited SMS,
unlimited calls during the evening or favourite numbers.”

Again, the constraint language (Section 6.2.5) is used to formally define this
expression.

Resource use definitions are used to specify how many resources component
types use:

Definition 13 (Resource use definition) A resource use definition in US is
a tuple 〈T,R, u, ec〉 where T ∈ T c

S is the interacting component type and R ∈ RS

the resource. The use type u ∈ {produces,consumes} provides the type of
interaction with the resource, while the use expression ec defines the quantity
of the resource used. The context in which the compatibility expression ec is
evaluated is the interacting type T.

104 Framework Implementation

Example 29 The resource use definition υslots ∈ USphys specified by

υslots = 〈Motherboard,AvailableSlots,produces, ec〉

defines that each instance of type Motherboard produces an amount of AvailableSlots
equal to the value of the expression ec.

Association definitions are also used to relate component types with association
types, and resemble subcomponent definitions as well.

Definition 14 (Association definition) An association definition in AS is
a tuple 〈name,Ts,Tt, d, r1, r2〉 where name is the string name of the associ-
ation, Ts ∈ T c

S is the source type, Tt ∈ T a
S the target association type and

d ∈ {none,provides,requires} is the direction of the association. The cardi-
nality is given by a minimum r1 and a maximum r2, and is denoted as [r1, r2].

Example 30 The association definition ρrenderLayout ∈ ASserv specified by

ρrenderLayout = 〈“IRender”,LayoutEngine, IRender,provides, 1, 1〉

defines the association between the component type LayoutEngine and the asso-
ciation type IRender. The direction Provides implies that only a component
type defining a Requires association with IRender can be connected to this
component type.
On the contrary,

ρstylusTS = 〈“stylus”,TouchScreen,Stylus,None, 0, 1〉

defines a bilateral association from the TouchScreen component type modelling
the association between the types representing the device’s touch screen and a
potential stylus.

6.2.4 Realisation Views

The third type of view in our modelling framework is realisation views. Reali-
sation views define three different kind of types: item, operation and resource
types.

Simple partonomy relations are used to specify realisation subtrees, each rooted
by an item or operation type mapped to a specific structure type using a map-
ping constraints.

6.2 Formalism Definition 105

Definition 15 (Realisation view) A realisation view R in Vr is defined by a
tuple R = 〈S, TR,SiR,SoR,NR,ΩR, CmR ,M〉 where

• S ∈ Vs is the structure view associated to this realisation view,

• TR = T i
R ∪ T o

R ∪ T r
R is a set of realisation types and contains item types

T i
R, operation types T o

R and resource types T r
R ,

• SiR is a set of subitem definitions,

• SoR is a set of suboperation definitions,

• NR is a set of successor definition between operation types

• ΩR is a set of resource usage definition between operation and resource
types

• CmR is a set of mapping constraints.

• Again, the model M is repeated for practical purposes.

Example 31 The following realisation types belong to the realisation view Rphys

which is partly shown in Figure 5.8 on page 73:

{#8919,#239} ∈ T i
Rphys

{Assemble,Coating} ∈ T o
Rphys

{Cooler,Furnace} ∈ T r
Rphys

#8919 and #239 are item types, Assemble and Coating are operation types while
Cooler and Furnace are resource types.

Definition 16 (Subitem definition) A subitem definition in SiR is a tuple
〈name,Ts,Tt, r〉 where Ts ∈ T i

R is the source type and Tt ∈ T i
R the target type.

The cardinality r ∈ N denotes the number of individuals of this item instantiated
during configuration.

Example 32 The subitem definition σi
235 ∈ SiRphys specified by

σi
235 = 〈“screws”,#8919,#235, 2〉

defines the subitem relation between the item types #8919 and #235. The car-
dinality of 2 means that two items of type #235 will be instantiated each time
an item of type #8919 is instantiated.

106 Framework Implementation

Definition 17 (Suboperation definition) A suboperation definition in SoR
is a tuple 〈name,Ts,Tt, r〉 where Ts ∈ T o

R is the source type and Tt ∈ T o
R the

target type. The cardinality r ∈ N denotes the number of individuals of this
operation instantiated during configuration.

Successor definitions permit to order the instances of operation types present at
configuration time:

Definition 18 (Successor definition) A successor definition in NR is a tuple
〈Tp,Ts〉 where Tp ∈ T o

R is the predecessor operation type and Ts ∈ T o
R is the

successor operation type.

Example 33 The Assemble operation type is defined as a successor of the
Coating operation type, which means that any instance of the Assemble type
will have to be performed after any instance of Coating in the operation route.
We thus have η ∈ NR such that:

η = 〈Coating,Assemble〉

Definition 19 (Resource usage definition) A resource usage definition in
ΩR is a tuple 〈name,To,Tr〉 where To ∈ T o

R is the defining operation type and
Tr ∈ T r

R is the type of resource used.

Definition 20 (Mapping constraint) A mapping constraint in CmR is a tuple
〈Ts,Tr, e

c〉 where Ts ∈ TS is the origin structure type, Tr ∈ TR is the defining
realisation type and ec is a compatibility expression. The context type of ec is
the origin type Ts.

Example 34 Consider a mapping constraint defined in the physical realisation
view Rphys, specifying that

“The coating operation should only be done for each touch screen that needs an
oleophobic coating.”

This mapping will be defined as a tuple ccoating ∈ CmR :

ccoating = 〈TouchScreen,Coating, eccoating〉

with TouchScreen ∈ TSphys , Coating ∈ TRphys and eccoating being the compatibility
expression describing the mapping condition expressed above (written using the
constraint language).

6.2 Formalism Definition 107

6.2.5 Constraint language

This section defines the constraint language used in our configuration frame-
work. We use the following syntactic categories:

IExp implementation expressions
CExp compatibility expressions
Var expression variables

Constraint expressions are defined according to a specific view V ∈ Vf ∪Vs and
are specified in conjunction with a context type Tc ∈ TV. The following terms
are used:

c ∈ N ∪ B ∪ S integers, booleans and strings
α ∈ DV attribute definitions
σ ∈ SV subelement definitions
ρ ∈ AV association definitions (if V ∈ Vs)
T ∈ TV concept types

Subelement definitions represent subfeature definitions and concepts types rep-
resents feature types if V ∈ Vf , or subcomponent definitions and structure types
if V ∈ Vs. The following operators are used:

opb = opl ∪ opr ∪ opa binary operators
opl ∈ {⇒,⇔, and, or, xor} logical operators
opr ∈ {=, 6=,≥, >,≤, <} relational operators
opa ∈ {+,−, ∗,mod} arithmetic operators

The abstract syntax for variables v ∈ Var varies according to the type of view
the context type is from. In cases where V is a feature view (V ∈ Vf), the
syntax of v is given by the following: v ::= α | σ | σ → v

However, if V is a structure view (V ∈ Vs), expression variables in compatibility
constraints also contain references to association definitions and paths to their
attributes: v ::= α | σ | σ → v | ρ | ρ→ α

In both cases, expression variables represent qualified paths starting from the
context type Tc (if no explicit context type Ti is declared) and following parto-
nomic relations. A more precise characterisation of the final type of each ex-
pression variable is given by the type system in Section 6.3.2.

108 Framework Implementation

The abstract syntax of the language used for compatibility expressions ec ∈
CExp is given by the following:

ec ::= e | Table([v1, . . . , vn] , [[c11, . . . , cn1] , . . . , [c1t, . . . , cnt]])
e ::= v | c | e1 opb e2 | not e | (e) | v is T | Count(v) |

Sum([v1, . . . , vn]) | Max([v1, . . . , vn]) | Min([v1, . . . , vn])

Compatibility expressions can be symbolic expressions e or tables. Symbolic
expressions contain variables, constants, binary operation expressions, as well as
function calls or is expressions, which test for the type of the variable specified.

Implementation expressions are written in a slightly different syntax:

vi ::= Ti → v
ei ::= vi | c | ei1 opb ei2 | not ei | (ei) | vi is T | Count(vi) |

Sum(
[
vi1, . . . , v

i
n

]
) | Max(

[
vi1, . . . , v

i
n

]
) | Min(

[
vi1, . . . , v

i
n

]
) |

Present(T)

Implementation expressions are just symbolic expressions, but not table con-
straints, which cannot be used because of the special semantics of these expres-
sions. Implementation expressions are indeed used to specify which combina-
tions of elements from structure views (or parent feature view) are needed to
implement a specific combination of features (see Section 5.3). Another im-
portant difference lies in the fact that each variable is preceded by an explicit
context type Ti that replaces the default context type Tc. This new context
type must belong to the structure or feature view implementing the current fea-
ture view V. Finally, implementation expressions can also use the Present(T)
function to test for the presence of an instance of a specific type from one of the
implementing views.

We write Vars(ec) (resp. Vars(ei)) for the set of types and definitions occurring
in ec (resp. ei), i.e., for all δ ∈ (DV ∪ SV ∪ AV ∪ TV).

Example 35 Consider the compatibility expression ecprepaid from the compati-
bility constraint cprepaid in Example 28, represented in the constraint language:

ecprepaid ::= αtalkT ime = “prepaid”↔ (not αSMS and not αunlimited)

where αtalkT ime, αSMS, and αunlimited are attribute definitions for the talk-
Time, SMS, and unlimitedEvenings attributes whose source type is the compo-
nent type PhoneSubscription. We have:

Vars(ecprepaid) = {αtalkT ime, αSMS , αunlimited}.

6.3 Formalising ProCoLa 109

Consider now the implementation constraint c3G from Example 25. The two
expressions ec3G and ei3G in the constraint are as follows:

ec3G ::= α3G

ei3G ::= RFCard→ αcardType = “GSM/UMTS”
and ConnectionMngr→ αplugin3G

The compatibility expression specifies that the feature to implement is the 3G
on the phone, as α3G = 〈“3G”,Phone, {true, false},Visible, 1〉. The imple-
mentation constraint involves two variable paths, one starting from the con-
text type RFCard ∈ TSphys with αcardType = 〈“cardType”,RFCard, ...〉 and
the other one starting from the context type ConnectionMngr ∈ TSsoft with
αplugin3G = 〈“plugin3G”,ConnectionMngr, ...〉. We have here:

Vars(ec3G) = {α3G} and Vars(ei3G) = {αcardType, αplugin3G}.

6.3 Formalising ProCoLa

We now take a look back at the ProCoLa modelling language defined in Sec-
tion 6.1. In this section we describe the process of translating configuration
models written in ProCoLa into the formalism presented in the previous section.
This translation is a new step towards providing a clear and complete semantics
for ProCoLa: the first semantic checks are performed during the translation
from ProCoLa to the formalism. Moreover, we define in Section 6.3.2 a type
system for the constraint language used in the formalism, as well as a series of
rules in Section 6.3.3 that ensure the well-formedness of the formalised models.

6.3.1 From ProCoLa to the formalism

We present now the operations responsible for the translation process. For the
sake of brevity, we only show the translation for feature views. The formalisation
rules for structure and realisation views can be found in Appendix B.

Expressions are not covered in this Section either, due to the many similarities
between the ProCoLa expression syntax and the constraint language defined in
the previous section, which makes the translation trivial.

110 Framework Implementation

In order to interpret units and constants, we use two auxiliary mappings defined
as follow:

u ∈ UnitsF ::= Idu 7−→ Du with Idu ∈ S, Du ∈ P(N ∪ B ∪ S)
c ∈ ConstF ::= Idc 7−→ 〈c, Idu〉 with Idc ∈ S, c ∈ N ∪ B ∪ S, Idu ∈ S ∪ {ε}

The units mapping UnitsF maps a string, the unit name Idu, to a set of con-
stant values, the domain of the unit. The constants mapping ConstF maps a
string, the constant name Idc, to a pair composed by the constant value c and
a potential unit name Idu (ε is used when no specific unit is assigned to the
constant).

Tables 6.5, 6.6, and 6.7 show the translation rules in the context of a feature
view F = 〈TF,Troot

F ,SF, IF,DF, RefF, CcF, CiF,M〉, with M = 〈Vf ,Vs,Vr, SpM〉.
The translation operation ;F takes ProCoLa terms and either converts them
to a formal element or specifies a boolean condition that must be ensured for
the rule to be satisfied.

Rule [C1] is for example a basic conversion rule: it takes a constant value c in
ProCoLa and returns a pair 〈c, ε〉, where ε is used since the constant value has
no unit. On the other hand, rule [C2] takes a constant identifier Idc and return
the pair 〈c, u〉, assuming that there exists a mapping in ConstF that maps Idc
to a value c and a unit identifier u. This assumption has to be satisfied for the
rule to be usable: it thus checks that a corresponding constant has correctly
been declared.

Rule [FeatureV iew1] from Table 6.7 is an example of a rule that contains a
boolean condition that must be ensured: in case F’ is a feature view and declared
as a parent view of the newly declared view F, the pair (F,F′) must be added
to the specialisation function SpM.

Moreover, we use ProCoLa terms in brackets and associated with a boolean
variable b (e.g., [ref]b) to describe the translation for certain optional terms. For
example, rule [AttrDecl1] relates to attribute declarations and the ref keyword.
The boolean variable b represents whether or not the ref keyword is stated in
the attribute declaration. A boolean condition using b is specified with the
rule: in case of rule [AttrDecl1], if ref is present in the declaration, the rule is
valid only if there exists an element α2 for which the attribute α declared is a
reference to, i.e., α ≺a

F α2. On the other hand, if ref is not in the declaration,
there should be no such α2, in order to avoid collision between two attribute
declarations with the same name and belonging to two types with one refining
the other.

6.3 Formalising ProCoLa 111

[C1] : c ;F 〈c, ε〉

[C2] : Idc ;F 〈c, u〉 if (Idc 7−→ 〈c, u〉) ∈ ConstF

[Type1] : Idu ;F 〈Du, Idu〉 if (Idu 7−→ Du) ∈ UnitsF

[Type2−4] : integer ;F 〈N, ε〉 boolean ;F 〈B, ε〉 enum ;F 〈S, ε〉

[DomReduc1] :
Ci ;F 〈ci, u〉

{C1, ..., Cn};F 〈D = {c1, ..., cn}, u〉

[DomReduc2] :
Ci ;F 〈ci, u〉

[C1..Cn] ;F 〈D = {n/c1 ≤ n ≤ cn}, u〉

[DomReduc3] :
C ;F 〈c, u〉

[-inf..C] ;F 〈D = {n/n ≤ c}, u〉

[DomReduc4] :
C ;F 〈c, u〉

[C..inf] ;F 〈D = {n/c ≤ n}, u〉

[TypeDecl] :
Type;F 〈D1, u〉; DomReduc;F 〈D2, u〉

TypeDomReduc;F 〈D2, u〉
if D2 ⊆ D1

[ConstrDecl1] :
CSymExp;F e

c

{CSymExp};F 〈Tc, ec〉

[ConstrDecl2] :
ConstrV al ;F e

c

[Id]:[description:[c;]] ConstrV al ;F 〈Tc, ec〉

[ImplDecl1] :
ImplExp;F 〈ec, ei,Op〉

{ImplExp};F 〈Tc, ec, ei,Op〉

[ImplDecl2] :
ImplExp;F 〈ec, ei,Op〉

[Id]:[description:[c;]] value:ImplExp;F 〈Tc, ec, ei,Op〉

[V isbility] : readonly ;F Readonly hidden ;F Hidden ε;F Visible

[AttrDecl1] : [ref]b Ida ... ;F α = 〈Ida, ...〉 if b⇔ ∃α2/α ≺a
F α2

Table 6.5: Formalisation of ProCoLa feature view

112 Framework Implementation

[AttrDecl2] :
V isibility ;F v; TypeDecl ;F 〈D,u〉

V isibility Ida:TypeDecl... ;F α = 〈Ida,Ta, D, v, 1〉

[AttrDecl3] :
V isibility ;F v; TypeDecl ;F 〈D,u〉; C ;F 〈r, ε〉

V isibility Ida[C]:TypeDecl... ;F α = 〈Ida,Ta, D, v, r〉

[SubFDecl1] : [ref]bIds... ;F σ = 〈Ids, ...〉 if b⇔ ∃σ2/σ ≺s
F σ2

[SubFDecl2] : Ids:Tt... ;F σ = 〈Ids,Ts,Tt, 1, 1〉 if Tt ∈ TF

[SubFDecl3] :
C ;F 〈r, ε〉

Ids[C]:Tt... ;F σ = 〈Ids,Ts,Tt, r, r〉
if Tt ∈ TF

[SubFDecl4] :
Ci ;F 〈ri, ε〉

Ids[C1..C2]:Tt... ;F σ = 〈Ids,Ts,Tt, r1, r2〉
if Tt ∈ TF

[FTypeDecl1] : [refined]b...featureType T...;F T ∈ TF
if b⇔ ∃FP /T ∈ TFP &(F,FP) ∈ SpM

[FTypeDecl2] : [Root]...featureType T...;F Troot
F = T

[FTypeDecl3] : ...abstract...featureType T...;F T ∈ T Ab
F

[FTypeDecl4] : ...featureType T subtypeOf T1, ..., Tn...
;F (T1,T), ..., (Tn,T) ∈ IF if Tt ∈ TF

[FTypeDecl5] :
Ai ;F αi = 〈...,Tai, ...〉

...featureType T...attributes : A1, ..., An...
;F αi = 〈...,T, ...〉 ∈ DF

[FTypeDecl6] :
Si ;F σi = 〈...,Tsi,Tt, ...〉

...featureType T...subfeatures : S1, ..., Sn...
;F σi = 〈...,T,Tt, ...〉 ∈ SF

[FTypeDecl7] :
Consi ;F Ci = 〈...,Tci, ...〉

...featureType T...constraints : Consc1, ..., Cons
c
n...

;F Ci = 〈...,T, ...〉 ∈ CFc

[FTypeDecl8] :
Ii ;F Ii = 〈...,Tci, ...〉

...featureType T...implementation : Ii1, ..., I
i
n...

;F Ii = 〈...,T, ...〉 ∈ CFi

Table 6.6: Formalisation of ProCoLa feature view (continued)

6.3 Formalising ProCoLa 113

[ConstDecl1] : Idc:= c ;F (Idc 7−→ 〈c, ε〉) ∈ ConstF

[ConstDecl2] : Idc:Idu:= c ;F (Idc 7−→ 〈c, Idu〉) ∈ ConstF

[UnitDecl] :
TypeDecl ;F 〈Du, ε〉

Idu:TypeDecl ;F (Idu 7−→ Du) ∈ UnitsF

[FeatureV iew1] : featureView F specialisationOf F′...
;F (F,F′) ∈ SpM if F′ ∈ Vf

[FeatureV iew2] : featureView F...;F F ∈ Vf

Table 6.7: Formalisation of ProCoLa feature view (end)

6.3.2 Type System

Now that ProCoLa models can be formalised, we establish a type system for
the constraint language defined in Section 6.2.5 and used in the formalism.
The translation operations defined above provided several type checks, e.g., for
subfeature declarations or feature subtypes. The type system described in this
section is yet a new step towards typing the ProCoLa language, by checking
variable types in constraint expressions and providing valid types for them.

We first introduce the types and type environments used in the type system,
and then present the typing judgements for constraint expressions.

6.3.2.1 Types

The type system is established for a model M = 〈Vf ,Vs,Vr, SpM〉. Let us first
introduce the notion of types and type environments.

τ ∈ Type types

ΓT ∈ TEnv type environments

114 Framework Implementation

We shall assume that types are separated into base types and concepts types:

Type = Typebase ∪Typeconcepts

Typebase = {int, bool, string}

Typeconcepts =
⋃

F∈Vf TF ∪
⋃

S∈Vs TS

where int, bool, and string are the only three kinds of base types, and the
framework concept types (feature types, structure types, and realisation types)
are represented by Typeconcepts. Each constant c ∈ N ∪ B ∪ S has a type that
we shall denote τc; for example, true has type τtrue = bool and 13 has type
τ13 = int. Each string s has the type τs = string. Each binary operator
opb will expect two arguments of types τ1opb and τ2opb , respectively, and will
return a result of type τopb . For example, the relational operation ≥ expects
two arguments of type int and gives a result of type bool.

Finally, the domain D of an attribute definition α is said to be valid iff all
constant literals in D have the same base type τ , in which case D has a type
τD = τ .

A type environment is induced by a context type T ∈ TV (with V ∈ Vf ∪ Vs),
which specifies in which context it is is valid. It is given by a function

ΓT : (DV → Typebase)⊕ (SV ∪ AV → Typeconcepts)

where ⊕ represents the function union operation.

This means that ΓT maps attribute declarations to base types, and subelement
declarations to concept types.
∀T ∈ TV,∀α ∈ DV,∀σ ∈ SV:

ΓT(α) = τD iff α = 〈T′,D, v, r〉 and T vV T′

ΓT(σ) = Tt iff σ = 〈T′,Tt, r1, r2〉 and T vV T′

Moreover, if V is a structure view (V ∈ Vs), association definitions are also
mapped to concept types:
∀ρ ∈ AV,ΓT(ρ) = Tt iff ρ = 〈T′,Tt, d, r1, r2〉 and T vV T′.

6.3 Formalising ProCoLa 115

6.3.2.2 Typing judgements

For a feature or structure view V ∈ Vf ∪ Vs, the general form of a typing
judgement (in the context of T ∈ TV) ΓT `V e : τ says that the expression e
has type τ assuming that any attribute, subelement, or association definition
has the type given by ΓT. The axioms and rules for the judgements are listed
in Table 6.8, in the context of a view V ∈ Vf ∪ Vs.

Example 36 Consider the two constraint expressions ec3G and ei3G defined in
Example 35 by:

ec3G ::= α3G

ei3G ::= RFCard→ αcardType = “GSM/UMTS”
and ConnectionMngr→ αplugin3G

As the context type for both expressions is Phone, we have:

ΓPhone `Fbase α3G : bool as ΓPhone(α3G) = bool

which gives
ΓPhone `Fbase ec3G : bool

Moreover,

ΓRFCard `Fbase αcardType : string
ΓPhone `Fbase RFCard→ αcardType = “GSM/UMTS” : bool

and

ΓConnectionMngr `Fbase αplugin3G : bool
ΓPhone `Fbase ConnectionMngr→ αplugin3G : bool

which finally gives

ΓPhone `Fbase ei3G : bool

116 Framework Implementation

[con] : ΓT `V c : τc

[att] : ΓT `V α : τD if ΓT(α) = τD

[sub] : ΓT `V σ : Tt if ΓT(σ) = Tt

[asso] : ΓT `V ρ : Tt if ΓT(ρ) = Tt

[ipath] :
ΓT1 `V v : τ

ΓT `V T1 → v : τ

[spath] :
ΓT `V σ : T′ ΓT′ `V v : τ

ΓT `V σ → v : τ

[apath] :
ΓT `V ρ : T′ ΓT′ `V α : τ

ΓT `V ρ→ α : τ

[op] :
ΓT `V e1 : τ1opb ΓT `V e2 : τ2opb

ΓT `V e1 opb e2 : τopb

[not] :
ΓT `V e : bool

ΓT `V not e : bool

[par] :
ΓT `V e : τ

ΓT `V (e) : τ

[is] :
ΓT `V v : τ

ΓT `V v is T1 : bool
if τ ∈ Typeconcepts

[count] :
ΓT `V v : τ

ΓT `V Count(v) : int
if τ ∈ Typeconcepts

[sum] :
∀i : ΓT `V vi : int

ΓT `V Sum([v1, . . . , vn]) : int

[max] :
∀i : ΓT `V vi : int

ΓT `V Max([v1, . . . , vn]) : int

[min] :
∀i : ΓT `V vi : int

ΓT `V Min([v1, . . . , vn]) : int

[pres] : ΓT `V Present(T) : bool

[table] :
∀i : ΓT `V vi : τi ∀i, j,ΓT `V cij : τi

ΓT `V Table([v1, . . . , vn] , [[c11, . . . , cn1] , . . . , [c1t, . . . , cnt]]) : bool

Table 6.8: The type system for constraint expressions

6.3 Formalising ProCoLa 117

6.3.3 Well-formedness

We now define a set of rules that ensure the well-formedness of the whole config-
uration model. We use in particular the type system established in the previous
section to define well-formedness for constraint expressions.

Definition 21 For a feature or structure view V ∈ Vf ∪ Vs, a compatibility
constraint 〈T, ec〉 ∈ CcV is well-formed if ΓT `V ec : bool.

A compatibility expression ec ∈ CExp is thus well-formed if it can be evaluated
to a boolean by the type environment induced by T.

Definition 22 For a feature or structure view V ∈ Vf ∪ Vs, an attribute defi-
nition 〈name,T,D, v, r〉 ∈ DV is well-formed iff D is valid and r > 0.

For a (feature or structure) taxonomy relation, several rules must be satisfied for
it to be well-formed: there can be no loop in the partonomy, and each abstract
type must at least have one subtype.

Also, in case of a structure taxonomy relation, only similar structure types can
be part of the same taxonomy tree, i.e., an association type cannot be the
subtype of a component type (and vice versa).

Definition 23 For a feature or structure view V ∈ Vf ∪Vs, a feature or struc-
ture taxonomy relation IV ⊆ TV × TV is well-formed iff:

• @(T,T′) ∈ TV, s.t. (T 6= T′) ∧ (T vV T′) ∧ (T′ vV T)

• ∀T ∈ T Ab
V , ∃T′ ∈ (TV \ T Ab

V) s.t. (T′,T) ∈ IV

Moreover, if V ∈ Vs,

∀(T,T′) ∈ IV, (T ∈ T c
V ⇔ T′ ∈ T c

V) ∧ (T ∈ T a
V ⇔ T′ ∈ T a

V)

Subelement definitions (subcomponent or subfeature) must be have a target type
different from the source type (or one of its subtypes) to be well-formed, and
the minimum cardinality cannot be less than 0 or greater than the maximum
cardinality of the relation.

118 Framework Implementation

Definition 24 For a feature or structure view V ∈ Vf ∪ Vs, a subfeature or
subcomponent definition 〈name,Ts,Tt, r1, r2〉 ∈ SV is well-formed iff:

(Tt 6vV Ts) ∧ (0 ≤ r1 ≤ r2)

The well-formedness of implementation constraints is ensured if both the child
expression and the parent expression can be evaluated to basic types by the type
environment induced by constraint’s context type, if these types are compatible
with the binding operator and the return type of this operator (and thus the
constraint) is boolean.

Definition 25 An implementation constraint 〈T, ecC, eiP,Op〉 in CiF for a feature
view F ∈ Vf is well-formed iff ∃τ1Op, τ

2
Op ∈ Typebasic s.t.

(ΓT `F ecC : τ1Op) ∧ (ΓT `F eiP : τ2Op) ∧ (ΓT `F ecC Op eiP : bool).

Reference relations must involved proper subfeature and attribute definitions
refinements, as described in Section 5.4.

Definition 26 For a feature view F ∈ Vf , the subfeature reference relation ≺s
F

is well-formed iff, for two subfeature definitions σ1 = 〈name1,Ts1,Tt1, r11, r21〉
and σ2 = 〈name2,Ts2,Tt2, r12, r22〉 such that σ2 ≺s

F σ1:

(name1 = name2) ∧ (Tt1 vF Tt2) ∧ (r11 ≥ r12) ∧ (r21 ≤ r22).

In a similar way, the attribute reference relation ≺a
F is well-formed iff, for two

attribute definitions α1 = 〈name1,T1,D1, v1, r1〉 and α2 = 〈name2,T2,D2, v2, r2〉
such that α2 ≺a

F α1:

(name1 = name2) ∧ (D2 ⊆ D1) ∧ (r2 ≤ r1) ∧ (v2 ≤ v1).

Moreover, the reference relation ≺F is well-formed iff it is the function union
of two well-formed relations ≺s

F and ≺a
F.

Finally, the direct reference function RefF is well-formed iff ≺F is well-formed.

6.3 Formalising ProCoLa 119

We now define the well-formedness rule for feature views.

Definition 27 A feature view F = 〈TF,Troot
F ,SF, IF,DF,≺F, CcF, CiF〉 is well-

formed iff:

• all the elements in SF,DF, CcF and CiF are well-formed

• the relation IF and the function ≺F are well-formed

• the names used in the attribute and subfeature definitions are unique for
a given source type Ts, i.e.,

@(δ1 = 〈n1,Ts, . . .〉, δ2 = 〈n2,Ts, . . .〉) ∈ (SF ∪ DF) s.t. n1 = n2

• the root type Troot
F belongs to F or the closest parent view of F containing

a root type, i.e., if Troot
F ∈ FP 6= F,

@F′ s.t. (F,F′) ∈ Sp∗M ∧ (F′,FP) ∈ Sp∗M ∧ Troot
F′ ∈ TF′

• there is no loop in the partonomy tree, i.e.,

∀ (T,T′) with (T vF T′) ∨ (T′ vF T), @(T1, . . . ,Tn) s.t.,
T1 = T,Tn = T′ and
∀Ti, Ti+1,

(Ti vF Ti+1) ∨ (Ti+1 vF Ti) ∨ (∃σi = 〈. . . ,Ti,Ti+1, . . .〉 ∈ SF)

Before establishing the well-formedness of structure views, we have to define
what is a well-formed association definition. This is similar to the well-formedness
of subcomponent definitions.

Definition 28 For a structure view S ∈ Vs, an association definition defined
by 〈name,Ts,Tt, d, r1, r2〉 ∈ AS is well-formed iff:

(Tt 6vV Ts) ∧ (0 ≤ r1 ≤ r2)

Definition 29 A structure view S = 〈TS,Troot
S ,SS,AS, IS,DS, CcS〉 is well-formed

iff:

• all the elements in SS,AS,DS, and CcS are well-formed

• the relation IS is well-formed

• the two sets T c
S and T a

S are disjoint, i.e., T c
S ∩ T a

S = ∅

120 Framework Implementation

• the names used in the attribute, subcomponent and association definitions
are unique for a given source type Ts, i.e.,

@(δ1 = 〈n1,Ts, . . .〉, δ2 = 〈n2,Ts, . . .〉) ∈ (SS ∪ AS ∪ DS) s.t. n1 = n2

• there is no loop in the partonomy tree, i.e.,

∀ (T,T′) with (T vS T′) ∨ (T′ vS T), @(T1, . . . ,Tn) s.t.,
T1 = T,Tn = T′ and
∀Ti, Ti+1,

(Ti vF Ti+1) ∨ (Ti+1 vF Ti) ∨ (∃σi = 〈. . . ,Ti,Ti+1, . . .〉 ∈ SS)

We now define the well-formedness of concepts in realisation views.

A mapping constraint is well-formed when its compatibility expression can be
evaluated to a boolean by the type environment induced by its origin structure
type.

Definition 30 For a realisation view R ∈ Vr, a mapping constraint 〈Ts,Tr, e
c〉

in CmR is well-formed iff

ΓTs `R ec : bool.

For subitem or suboperation definitions, the target type must be different from
the source type, and the cardinality greater than 0.

Definition 31 For a realisation view R ∈ Vr, a subitem or suboperation defi-
nition 〈Ts,Tt, r〉 ∈ (SiR ∪ SoR) is well-formed iff:

(Tt 6= Ts) ∧ (r > 0)

Also, the operation types cannot be successor of themselves.

Definition 32 For a realisation view R ∈ Vr, a successor definition 〈Tp,Ts〉
is well-formed iff for T ∈ T o

R ,

@(T1, . . . ,Tn) ∈ T o
R s.t. η1 = 〈T,T1〉, . . . , ηn = 〈Tn,T〉 ∈ NR.

6.3 Formalising ProCoLa 121

Definition 33 A realisation view R = 〈S, TR,SiR,SoR,NR, CmR 〉 with TR = T i
R ∪

T o
R ∪ T r

R is well-formed iff:

• all the elements in SiR,SoR, NR and CmR are well-formed

• T i
R, T o

R and T r
R are pairwise disjoint

• there is no loop in the partonomy trees, i.e.,

– ∀ (T,T′) ∈ T i
R, @(T1, . . . ,Tn) s.t.,

T1 = T,Tn = T′ and ∀Ti, Ti+1,∃σi = 〈. . . ,Ti,Ti+1, . . .〉 ∈ SiR
– ∀ (T,T′) ∈ T o

R , @(T1, . . . ,Tn) s.t.,
T1 = T,Tn = T′ and ∀Ti, Ti+1,∃σi = 〈. . . ,Ti,Ti+1, . . .〉 ∈ SoR

Finally, before defining well-formed configuration models, we must make sure
that the specialisation function defines no loop in the feature view hierarchy
and that there exists one and only one base view in that hierarchy.

Definition 34 For a configuration model M, the specialisation function SpM
is well-formed iff:

∀F ∈ Vf , (F,F) /∈ Sp∗M ∧ (baseM 6= ∅) ∧ ∀(F,F′) ∈ baseM,F = F′

For the sake of readability, we shall then write in this case baseM = F instead
of baseM = {F}.

Definition 35 A configuration model M = 〈Vf ,Vs,Vr, SpM〉 is well-formed
iff all the following statements hold:

• All feature views F ∈ Vf are well-formed.

• All structure views S ∈ Vs are well-formed.

• All realisation views R ∈ Vr are well-formed.

• The specialisation function SpM is well-formed.

These rules ensure that the a model declared in ProCoLa are well-formed, and
must be satisfied before starting the configuration. In order to guarantee well-
formedness of the model, relevant tool support must be provided to the knowl-
edge engineers. We present in Chapter 10 our prototype implementation in
which ProCoLa models are compiled. Most of the well-formedness rules are
checked by the tool during this compilation process, with the support of a Cycle
Detection Analysis, presented in the next section.

122 Framework Implementation

6.4 Analysing ProCoLa Models

In this section, we will present several analyses of the configuration model based
on the formalism defined in Section 6.2. We first present how to construct the
labelled graph used for the analyses, and then the analyses themselves.

6.4.1 Graph construction

The different analyses of the configuration model are based on graphs with
labelled nodes and different kind of directed edges. We thus define a number of
operations on model elements and labels for each type of views.

6.4.1.1 Labels

Feature views. Consider a feature view F ∈ Vf . We define a function

element2labelF: (TF ∪ SF ∪ DF ∪ CcF ∪ CiF)→ Label

that associates a label to relevant elements in the feature view, i.e, feature types,
attribute and subfeature definitions, and constraints.

We also define the inverse function

label2elementF : Label→ (TF ∪ SF ∪ DF ∪ CcF ∪ CiF)

that retrieves the element associated to a specific label.

Structure views. Consider a structure view S ∈ Vs. We define the label
functions on structure types, resources, resource use, attribute, subcomponent
and association definitions, and constraints:

element2labelS : (TS ∪RS ∪ US ∪ SS ∪ AS ∪ DS ∪ CcS)→ Label
label2elementS : Label→ (TS ∪RS ∪ US ∪ SS ∪ AS ∪ DS ∪ CcS)

6.4 Analysing ProCoLa Models 123

Realisation views. For a realisation view R ∈ Vr, we define the label functions
on realisation types, subitem and suboperation definitions, successor definitions,
and mapping constraints as

element2labelR : (TR ∪ SiR ∪ SoR ∪NR ∪ ΩR ∪ CmS)→ Label
label2elementR : Label→ (TR ∪ SiR ∪ SoR ∪NR ∪ ΩR ∪ CmS)

Configuration model. Consider now the whole configuration model M =
〈Vf ,Vs,Vr, SpM〉. We define the following functions:

element2label = (
⊕

F∈Vf element2labelF)⊕ (
⊕

S∈Vs element2labelS)
⊕(
⊕

R∈Vr element2labelR)
label2element = (

⊕
F∈Vf label2elementF)⊕ (

⊕
S∈Vs label2elementS)

⊕(
⊕

R∈Vr label2elementR)

The labelling process must ensure that any element δ satisfies element2label(δ) =
l and label2element(l) = δ. For the sake of simplicity, we will adopt the notation
[δ]l.

Note that we assume the element2label and label2element functions to be bijec-
tive. If we have [δ]l and [δ]l

′
, then l = l′; moreover, if we have [δ1]l and [δ2]l,

then δ1 = δ2.

Then the set of labels occurring in the modelling views is given by the following
functions:

labelsf : Vf → P(Label)
labelss : Vs → P(Label)
labelsr : Vr → P(Label)

where

labelsf (F) = {l | [δ]l ∈ (TF ∪ SF ∪ DF ∪ CcF ∪ CiF)}
labelss(S) = {l | [δ]l ∈ (TS ∪ SS ∪ AS ∪ DS ∪ CcS)}
labelsr(R) = {l | [δ]l ∈ (TR ∪ SiR ∪ SoR ∪NR ∪ ΩR ∪ CmS)}

We finally define the labels function by:

labels(M) = labelsf (Vf) ∪ labelss(Vs) ∪ labelsr(Vr)

124 Framework Implementation

Example 37 Let us return to our case study, and the Communication type
from the base feature view, written in ProCoLa (only two constraints are shown
here).

featureType Communication [

attributes:

internetAccess: boolean; socialNetworking: boolean;

subFeatures:

phone [0..1]: Phone; network: Network;

constraints:

{ phone [1].3G -> internetAccess };

implementation:

{Count(phone) = 1} <-> {Present(Physical :: RFCard) and

Present(Software :: PhoneApp)};

];

The labelled elements from the formalisation of the Communication feature types
involved here are:

• feature types: [Communication]1, [Phone]8 and [Network]10.

• attribute declarations: [αinternetAccess]
2, [αsocialNetworking]3, originating from

the Communication type, and [α3G]8 from the Phone type.

• subfeature declarations: [σphone]
4 and [σnetwork]5.

• the compatibility constraint [c1]6 and the implementation constraint [i1]7.

• component types, from the software structure view [PhoneApp]11 and from
the physical structure view [RFCard]12.

6.4.1.2 Edges

We will need to operate on different types of edges between labelled nodes in the
graph. We thus define functions returning pairs of labels to define those edges,
according to the different elements in the configuration model. Three different
types of edges are created: dependency edges, use edges and taxonomy edges.
When two nodes (l1, l2) are linked through dependency edges, it means that
deleting the first one l1 will make the second one l2 inconsistent with respect to
the semantic correctness of the model. Use edges are created when a labelled
element references another element (except for taxonomy relations). Finally,
taxonomy edges represent the taxonomic relations between labelled elements.
The latter edges are separated from use edges to help identifying taxonomic
cycles, as will be discussed in Section 6.4.2.2.

6.4 Analysing ProCoLa Models 125

Feature views. For a view F = 〈TF,Troot
F ,SF, IF,DF, RefF, CcF, CiF,M〉, we

define the functions

depEdgesF : (SF ∪ IF ∪ DF ∪ CcF ∪ CiF)→ P(Label× Label)
useEdgesF : (SF ∪ DF ∪ CcF ∪ CiF)→ P(Label× Label)
taxoEdgesF : IF → P(Label× Label)

These two functions respectively describe the dependency and the use-relation
between labelled elements, and are defined for a feature view F:

• A subfeature definition [σ]l = 〈name, [Ts]
l1 , [Tt]

l2 , r1, r2〉 in SF relates two
types [Ts]

l1 and [Tt]
l2 . If one of these two types is deleted, the subfeature

definition makes no sense any more, so we have:

depEdgesF([σ]l) = {(l1, l), (l2, l)}

Also, subfeature definitions are referenced by the source type Ts]
l1 , and

make use of the target type [Tt]
l2 through [σ]l:

useEdgesF([σ]l) = {(l1, l), (l, l2)}

• For a pair ([T]l, [T′]l
′
) ∈ IF involved in a taxonomic relation, deleting

the supertype [T]l would invalidate the subtype [T′]l
′
. Also, taxoEdgesF

records that these two types are part of the same taxonomy:

depEdgesF([T]l, [T′]l
′
) = {(l, l′)}

taxoEdgesF([T]l, [T′]l
′
) = {(l, l′), (l′, l)}

• An attribute definition [α]l = 〈name, [Ts]
l′ ,D, v, r〉 in DF is referenced by

its source type [Ts]
l′ , and is dependent of it: removing it would make [α]l

semantically inconsistent.

depEdgesF([α]l) = {(l′, l)}
useEdgesF([α]l) = {(l′, l)}

• Constraints are dependent on their context type, as well as each variable
involved in their expressions For a compatibility constraint defined by
[cc]

l = 〈[T]l
′
, ec〉 ∈ CcF and an implementation constraint in CiF defined by

[ci]
l = 〈[T]l

′
, ecC, e

i
P,Op〉:

depEdgesF([cc]
l) = {(l′, l)} ∪ {(li, l)|[vi]li ∈ Vars(ec)}

depEdgesF([ci]
l) = {(l′, l)} ∪ {(li, l)|[vi]li ∈ Vars(ecC) ∪Vars(eiC)}

126 Framework Implementation

Moreover, each constraint is used by its context type, and references all
the variables from compatibility expressions. Use edges are limited to one
specific view, so implementation expressions are not referencing the own
variables.

useEdgesF([cc]
l) = {(l′, l)} ∪ {(l, li)|[vi]li ∈ Vars(ec)}

useEdgesF([ci]
l) = {(l′, l)} ∪ {(l, li)|[vi]li ∈ Vars(ecC)}

Then, the set of dependency and use edges in a feature view is given by:

depEdgesf : Vf → P(Label× Label)
useEdgesf : Vf → P(Label× Label)
taxoEdgesf : Vf → P(Label× Label)

where

depEdgesf (F) = {depEdgesF([δ]l) | [δ]l ∈ (SF ∪ IF ∪ DF ∪ CcF ∪ CiF)}
useEdgesf (F) = {useEdgesF([δ]l) | [δ]l ∈ (SF ∪ DF ∪ CcF ∪ CiF)}
taxoEdgesf (F) = {taxoEdgesF([δ]l) | [δ]l ∈ IF}

Example 38 In Example 37, the following edges are created:

depEdges:{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 6), (4, 7), (8, 4), (10, 5), (9, 6)}
useEdges:{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (6, 2), (7, 4), (4, 8), (5, 10), (6, 9)}

Structure views. We define the edges functions for a structure view S ∈ Vs:

depEdgesS : (SS ∪RS ∪ US ∪ AS ∪ IS ∪ DS ∪ CcS)→ P(Label× Label)
useEdgesS : (SS ∪RS ∪ US ∪ AS ∪ DS ∪ CcS)→ P(Label× Label)
taxoEdgesS : IS → P(Label× Label)

These functions are identical to the depEdgesF, useEdgesF, and taxoEdgesF
for subcomponent and association definitions (similar to subfeature definitions),
attribute definitions, compatibility constraints, the taxonomy relation and com-
patibility constraints.

The edges functions for a structure view S are defined further for a resource
definition [υ]l = 〈[T]l1 , [R]l2 , u, ec〉 in SS by:

depEdgesS([υ]l) = {(l1, l), (l2, l)} ∪ {(li, l)|[vi]li ∈ Vars(ec)}
useEdgesS([υ]l) = {(l1, l), (l, l2)} ∪ {(l, li)|[vi]li ∈ Vars(ec)}

6.4 Analysing ProCoLa Models 127

A resource definition is dependent on the interacting component type [T]l1 and
the resource used [R]l2 , as well as all variables involved in the resource use
expression ec. Furthermore, the interacting type [T]l1 makes use of the resource
definition [υ]l, which references the resource [R]l2 and the variables in ec.

Then, the set of dependency and use edges in a structure view is given by:

depEdgess : Vs → P(Label× Label)
useEdgess : Vs → P(Label× Label)
taxoEdgess : Vs → P(Label× Label)

where

depEdgess(S) = {depEdgesS([δ]l) | [δ]l ∈ (SS ∪RS ∪ US ∪ AS ∪ IS ∪ DS ∪ CcS)}
useEdgess(S) = {useEdgesS([δ]l) | [δ]l ∈ (SS ∪RS ∪ US ∪ AS ∪ DS ∪ CcS)}
taxoEdgess(S) = {taxoEdgesS([δ]l) | [δ]l ∈ IS}

Example 39 Consider the Motherboard type in the physical structure view of
our case study, and the interactions with the AvailableSlots resource already
considered in Example 29 (page 104).

This is defined in ProCoLa with:

componentType Motherboard [

attributes:

nbSlots: integer {6 ,10 ,12 ,14};

hidden nbChips: integer [0..5];

...

produces: AvailableSlots := nbSlots - nbChips;

];

with the labels: [Motherboard]1, [αnbSlots]
2, [αnbChips]

3, [υAS]4 and [AvailableSlots]5.
The following depdendency and use edges are created:

depEdges:{(1, 2), (1, 3), (1, 4), (5, 4), (2, 4), (3, 4)}
useEdges:{(1, 2), (1, 3), (1, 4), (4, 5), (4, 2), (4, 3)}

The resource use [υAS]4 is dependent on [Motherboard]1, [AvailableSlots]5, and
the variables [αnbSlots]

2 and [αnbChips]
3, while it references the resource [AvailableSlots]5

and the variables.

128 Framework Implementation

Realisation views. We now define the edges functions for a realisation view
R ∈ Vr:

depEdgesR: (SiR ∪ SoR ∪NR ∪ ΩR ∪ CmR)→ P(Label× Label)
useEdgesR: (SiR ∪ SoR ∪NR ∪ ∪ΩRCmR)→ P(Label× Label)

The edges functions for a realisation view R are defined by:

• Dependency and use edges for subitem and suboperation definitions are
similar to the ones for subfeature definitions. For a subitem or subopera-
tion definition [σ]l = 〈name, [Ts]

l1 , [Tt]
l2 , r〉 ∈ SiR ∪ SoR:

depEdgesS([σ]l) = {(l1, l), (l2, l)}
useEdgesS([σ]l) = {(l1, l), (l, l2)}

• A successor definition [η]l = 〈[Tp]l1 , [Ts]
l2〉 ∈ NR depends on both types

involved, and these types reference the successor definition:

depEdgesS([η]l) = {(l1, l), (l2, l)}
useEdgesS([η]l) = {(l1, l), (l2, l)}

• A resource usage definition [ω]l = 〈name, [To]l1 , [Tr]l2〉 ∈ ΩR also depends
on both types involved. It is referenced by the defining operation type
[To]l1 and make use of the resource type [Tr]l2 :

depEdgesS([ω]l) = {(l1, l), (l2, l)}
useEdgesS([ω]l) = {(l1, l), (l, l2)}

• Finally, a mapping constraint: [m]l = 〈[Ts]
l1 , [Tr]l2 , ec〉 ∈ CmR depends on

both its origin structure type and its defining realisation type, as well as
all the variables involved in the mapping expression. Moreover, it is used
by the structure type [Ts]

l1 and references both the realisation type [Tr]l2

and the variables in ec:

depEdgesS([m]l) = {(l1, l), (l2, l)} ∪ {(li, l)|[vi]li ∈ Vars(ec)}
useEdgesS([m]l) = {(l1, l), (l, l2)} ∪ {(l, li)|[vi]li ∈ Vars(ec)}

Then, the set of dependency and use edges in a realisation view is given by:

depEdgesr : Vr → P(Label× Label)
useEdgesr : Vr → P(Label× Label)

6.4 Analysing ProCoLa Models 129

where

depEdgesr(R) = {depEdgesR([δ]l) | [δ]l ∈ (SiR ∪ SoR ∪NR ∪ CmR)}
useEdgesr(R) = {useEdgesR([δ]l) | [δ]l ∈ (SiR ∪ SoR ∪NR ∪ CmR)}

Example 40 We have a look now at the mapping constraint defined in Example
34 on page 106, and declared in ProCoLa by:

operationType Coating [

mapping: TouchScreen: { oleophobicCoating };

...

];

with the labels: [Coating]1, [αoleophobicCoating]2, [mmap]3 and [TouchScreen]4.
The following depdendency and use edges are created:

depEdges:{(1, 3), (2, 3), (4, 3)}
useEdges:{(1, 3), (3, 2), (3, 4)}

Configuration model. Consider now the whole configuration model M =
〈Vf ,Vs,Vr, SpM〉. We define the following functions:

depEdges(M) = (
⊕

F∈Vf depEdgesF)⊕ (
⊕

S∈Vs depEdgesS)
⊕(
⊕

R∈Vr depEdgesR)
useEdges(M) = (

⊕
F∈Vf useEdgesF)⊕ (

⊕
S∈Vs useEdgesS)

⊕(
⊕

R∈Vr useEdgesR)
taxoEdges(M) = (

⊕
F∈Vf taxoEdgesF)⊕ (

⊕
S∈Vs taxoEdgesS)

Thus labels(M), depEdges(M), useEdges(M) and taxoEdges(M) will be a rep-
resentation of the dependency, use and taxonomy graphs for the configuration
model M.

Example 41 If we return to Example 37, Figure 6.1 shows the graph con-
structed from these labelled elements and edges. This graph shows that [σphone]

4

is dependent of [Communication]1 and [Phone]8, thus removing one of the two
types would make the subfeature declaration inconsistent in the formal model.
Also, we can see that [Phone]8 is used by [σphone]

4, and by transitivity is also
used by [Communication]1.

130 Framework Implementation

[Communication]
1

[αinternetAccess]
2

[αsocialNetworking]
3

[α3G]
9

[σphone]
4

[σnetwork]
5

[Phone]
8

[Network]
10

[RFCard]
12

[PhoneApp]
11

[c1]
6

[i1]
7

dependency

use

Edges

Figure 6.1: Graph for the Communication feature type

6.4.2 Analyses

We now present three analyses of the configuration model that rely on the
graph defined previously. These analyses are based on two types of algorithms:
a worklist algorithm [71] and an algorithm for finding strong components.

The Dependency Analysis permits to find other model elements dependent on a
specific element, while the Usage Analysis can be used to determine which ele-
ments are used by a specific one. Finally, the Cycle Detection Analysis identifies
the partonomic and taxonomic cycles in a model.

6.4.2.1 Dependency and Usage Analyses

In this section, we define the first two analyses based on the dependency and use
edges of the constructed graph. We first present the objectives of each analysis,
before describing the worklist algorithm used to compute them.

Dependency Analysis. The Dependency Analysis aims at finding the set of
labelled elements that depends on an initial labelled element. It takes as input a
set of labelled elements init and computes the list of labels {l1, ..., ln} that will
become inconsistent with respect to the model semantics and well-formedness
if elements in init are removed from the model.

The edges used to compute the Dependency Analysis are the dependency edges,
from the depEdges functions.

6.4 Analysing ProCoLa Models 131

Example 42 Recall Example 37, and consider the Phone feature type. Remov-
ing this type from the model has the following consequences on the model:

• The subfeature declaration [σphone]
4 = 〈“phone”, Communication, Phone, 0, 1〉

becomes invalid, as the target type is not a feature type anymore: Phone
/∈ TFbase .

• The attribute declaration [α3G]9 = 〈“3G”, Phone, {true, false},Visible, 1〉
becomes also invalid, as its source type is not in TFbase either.

• Finally, the compatibility constraint [c1]6 should be examined for deletion
as well, as it refers to α3G, which is not a valid attribute declaration
anymore.

The Dependency Analysis applied on init = {[Phone]8} should thus return the
set of labels {4, 6, 9}.

Usage Analysis. The Usage Analysis aims at finding the set of labelled el-
ements that are used in a model. This permits to identify, by looking at the
original set of labels, the elements that are not used in the configuration model,
and to take actions towards either cleaning the model or repairing it for ex-
ample. The Usage Analysis takes as input a set of labelled elements init and
computes the list of labels {l1, ..., ln} that are used by the elements in init. The
edges used to compute the Usage Analysis are the use and taxonomy edges,
from the useEdges and taxoEdges functions. A complete Usage Analysis of an
entire configuration model starts with the set of the root types of all feature and
structure views.

One special case concerns variables from implementation expressions: due to the
different semantics of these expressions (i.e., the implicit existential quantifier
used to interpret them), these variables have a special relation with the imple-
mentation constraint, and thus are linked using implementation edges, and not
use edges. Their usage must thus be determined from the view they are part of.

Example 43 In Example 37, [Network]10 is only used by the subfeature dec-
laration [σnetwork]5. If [σnetwork]5 were not in the model anymore, [Network]10

would not be in the Usage Analysis set computed on [Communication]1.

Note that [PhoneApp]11 and [RFCard]12 are not reachable from Communication
via the use edges, and thus are not in the Usage Analysis set computed from label
1, as they are part of the implementation of the Communication feature type.
To be part of the full model Usage Analysis, these types must then be used in
their own view.

132 Framework Implementation

Worklist algorithm. The algorithm used to compute the two analyses intro-
duced above is shown as Algorithm 1. It takes as argument the initial set of
labels init, as well as the set of edges E to consider for the requested analy-
sis. For a Dependency Analysis, we have E = depEdges(M), while we have
E = (useEdges(M) ∪ taxoEdges(M)) for a Usage Analysis.

Algorithm 1: Worklist(init: Set, E: Set): Set

1 Analysis = ∅;
2 W = ∅;
3 foreach l ∈ init do
4 W = Cons(l,W);
5 Analysis = Analysis ∪ {l};
6 while W 6= ∅ do
7 l = Head(W);
8 W = Tail(W);
9 foreach (l, l′) ∈ E do

10 if l′ /∈ Analysis then
11 W = cons(l′,W);
12 Analysis = Analysis ∪ {l′};

13 return Analysis;

The algorithm is based on a worklist W , which is initialised with labels from
the init set, along with the result set, Analysis. The function Cons(l,W) is
the list constructor, while Head(W) and Tail(W) produce the head and tail
of the worklist. In the while loop (line 6-12), the first element of the worklist is
extracted and removed from W . Each of its successors l′ in the set of edges E is
put under examination and, if not already in Analysis, is added to the worklist
and the result set. Line 13 finally produces the result of the algorithm.

6.4.2.2 Cycle Detection Analysis

The aim of the Cycle Detection Analysis is to detect partonomy and taxonomy
cycles in a configuration model whose well-formedness with respect to cycles
is not proven. This analysis is based on the different graphs created from the
model, and detects the strong components of the graphs.

Definition 36 Two nodes l and l′ are said to be strongly connected whenever
there is a (possibly trivial) directed path from l to l′ and a (possibly trivial)
directed path from l′ to l.

6.4 Analysing ProCoLa Models 133

Defining

SC = {(l, l′)|l and l′ are strongly connected}

we obtain an equivalence relation SC ⊆ labels(M) × labels(M) (the proof is
well-known and omitted here).

The equivalence classes of SC are called the strong components (or strongly
connected components) of the graph.

Each strong component with more than one node is a subgraph where cycles
occur. Thus, detecting strong components permits to test for cycles and identify
them if there are any. To find these strong components, we use a depth-first
search algorithm based on Tarjan’s [97] that takes a set of edges E as parameter
(and the root label(s) of the graph init). The computation is actually split into
the two Algorithms 2 and 3.

Algorithm 2: DFS(init: Set, E: Set): Set

1 foreach l ∈ init do
2 E = E ∪ {0, l};
3 L = ∅; SC = ∅;
4 visited = {0}; deleted = ∅;
5 counter = 0;
6 VisitSC(0);
7 foreach (l, l′) ∈ E do
8 if l = 0 then
9 E = E \ {l, l′};

10 return SC;

The two algorithms use the dfsNum and low data structures. The DFS num-
bering dfsNum(l) of a node l represents the number of vertices visited before l
in the depth-first search. In case a back or cross edge is discovered out of the
subtree of l, it is recognised by the algorithm as it has been visited before and
thus has a smaller dfsNum. In that case, low(l) is used to record the low link
of l, i.e., the smallest DFS numbering of a vertex reachable by a back or cross
edge from the subtree of l. With this, any element where low(l) = dsfNum(l)
is the head of a (trivial) component.

Algorithm 2 creates a dummy root element for the graph with label 0 (line 1-2),
useful when the set init contains more than one element, and initialises the

134 Framework Implementation

Algorithm 3: VisitSC(l: Label, E: Set)

1 L = Cons(l, L);
2 dfsNum(l) = counter;
3 low(l) = counter;
4 counter = counter + 1;
5 foreach (l, l′) ∈ E do
6 if l′ /∈ deleted then
7 if l′ /∈ visited then
8 visited = visited ∪ {l′};
9 VisitSC(l′);

10 low(l) = Min(low(l), low(l′));;

11 else
12 low(l) = Min(low(l), dfsNum(l′));;

13 if low(l) = dfsNum(l) and L 6= ∅ then
14 create new strong component in SC;
15 repeat
16 v = Last(L);
17 L = L \ {v};
18 deleted = deleted ∪ {v};
19 add v to the current strong component;

20 until v = l;

different data structures. The set visited records the visited nodes so they are
not examined again, while deleted records the nodes found as part of a strong
component and that are virtually deleted from the graph.

Algorithm 3 performs a depth-first search, starting from the dummy root. Each
node is inserted into a stack L in the order they are visited, the dfsNum and
low are assigned and a counter is incremented. All successors (via the edges)
of the node l are looked at, and visited if need be. When each node finishes
recursing, if its low value is still set to its DFS numbering, then it is the root
node of a strong component, formed by all of the nodes above it on the stack
L. The stack is popped up to and including the current node, and records those
nodes as being part of a new strong component.

Example 44 Consider Example 37 with the additional subfeature declaration

σcomm = 〈“comm”,Network,Communication, 1, 1〉

There is no taxonomic relation involved in this set of elements, so it is possible
to find the partonomic cycles only via use edges. The modified graph is shown

6.4 Analysing ProCoLa Models 135

[Communication]
1

[αinternetAccess]
2

[αsocialNetworking]
3

[α3G]
9

[σphone]
4

[σnetwork]
5

[Phone]
8

[Network]
10

[c1]
6

[i1]
7

[σcomm]
13

[Root]
0 0

0

2

2

3

3

1

1

7

1

8

1

9

1

11

11

4

4

5

510

10

6

6

Figure 6.2: Strong components for the (modified) use graph from Figure 6.1.
Red boxes indicate strong components. Red numbers for each labelled element
indicates dfsNum value (top) and low value (bottom).

in Figure 6.2, with only use edges. The DFS Algorithm has been applied, and
each strong component is highlighted in a square box. Each labelled element is
now assigned a DFS numbering (top number) and a low value (bottom value).
The partonomy cycle introduced because of σcomm is identified and is now part
of a single strong component, headed by [Communication]1. Each element of
this strong component has been assigned the low value of 1, which is the DFS
numbering of [Communication]1.

However, in the general case, elements involved in taxonomic relations form
taxonomy clusters that must be taken into account when looking for partonomic
cycles. Taxonomy edges in the graph are thus bi-directional, because instances of
a specific type is also an instance of its supertypes, and may as well be specialised
in one of its subtypes. Each of the types related together via taxonomy should
thus be grouped together when analysing partonomic cycles.

The general Cycle Analysis is thus a three-step process:

1. First, strong components of the graph with use and taxonomic edges are
identified. This isolates the partonomic cycles and/or the taxonomic clus-
ters. Consider the model elements from Figure 6.3(a). The Figure 6.3(b)
shows the use and taxonomic graph for these elements, which contains
only one big strong component.

136 Framework Implementation

2. Each of the strong components found previously can be either a single
taxonomy cluster (without any partonomic cycle) or several clusters linked
together by partonomic relations. Thus, the DFS Algorithm is applied
again on the taxonomic graph only within each of these strong components.
This separates the different taxonomic clusters of each strong component.
Figure 6.3(b) shows two taxonomy clusters in the previous example: this
implies that a partonomic cycle does exist withing the strong component.

3. Finally, each taxonomy cluster is scanned for taxonomic cycles. The DFS
Algorithm is applied on the dependency graph, as in Figure 6.3(d), which
shows one taxonomic cycle.

«ComponentType»
T5

«ComponentType»
T1 σ1

«ComponentType»
T4

«ComponentType»
T2

«ComponentType»
T3

σ2

(a)

[T1]
1

[T2]
2

[T3]
3

[T4]
4

[T5]
5

[σ1]
6

[σ2]
7

use

ta
xo
no
m
y

(b)

[T1]
1

[T2]
2

[T3]
3

[T4]
4

[T5]
5

[σ1]
6

[σ2]
7

(c)

[T1]
1

[T2]
2[T3]

3 [T4]
4

[T5]
5

de
pe
nd
en
cy

(d)

Figure 6.3: Cycle Analysis example. (a) Example model. (b) Strong components
of the use and taxonomic graph. (c) Identification of the taxonomy clusters. (d)
Taxonomic cycles.

6.5 Summary

In this chapter we defined ProCoLa, a modelling language for declaring the
product knowledge of heterogeneous product families. We described the full
syntax of ProCoLa for three types of modelling views, feature, structure and
realisation views, as well as constraint expressions for compatibility constraints,
implementation constraints and mapping constraints.

6.5 Summary 137

We also defined a formalism to represent configuration models for heterogeneous
product families, in which ProCoLa has been translated. The formalism is used
to:

• define a type system for constraint expressions, using a formal constraint
language.

• define well-formedness rules for our modelling framework.

Such rules provide ProCoLa with clear semantics, and permit to ensure that
product models in ProCoLa are created in accordance to the concepts defined
in the previous chapter. The formalism has then been used to define and apply
analyses on configuration models. These analyses are based on a graph derived
from the formal models and allow to:

• Assess the impact of deleting model elements, using the Dependency Anal-
ysis. This analysis permits to discover what elements might be inconsistent
with the model’s semantics when maintenance is performed or if changes
are introduced due to the model evolution.

• Detect unused elements in the models, using the Usage Analysis. Unused
elements may be remains of previous evolutions of the configuration model,
and may be superfluous.

• Detect partonomy and taxonomy cycles in the model. Such cycles can
provoke issues when interpreting the model before configuration is started,
and must be avoided.

These analyses provide insights on the correctness of the model, as well as
potential issues that may arise when modifying it. Practical implementation of
the analyses is discussed in Chapter 10.

138 Framework Implementation

Part III

Constraint Solving

Chapter 7

Constraint Satisfaction
Problems and Configuration

Proposing an accessible modelling language to design and maintain product
families is not sufficient: a configuration framework must not only be able to
support the modeling, but also support efficient mechanisms to solve the con-
figuration of product models at runtime. Because it is highly declarative and
domain independent, the Constraint Satisfaction Problem (CSP) framework is
often used for solving configuration problems. Modelling and solving Constraint
Satisfaction Problems problems have been studied in depth.

In this part, we aim at defining concrete semantics for our configuration frame-
work by translating it to Constraint Satisfaction Problems. The CSP framework
needs to be extended in order to fulfill the requirements of product configura-
tion. We thus identify relevant extensions for our framework, and introduce a
novel algorithm for dealing with table constraints, before presenting how ele-
ments in ProCoLa and our configuration framework are mapped to the chosen
CSP formalism.

We first provide in this chapter some necessary background on Constraint Sat-
isfaction Problems relevant for our work, including algorithms to maintain con-
sistency in the classic CSP and its extensions.

142 Constraint Satisfaction Problems and Configuration

7.1 Classic CSP

7.1.1 Definitions

The definition of a Constraint Satisfaction Problem (CSP) can be found in [85].
A CSP is a triple P = 〈X,D,C〉 where:

• X is an n-tuple of variables X = 〈x1, x2, ..., xn〉,

• D is a corresponding n-tuple of domains D = 〈D(x1), D(x2), ..., D(xn)〉,
representing, for each variable xi, the set of possible values it can take,

• C is a t-tuple of constraints C = 〈c1, c2, ..., ct〉 restricting the values
that the variables can simultaneously take. A constraint ck is a pair
〈scp(ck), rel(ck)〉 where rel(ck) is a relation on the variables in scp(ck).
scp(ck) is called the scope of ck. A constraint ck can be defined in inten-
sion, in which case the relation rel(ck) is a predicate built from variables
in scp(ck), constant values and a set of functions (operators); ck can also
be defined in extension, with rel(ck) being the set of all tuples of allowed
values. Constraints defined in extension are also called table constraints.

Example 45 Figure 7.1 shows an example of a CSP, composed of five vari-
ables: X = 〈x1, x2, x3, x4, x5〉 and four constraints C = 〈c1, c2, c3, c4〉. These
constraints are shown in extension, i.e., as a set of allowed tuples for each com-
bination of variables.

Figure 7.1: Example of a CSP. Each node represents a variable whose domain
is explicitly indicated. The constraints are defined in extension to specify the
set of allowed tuples.

7.1 Classic CSP 143

Solving a CSP consists in assigning a value to each variable such that all con-
straints are satisfied. In more formal term, a solution to the CSP P is an n-tuple
A = 〈a1, a2, ..., an〉 where ai ∈ D(xi), xi = ai and each ck is satisfied in that
rel(ck) holds on the projection of A onto the scope scp(ck) (i.e., for the variables
only involved in rel(ck)). If the set of solutions, sol(P), is empty, then the CSP
is said to be unsatisfiable.

Constraint satisfaction problems on finite domains are typically solved using
a form of search. Search techniques are used to explore the solution space
of the problem, and find solution to the CSP if it exists. The basic and very
inefficient systematic search algorithm is Generate-and-Test, where each possible
assignment to all variable is generated and tested as a solution of the CSP. A
much more popular approach is chronological backtracking. In its simplest form,
the algorithm constructs potential solutions by assigning value to variables in a
depth-first manner. It extends in each step a partial solution towards a complete
one, and backtracks when a constraint is violated, i.e., it retracts the most recent
instantiated variable and tries another value.

7.1.2 Arc Consistency in CSP

Finding solutions for a CSP is an NP-complete task [85], so local consistency
properties can be used to simplify the problem during search. Local consistency
properties are properties defined on a subset of variables and constraints. One
of the most common local consistency properties is Arc Consistency.

Definition 37 For each constraint c on (x1, ..., xi, ..., xp), we define a tuple
τ = (d1, ..., di, ..., dp) as a support of c if it is an allowed tuple (τ ∈ rel(c)) and
∀xi ∈ scp(c), τ(xi) = di ∈ D(xi). A pair (xi, di) is said to be arc consistent if,
for each c ∈ C constraining xi, there exists a support τ ∈ c such that τ(xi) = di.
A problem P is arc consistent if ∀xi ∈ X,∀di ∈ D(xi), (xi, di) is arc consistent.
A problem Pk is maximally arc consistent if enlarging the current domain of
any of its variables makes it not arc consistent.

Example 46 Figure 7.2 shows the CSP from Figure 7.1 where the domain of
each variable has been pruned in order to enforce the Arc Consistency property.

Many generic algorithms have been designed to maintain arc consistency in a
CSP with binary constraints, for example AC3 [60], AC4 [68] and AC6 [16].
Still AC3, due to its simplicity, remains the main algorithm used and worked on
(e.g., AC-3.3 in [59]). In such algorithms, pairs of variables (xi, xj) involved in
a binary constraint cij are called arcs. These arcs are revised by the algorithms

144 Constraint Satisfaction Problems and Configuration

Figure 7.2: Arc Consistent CSP from Figure 7.1.

and the domain of the two variables are reduced in order to ensure the Arc
Consistency property. Arcs are set to be revised when the domain of one of the
variables involved is modified due to another constraint.

Algorithm 4 presents the AC3 algorithm. It uses a Revise function (Algorithm
5) to revise arcs of the constraint graph. The main point in AC3 is that if the
arc (xi, xj) is revised and the domain of xi reduced, there is no need to re-revise
the arc (xi, xj), because there is no deleted element from the domain of xi that
can have an influence on the elements from the current domain of xj .

Consequently, these arcs are not revisited, which improves the overall perfor-
mance of the algorithm.

Algorithm 4: Algorithm AC3(〈X,D,C〉: CSP): Bool

1 begin
2 Q← {(xi, cij)|xi ∈ scp(cij), cij ∈ C};
3 while Q 6= ∅ do
4 select and remove (xi, cij) from Q;
5 if Revise(xi, cij) then
6 if D(xi) 6= ∅ then return false;
7 else
8 Q← Q ∪ {(xk, cki)|k 6= i, k 6= j};

9 return true;

7.2 Extensions to CSP 145

Algorithm 5: Function Revise(xi: variable,cij : constraint): Bool

1 begin
2 CHANGE ← false;
3 foreach vi ∈ D(xi) do
4 if there is no vj ∈ D(xj) such that (xi,xj) is consistent with cij then
5 remove xi from D(xi);
6 CHANGE ← true;

7 return CHANGE ;

Consistency algorithms reduce the domains of the variables during the solving,
while keeping the problem consistent with the constraints. Using them during
search greatly improves performance, as it can prune the search tree consider-
ably. The Forward Checking algorithm [85] enforces Arc Consistency between
the currently assigned variables and unassigned variables. Other techniques like
Full Look Ahead [85] or MAC [81] (Maintaining Arc Consistency) go up to
enforcing full Arc Consistency on the CSP.

7.2 Extensions to CSP

Problems in product configuration can be solved using Constraint Satisfaction
Problems. However, configuration exhibits several issues that cannot be solved
using the classic CSP approach. We present in this section several extensions
to the classic CSP approach.

7.2.1 Conditional CSP

A particular need in configuration is the fact that some elements of the config-
uration model can be optional, or the number of parts of a subcomponent can
vary. For example, the motherboard in our case study can contain one or several
wireless chips, and the number of chips may be decided at configuration time,
depending on the assignments of some attributes in other components. Other
issues include the use of variables with hierarchical structure, or the grouping of
variables. Mittal and Falkenhainer [67] define Dynamic CSPs, renamed Condi-
tional CSPs (CondCSPs) later to avoid ambiguity with another representation
presented in the next Section. Some variables in a CondCSP are initially active

146 Constraint Satisfaction Problems and Configuration

while others are not, and constraints can be classified in two categories: activ-
ity constraints, that activate or deactivate variables, or compatibility constraints
(similar to the constraints in the classic CSP). In this early formulation, only al-
gorithms based on backtracking techniques had been presented, so several other
proposals extended the original work: a new revision by Soininen and Gelle [92],
where activity constraints are generalized; the Composite CSP model from [86],
which models a hierarchical structure between variables and constraints, using
metavariables as placeholders for subproblems; the CSPe representation [106],
where a state attribute is associated to each variable, giving the possibility to
represent the activity of the variable. More advanced algorithms to specify and
solve CondCSP have also been developed in [43, 87] or even further by Geller
and Veksler [44] with their Activity CSP formulation. This latest formulation
simply associates to each variable an activity variable, which can be either true
or false, and that will be integrated into the constraints to handle their activity.
Defining activity variables as “classic” variables has the advantage that classic
solving method can be used.

Although well-studied, these Conditional CSPs can only deal with variables
known from the start and thus problems where variables are generated during
solving cannot be solved with those methods. This can occur in some config-
uration models where the set of the components used in the final solution is
not known beforehand, e.g., in models with partonomy relations containing an
arbitrary number of subcomponents. Other approaches have been studied to
solve that problem. Stumptner et al. [95] describe Generative CSPs (GCSPs),
where constraints with metavariables can be used to express generic relations.
Mailharro [61] defines another framework, capable of satisfying on-demand gen-
eration of components in configuration. His approach is based on constrained
set variables, which can contain a special value (wildcard) that represents the
set of all components that have not been instantiated yet. One difference be-
tween the two approaches is instead of constrained set variables, the Generative
CSP by Stumptner et al. [95] uses arrays of ports that can be quantified over.
Mailharro’s approach provides a more symmetry-breaking-friendly syntax, while
the approach from Stumptner et al. is more suitable for representing complex
layout constraints (e.g.,, situations where individual component placement is
important, like placing cards in a rack).

7.2.2 Dynamic CSP

Real world systems are often dynamic, involving changes in the implemented
models. This is especially true for interactive configuration, where selecting or
deselecting a value for a specific variable can be seen as the addition or removal of
a user requirement. CSPs have therefore been extended as Dynamic Constraint
Satisfaction Problems (DCSP) to handle such dynamic systems.

7.3 CSP with Non-Binary Constraints 147

Definition 38 A Dynamic CSP is a sequence of CSPs P0,P1, ...,Pm where
each problem results from the addition or removal of a constraint c in its pre-
decessor. More precisely, if Pi = 〈X,D,Ci〉, then Pi+1 = 〈X,D,Ci+1〉 where
Ci+1 = Ci ± c.

Example 47 A DCSP can be derived from the CSP in Figure 7.1: P0 starts
with no constraints, and each Pi is created by adding the constraint ci. Finally,
P5 is created by remove the constraint c3.

Maintaining arc consistency in Dynamic CSPs is equivalent to making the prob-
lem Pi maximally arc consistent, provided that P0, ...,Pi−1 are maximally arc
consistent. Handling constraint addition is fairly straightforward: the new prob-
lem can indeed be made maximally arc consistent just by applying AC algo-
rithms again.

However, the task of removing a constraint is a bit different. In fact, when
removing a constraint, the problem stays arc consistent, but not necessary max-
imally arc consistent. This is due to the fact that some solutions can be lost, and
formerly inconsistent values may need to be restored to re-establish maximal arc
consistency.

Existing algorithms for arc consistency in DCSPs, e.g., DnAC4 [14] (based on
AC4) are working in three phases during constraint removal: first the values
originally deleted by the removed constraints are restored (initialization phase);
then those restorations are propagated to other variables connected through
existing constraints (propagation phase); finally, the restored values are filtered
again (filtering phase).

The last phase ensures that all wrongly restored values are removed. The
latest and most efficient algorithms for binary constraints are AC|DC-2i and
AC3.1|DC-2i [11].

7.3 CSP with Non-Binary Constraints

Non-binary constraints are constraints involving more than two variables. Most
authors have generally not extended their work to non-binary problems and
Generalised Arc Consistency. The main reason is that any non-binary CSP
can potentially always be transformed into an equivalent binary CSP, using
techniques such as dual transformation [32] or hidden (variable) transformation
[84]. However, this is sometimes impracticable [9]. In this Section, we present
a few algorithms for non-binary problems.

148 Constraint Satisfaction Problems and Configuration

7.3.1 Generalised Arc Consistency

Among existing algorithms enforcing (Generalised) Arc Consistency on non-
binary CSPs are GAC3 [60] and GAC4 [69]. These algorithms are extensions of
their binary counterparts, but are much more expensive. Indeed, they inspect
all pairs of variables and values, and check their consistency for each constraint,
resulting in an exponential worst-case time complexity.

Enforcing (Generalised) Arc Consistency on CSPs with non-binary constraints
is NP-complete [17], and the best worst-time complexity obtained by generic
algorithms such as GAC4 is O(erdr), with e the number of constraints, r the
greatest constraint arity and d the greatest domain size.

Many other algorithms have been designed to enforce arc consistency in a more
efficient way for specific problems, for example non-binary CSPs with table con-
straints. Tables can actually be considered as the most explicit way to represent
constraints, as in theory any constraints in intension can be transformed into a
table constraint.

However, this may in practice lead to time and space explosion when solving
the problem. Another classic global constraint is the all different(x1, ..., xn)
constraint, which imposes that variables in the set x1, ..., xn have different val-
ues. Algorithms such as the one from Régin [80] are capable of enforcing Arc
Consistency on a problem with all different constraints in polynomial time.

When dealing with Dynamic CSP, only one algorithm has been extended. The
algorithm DnGAC4 [15] is an extension of DnAC4, and thus has the same
complexity and performance of GAC4. The algorithm follows the three-phase
approach common to DCSP algorithm for binary problems, and deals with non-
binary constraints expressed in extension.

7.3.2 Simple Tabular Reduction

Table constraints are particularly relevant for configuration. Among the work
on enforcing Arc Consistency for table constraints, Simple Tabular Reduction
(STR) [58,103] differs from previous methods as it virtually modifies the tables
in order only to go through the supporting tuples when enforcing arc consistency.
More precisely, when the domain of a variable is reduced, each table constraining
that variable is updated, by removing all invalid tuples.

7.3 CSP with Non-Binary Constraints 149

The STR algorithm is shown as Algorithm 6. Each constraint c is represented by
a set of tuples c.table. These tuples are part of one of two linked lists: the cur-
rent list, that contains the currently valid tuples (and consequently the current
supports), and the removed list, containing the tuples that have been virtually
removed from the table, because they are no longer valid.

Algorithm 6: GACstr(c: Constraint, depth: Integer): Bool

1 Ssup = ∅;
2 foreach x ∈ scp(c) do
3 gacV alues[x] = ∅;
4 add x to Ssup ;

5 prev = −1;
6 curr = c.first;
7 while curr 6= −1 do
8 τ = c.table[curr];
9 nextT = c.next[curr];

10 rTail = c.restoredTail;
11 if isValid(c, τ) then
12 foreach x ∈ Ssup do
13 if (τ [x] /∈ gacV alues[x]) then
14 add τ [x] to gacV alues[x];
15 if |gacV alues[x]| = |D(x)| then
16 remove x from Ssup;

17 prev = curr ;

18 else
19 removeTuple(c, prev, curr, depth);

20 curr = nextT ;

21 foreach x ∈ Ssup do
22 if gacV alues[x] = ∅ then
23 return false;

24 foreach dx ∈ D(x) do
25 if dx /∈ gacV alues[x] then
26 remove dx from values[x];
27 add x to changed ;

28 return true;

150 Constraint Satisfaction Problems and Configuration

Algorithm 7: isValid(c: Constraint, τ : Tuple): Bool

1 foreach x ∈ scp(c) do
2 if τ [x] /∈ D(x)) then
3 return false;

4 return true;

Algorithm 8: removeTuple(c: Constraint, prev, curr, depth: Integers)

1 if prev = −1) then
2 c.first = c.next[curr];

3 else
4 c.next[prev] = c.next[curr];

5 c.next[curr] = c.removedHead[depth];
6 if c.removedHead[depth] = −1) then
7 c.removedTail[depth] = curr;

8 c.removedHead[depth] = curr;

Algorithm 9: restoreTuples(c: Constraint, depth: Integer)

1 if c.removedHead[depth] 6= −1) then
2 c.next[c.removedTail[depth]] = c.first;
3 c.first = c.removedHead[depth];
4 c.removedHead[depth] = −1;

The algorithm uses the following data structures:

• The position c.first of the first current tuple in c.table (c.first = −1 if
the current table is empty).

• Two arrays removedHead and removedTail that give the position of the
first and last invalid tuples when the search is at a certain depth.

• An array c.next that, for each tuple, links to the following tuple in the
linked list it belongs to (current or removed list). c.next[i] = −1 if i is the
last tuple in its list.

• A set gacV alues[xi] for each variable xi containing all values from D(xi)
that have found a support in the table constraint c.

7.3 CSP with Non-Binary Constraints 151

• A set Ssup of variables whose domain contains at least one value for which
a support has not yet been found. This is an optimisation of the initial
STR algorithm presented in [58]: it avoids unnecessary validity checks
by iterating over variables in Ssup and removing from Ssup the variables
whose whole domain has been proven consistent.

The algorithm goes over all current tuples (lines 7-20) and updates the gacValues
sets accordingly. If a tuple is proven invalid, it is “removed” from the table
and values are not added to gacValues (line 14). When the table has been
scanned, the gacValues set are compared to the original domain of the variables
involved, and variables with a modified domain are added to the propagation
queue changed (lines 21-27). The head and tails of the removed list are recorded
for each depth, allowing a chronological backtracking in constant time (without
re-traversing the table) using the function restoreTuples (Algorithm 9).

STR uses arrays of indexes to avoid moving tuples in memory, and is thus
enforcing arc consistency in O(er(d+ t′)), where t′ is the maximum size of the
current tables. Worst-case space complexity of STR is O(e(n+ rt)), with t the
greatest original table size. STR has been shown to be one of the most efficient
approaches when dealing with table constraints.

Example 48 Let’s go back to Figure 7.1. Applying STR on constraint c3 will
give

gacV alues[x1] = {1} and gacV alues[x2] = {1, 2}

removing the value 0 in D(x2). The change then propagates to c2: 0 /∈ D(x2),
so the first tuple becomes invalid and is put in the removed list.

We then have:

c2.first = 2, c2.removedHead[0] = 0, c2.removedTail[0] = 0
c2.next[1] = −1, c2.next[2] = 3 and c2.next[3] = −1

It follows:

gacV alues[x2] = {1, 2} and gacV alues[x3] = {1, 2}

152 Constraint Satisfaction Problems and Configuration

(a)

(b)

Figure 7.3: Applying STR on the CSP from Figure 7.1. (a) shows the state
after first traversal of c3 and c2, and (b) after enforcing Arc Consistency

This eliminates the value 0 in D(x3). Figure 7.3(a) shows the CSP after these
two propagations. Once all domain changes have been propagated and all tables
virtually reduced, the CSP reaches Arc Consistency (Figure 7.3(b)).

Chapter 8

Non-binary Dynamic CSP
with Simple Tabular

Reduction

In this chapter, we focus on solving the Dynamic CSPs with non-binary con-
straints. Non-binary constraints defined in extension (i.e., table constraints)
are commonly used in applications where databases are involved, in particular
product configuration, as they can be used to represent product catalogues (see
Section 2.3). Moreover, Dynamic CSPs provide a very interesting framework for
solving configuration problems, as it permits to handle the addition and removal
of constraints, whether they are user requirements or constraints designed by
the product modeller.

As shown in the previous chapter, only the DnGAC4 algorithm [15] has been
designed to enforce Arc Consistency on non-binary constraints. This algorithm
is based on a relatively old Arc Consistency algorithm (GAC4). We propose
in this chapter a new algorithm for solving Dynamic CSPs with extensional
non-binary constraints, based on Simple Tabular Reduction (see Section 7.3.2),
one of the most efficient approaches for maintaining Arc Consistency on table
constraints.

154 Non-binary Dynamic CSP with Simple Tabular Reduction

8.1 The DnSTR Algorithm

In this Section, we introduce a new algorithm called DnSTR for solving DCSP
with non-binary table constraints. It relies on a timeline of events, which is
composed by timestamps. Each timestamp t is defined by two integers (dp, lt),
which represent the depth of the timestamp (the depth is increased every time
a constraint is added) and the local time at a given depth. The timestamps can
also be compared, either based on different depth, or on different local time:

∀t1, t2 : t1 < t2 ⇔ (t1.dp < t2.dp ∨ (t1.dp = t2.dp ∧ t1.lt < t2.lt))

Like the other algorithms targeting DCSPs, DnSTR is working in three phases
(as described in Section 7.2.2). However, the filtering phase in DnSTR is per-
formed incrementally during constraint retraction, in order to keep the timeline
consistent and use it to restore only specific tuples. Indeed, during constraint
retraction, wrongly restored tuples need to be put back at the depth they would
have been deleted at if the removed constraint had never been added to the prob-
lem. Thanks to this mechanism, when a value is restored at a certain depth,
only tuples at this same depth have to be restored during propagation (except
if the constraint associated to those tuples was added later, in which case the
depth considered is this constraint addition’s depth).

The algorithm works with the following data structures:

• A global depth counter gdepth, as well as an array lastLTime that for each
depth dp associates the last local time lt in the current timeline.

• Two justifications arrays justif t and justif c that, for each pair (x, dx),
keep track of when and by which constraint the value dx has been removed
from D(x). Each constraint is also associated with the time of addition,
recorded in the array timec.

• As we already pointed out, the algorithm DnSTR is based on Simple Tab-
ular Reduction. It thus shares similar data structures for each table con-
straint, including an initial set of tuples c.table, the index of the first tuple
in the current table c.first (i.e., the table of valid tuples), an array c.next
that links lists of tuples (by their indexes), and two arrays c.removedHead
and c.removedTail that give the index of the first and last invalid tuples
at each depth. Note that c.next[i] = −1 if i is the position of the last
tuple, either in the current table if i is a valid tuple or in the removed list
if i has been removed. For each constraint c, we also store the index of the
last restored tuple in c.restoredTail, and an array c.removed t that records
the removal time (or timestamp) of each tuple.

8.1 The DnSTR Algorithm 155

Algorithm 10: AddConstraint(c: Constraint): Bool

1 add c to C ;
2 gdepth = gdepth + 1 ; lastLTime[gdepth] = 0 ;
3 timec[c] = (gdepth, 0) ;
4 revise[gdepth] = {c} ;
5 return Filter(revise,D, (gdepth, 0)) ;

Algorithm 11: Filter(revise, values: Arrays, (dpi, lti): Time): Bool

1 while revise[dpi] 6= ∅ do
2 select and remove c from revise[dpi];
3 changed = ∅;
4 if not GACstrDyn(c, changed, (dpi, lti), values) then
5 return false;

6 foreach (x, jtx) ∈ changed do
7 crevise = {cr ∈ C s.t. cr 6= c, x ∈ scp(cr), timec[cr] ≤ (dpi, lti)};
8 if jtx.dp > dpi then
9 add crevise to revise[jtx.dp];

10 else
11 add crevise to revise[dpi];

12 return true;

8.1.1 Constraint Addition

Adding a constraint to the DCSP is done by filtering the system through the
function AddConstraint described in Algorithm 10.

The revise structure contains for each depth the constraints to evaluate at fil-
tering. Constraint addition works in the following way:

1. Filter iterates over the constraints to revise at the given depth (the
latest for constraint addition) and applies a modified version of STR (Al-
gorithm 12), where only the elements in the list values are taken into
account (values represents the full domain D when adding constraints,
but only the restored values are re-evaluated during the filtering phase of
constraint retraction).

2. GACstrDyn differs from Algorithm 6 on page 149 as it handles the
restored tuples (for constraint retraction) and the update of the justifi-

156 Non-binary Dynamic CSP with Simple Tabular Reduction

Algorithm 12: GACstrDyn(c: Constraint, changed: Set, (dpi, lti): Time,
values: Array): Bool

1 Ssup = ∅;
2 foreach x ∈ scp(c) do
3 gacV alues[x] = ∅;
4 if values[x] 6= NIL then
5 add x to Ssup ;

6 prev = −1;
7 curr = c.first;
8 while curr 6= −1 do
9 τ = c.table[curr];

10 nextT = c.next[curr]; rTail = c.restoredTail;
11 if isValid(c, τ, (dpi, lti)) then
12 foreach x ∈ Ssup do
13 if (τ [x] /∈ gacV alues[x] and τ [x] ∈ values[x]) then
14 add τ [x] to gacV alues[x];
15 if |gacV alues[x]| = |values[x]| then
16 remove x from Ssup;

17 prev = curr ;

18 else
19 c.removed t[curr] = (dpi, lti) ;
20 if c.restoredTail = curr then c.restoredTail = prev;
21 removeTuple(c, prev, curr, dpi);

22 if curr = rTail then break;
23 curr = nextT ;

24 foreach x ∈ Ssup do
25 foreach dx ∈ values[x] do
26 if dx /∈ gacV alues[x] then
27 remove dx from values[x];
28 if |D[x]| 6= |values[x]| then remove dx from D[x];
29 if not (justif c[x, dx] = c and justif t[x, dx] > (dpi, lti)) then
30 justif c[x, dx] = c;
31 justif t = (dpi, lti);

32 add (x, justif t[x, dx]) to changed ;

33 if |D[x]| = 0 then return false;

34 lastLTime[dpi] = lti + 1 ;
35 return true;

8.1 The DnSTR Algorithm 157

Algorithm 13: isValid(c: Constraint, τ : Tuple, (dpi, lti): Time): Bool

1 foreach x ∈ scp(c) do
2 if (τ [x] /∈ D[x]) and (justif t[x, τ [x]] ≤ (dpi, lti)) then
3 return false;

4 return true;

cations. Those are computed at lines 30-31, except if the pair (x, dx)
had been removed by the same constraint at a later stage (line 29) — in
which case another support for (x, dx) is still valid at this time but will be
removed later in time.

3. IsValid also differs as it checks the value’s justification time, while Re-
moveTuple is identical to the one described in Algorithm 8.

4. Filter then updates revise with potentially affected constraints (lines
6-11). The timestamp parameter (dpi, lti) is used to specify when the
filtering occurs (line 7), so that the constraints added after that time are
not filtered yet (but will be later, when incremental filtering is used during
constraint retraction). If x was changed at a later depth (lines 8-9), the
constraint to revise is inserted at that specific depth jtx.dp instead of the
current one.

8.1.2 Constraint Removal

Constraint retraction is performed by the function RemoveConstraint (Al-
gorithm 14). During the initialization stage, all pairs (x, dx) that were removed
by the retracted constraints are restored. Notice that all restored values are
placed in a list restoredValues so that only those values are considered in the
filtering stage.

During the propagation stage in function Propagate, tuples from constraints
connected to restored variables are restored.
Thanks to the strictly maintained timeline, only the tuples that have been re-
moved after a pair (x, dx) and in the same depth need to be restored, except in
the case where the connected constraint has been added after the pair’s deletion.
In the latter case, the tuples deleted immediately at the constraint’s addition
are restored as well. This makes sure that we take into account the tuples
potentially deleted because of (x, dx), even though their deletion may have hap-
pened at a later depth than the pair’s removal time. The function UpdateLists
(Algorithm 15) is responsible for the updates of restore and revise.

158 Non-binary Dynamic CSP with Simple Tabular Reduction

Algorithm 14: RemoveConstraint(c: Constraint): Bool

// Initialization phase

1 restoredValues = ∅ ;
2 foreach x ∈ scp(c) do
3 foreach dx ∈ D0[x] \D[x] do
4 if justif c[x, dx] = c then
5 add dx to D[x] ;
6 add dx to restoredValues[x] ;

7 Remove c from C ;

// Propagation phase

8 revise = ∅ ;
9 tcr = Propagate(restoredValues, revise, timec[c].depth);

// Filtering phase

10 for dpi ← timec[c].dp to gdepth do
11 Filter(revise, restoredValues, (dpi, lastLTime[dpi]));

// Cleaning phase

12 foreach cj ∈ tcr do
13 cj .restoredTail = −1 ;

14 foreach x ∈ restoredValues do
15 foreach dx ∈ restoredValues[x] do
16 justif t[x, dx] = NIL ;
17 justif c[x, dx] = NIL ;

18 restoredValues[x] = NIL ;

19 return true;

Algorithm 15: UpdateLists(x: Var, restored x: Set, dprem: Int, revise,
restore: Arrays)

// Update of restore and revise

1 foreach cx ∈ C constraining x do
2 foreach depth dpi do
3 jtime[dpi] = {min(jt = justif t[x, dx])|dx ∈ restored x & j.dp = dpi)};
4 add {max(jt, timec[cx]), jt ∈ jtime} to restore[cx] ;

5 if (∃dx ∈ restored x s.t. justif t[x, dx].dp ≤ timec[cx].dp) then
6 add cx to revise[max(timec[cx].dp, dprem)] ;

8.1 The DnSTR Algorithm 159

Algorithm 16: Propagate(restoredValues: Set, revise: Array , dprem: Int): Set

1 restore = ∅ ;
2 foreach x ∈ restoredValues do
3 UpdateLists(x, restoredValues[x], revise, restore, dprem)

4 while restore 6= ∅ do
5 select and remove (c,minRestoredT imes) from restore;
6 newRestored = ∅; add c to tcr ;
7 foreach (dp, lt) ∈ minRestoredT imes do
8 curr = c.removedHead[dp] ; prev = −1 ;
9 rtail = c.removedTail[dp] ;

10 if c.restoredTail = −1 then c.restoredTail = rtail ;
11 RestoreTuples(c, dp) ;
12 while curr 6= −1 do
13 nextT = c.next[curr];
14 if c.removed t[curr] < (dp, lt) then
15 if c.restoredTail = curr then
16 c.restoredTail = prev;

17 removeTuple(c, prev, curr, dp);

18 else
19 τ = c.table[curr]; jT imes = ∅ ;
20 foreach x ∈ scp(c) do
21 if τ [x] /∈ D[x] then
22 if justif c[x, τ [x]] 6= c then
23 add justif t[x, τ [x]] to jT imes ;
24 else
25 add τ [x] to D[x] ;
26 add τ [x] to newRestored[x] ;

27 if jT imes 6= ∅ then
28 add c to revise[min(jT imes)] ;

29 c.removed t[curr] = NIL ; prev = curr ;

30 if curr = rTail then break;
31 curr = nextT ;

32 foreach (x ∈ newRestored) do
33 UpdateLists(x, newRestored[x], dprem, revise, restore) ;
34 add newRestored[x] to restoredValues[x] ;

35 return tcr;

160 Non-binary Dynamic CSP with Simple Tabular Reduction

We store in restore for each constraint the minimum timestamp at each depth
from which tuples must be restored (line 2-3). Line 5 ensures that if a constraint
has been added after the pair’s deletion, the constraint addition time is put into
restore instead. In this special case, the constraint is put into revise, in order
to be re-filtered after propagation (line 5-6 in UpdateLists).
The function Propagate (Algorithm 16) is in charge of the actual propagation
mechanism. UpdatesList is called at the beginning of the propagation and
after each restoration. The restoration times from restore are stored in minRe-
storedTimes (line 5). The function RestoreTuples(c, t) is identical to the one
described in Algorithm 9. After tuples have been restored for a specific depth
(line 11), we immediately remove again the ones that have been deleted before
the restoration time (dp, lt) considered (lines 14-17). This avoids unnecessary
re-filtering and sets a new removal time for these tuples. Otherwise, for each
restored tuple, values that had been deleted by the current constraint are re-
stored. In case another constraint has invalidated a tuple, the values are not
restored, and the table constraint is added to revise for re-filtering at the time
when a value first invalidated the tuple (line 27-28). Note that the Propagate
algorithm returns the set tcr of table constraints that have been modified during
restoration.

Finally, filtration is performed on the constraints in revise (line 12-13 in Re-
moveConstraint). This is done incrementally so that constraints are evalu-
ated in the same order as they were added, keeping the new problem’s timeline
consistent with what it would be if the retracted constraint had never been
added in the first place. Although it may introduce redundancy in the con-
straint evaluation process, this type of filtering is necessary to guarantee that
all invalid tuples restored in the propagation stage are put back at the correct
depth.

Example 49 An example of constraint removal can be seen in Figure 8.1, after
adding all constraints in the CSP from Figure 7.1. The first subfigure shows the
CSP after the addition of the different constraints (c1 at t = (1, 0), c2 at t =
(2, 0), ...). Each removed value from any domain in associated to justifications:
the constraint responsible for removal (from justifc) and the time of deletion
(from justift). The time of (virtual) deletion of a tuple is also recorded using
c.removedt.

The second subfigure starts the initialisation phase after the removal of the con-
straint c3. In this phase, the variable-value pairs whose deletion has been caused
directly by c3 are restored.

In the propagation phase (third subfigure), c2 and c4 are first to be re-evaluated,
because of the restoration of (x2, 0). Its deletion time is t = (3.0), so only the
first tuple of c2 is restored (i.e., the one at the same depth dp = 3).

8.1 The DnSTR Algorithm 161

Figure 8.1: Removing constraint c3 in the CSP example from Figure 1. As-
sociated timestamps are written as “3.1” for (dp = 3, lt = 1) next to each
added constraint and removed tuple. Justifications (constraint and time) are
also shown next to each deleted value. Plain circles show the values and tu-
ples restored since the previous phase, while dashed circles represent values and
tuples re-filtered.

162 Non-binary Dynamic CSP with Simple Tabular Reduction

On the other hand, c4 being added after the deletion of (x2, 0), the tuples deleted
at the constraint addition are restored (i.e., its first tuple), and it is added to
revise at depth 4. Because of the restoration of those tuples, (x3, 0) is restored.
However, (x5, 0) cannot be restored by c4 as it has been deleted by c1.
More propagations follow: although the last tuple of table c1 is restored, it is
potentially invalid, as (x5, 1) has been removed by c4. (x5, 1) is thus not restored,
and the constraint c1 is put in revise for the filtering phase. Finally, c5 is also
added to revise at depth 5, as the restored (x4, 1) had also been deleted before
the addition of the tables.

The last phase (fourth subfigure) filters (only) the restored tuples from the con-
straints in revise, at the corresponding depths 4 and 5, in order to keep the
timeline consistent for future constraint removals. In this phase, the last tuple
of c1 is removed again, as (x5, 1) has not been restored during propagation, and
therefore (x4, 1) is removed again.

8.2 Analysis

In this section, we will discuss the correctness of DnSTR, and describe the time
and space complexity of the algorithm.

8.2.1 Correctness

During constraint addition, the filtering depth is the global depth gdepth, and
all values are checked when using the STR algorithm. As the second check in
isValid is always true (justif t[x, τ [x]] is equal to NIL for constraint addition),
the STR algorithm used is equivalent to the original algorithm. All constraints
to revise are put back in revise[gdepth] in Filter as the check of line 8 is always
false with dpi = gdepth, so the correctness directly comes from the correctness
of STR.

For constraint removal, let us consider a problem Pn, resulting of the addition
of (c0, ..., cn), and where we are removing constraint ci. Before the removal of ci,
problem Pn is arc consistent, so for all Pj with j < n, all justifications arrays are
coherent with the actual timeline, all tuples have been removed at the correct
depth and always at a local time greater than any justification of deleted value
that might have caused its removal.

8.2 Analysis 163

First, consider that ci was added at ti = (di, 0), and ti + t0 is the first time that
a value from a variable x /∈ scp(ci) has been removed. All removals of values
before ti + t0 are caused by ci, and so those values are directly restored during
the initialization phase, with ci as justification constraint. For each constraint,
the tuples impacted by a value removed at tr are those deleted at a later time
t > tr.

Moreover, the only impacted tuples are the ones deleted in the same depth,
as Pi was made consistent before any new constraint addition (and change of
depth), except if they are from a constraint cj added after ci, as they may have
been removed because of values deleted in [ti, ti + t0[at dj > di. All those
tuples are considered for restoration in UpdateLists (line 2-4) and restored
in Propagate (line 11). All values supported by those restored tuples of any
table c that were removed by c are restored in Propagate (line 25-26). The
propagation of these restorations (via the restore list) ensures that a superset
of all impacted values is restored.

We need now to make sure that all restored tuples that are removed during the
filtering phase are put back at the correct depth and time. The incremental
filtering is performed chronologically, so constraints just need to be added to
revise at the correct depth. The local time is always increased during filtering
using STR, so any removed tuple will always be placed after the first value
responsible for its deletion.

There are two cases when table constraints must be revised. The first one occurs
when invalid tuples are restored. The tuples must then be placed at the earliest
time when one of its value were deleted from its domain. This is taken care of in
Propagate (line 28). In the second case, a value restored during propagation
may actually have to be deleted by another constraint that had been added later
(line 5-6 in UpdateLists).

Finally, justifications need to be maintained throughout the filtering process.
When a restored value (x, dx) is filtered by a constraint cm at t1, its justifi-
cation constraint is obviously cm. However, if dx had been removed (prior to
restoration) because of cm but at a later time t2 > t1, it means that there is still
another supporting tuple for (x, dx) valid at t1 (that will be removed only at
t2), and thus the justification time should stay equal to t2 (GACstrDyn line
29).

The RemoveConstraint(c) function thus correctly remove the constraint c
and restore the variable domains as if the constraint had not been added, which
ensures the correctness of our algorithm DnSTR.

164 Non-binary Dynamic CSP with Simple Tabular Reduction

8.2.2 Time and Space Complexity

The worst-case time complexity of STR is O(er(d+ t′)), where r is the greatest
constraint arity and d the greatest domain size (the number of constraints e has
been added from Section 7.3.2 because the whole constraint system is consid-
ered). In the case of DnSTR, the worst-case time complexity of the initialization
and propagation phases is the same as STR, where t′ represents the size of the
removed tuples list. However, the incremental filtering in the filtering phase
may introduce a factor e, as the filtering could occur in the worst case as many
times as there are constraints (or depths). The worst-case time complexity for
DnSTR is thus O(e2r(d + t′)). The space complexity of STR is O(e(n + rt)),
with t the total size of the table and n the number of constraints added. For
DnSTR, justifications arrays are in O(nd). For each constraint, as for STR, the
space complexity of table is in O(rt) and that of next is in O(t). The arrays re-
movedHead and removedTail have size O(e), as they can be filled for each depth,
and removed t O(t), which makes a worst-case space complexity of O(e+ rt) for
each constraint, and O(nd+ e(e+ rt)) for DnSTR.

(a) r = 8

(b) r = 9

Figure 8.2: Runtime (in ms) as a function of p2

8.3 Experimental Results 165

Table 8.1: Memory consumption for RCSP 〈8, 20, 3, 100, p2〉(in MB)

p2 0.82 0.84 0.86 0.88 0.9 0.92 0.94
DnSTR4 8.3 8.2 7.6 7.4 7.3 6.7 5.1
STR 3.2 3 2.7 2.5 2.5 1.7 1.1
DnGAC4 12.5 12.3 10.4 8 7.1 6.9 5.7

8.3 Experimental Results

In order to evaluate the practical behaviour of the proposed algorithm, we have
implemented DnSTR in a C# solver and compared it to DnGAC4 and the classic
STR (where backtracking is used to remove constraints). The experiments were
conducted using Random CSPs with model B [110]. Each instance is character-
ized by a tuple 〈r, n, d,m, p2〉 where r is the arity of each constraint, n the num-
ber of variables, d the uniform domain size, m the number of constraints and p2
the tightness of the constraints. The tightness defines the number t = (1−p2)dk

of allowed tuples in each constraint. For each arity r ∈ {8, 9}, we did the exper-
iments with 10 instances of RCSP 〈r, 20, 3, 100, p2〉, where p2 ∈ [0.8−0.94]. The
constraints were first added one by one (inconsistent systems were discarded).
In order to see some real change in the variables’ domain with such a low den-
sity (a more suitable density for a problem with arity 8 requires many more
constraints), 10% random unary constraints were then added. Then 10% of all
the constraints were removed. This protocol was applied 10 times per instance.
The mean values of the runtime for adding and removing constraints are shown
in Figures 8.2(a) and 8.2(b).

The experiments show that when adding a constraint, STR and DnSTR are al-
most identical and faster than DnGAC4. This is not surprising, as the STR algo-
rithm, also used in DnSTR, has been shown to be more efficient than GAC4 [58].
For constraint removal, DnSTR outperforms both STR and DnGAC4. The re-
sults for the STR algorithm are not shown, as it performs more than 20 times
worse than DnGAC4. The poor performance of STR is explained by the sig-
nificant amount of work it has to perform after backtracking all the way to the
removed constraint. DnGAC4 performs better than the classic STR, as it only
checks restored values and updates justification arrays. However, DnSTR beats
DnGAC4 again, thanks to the interaction with the dynamic tables of valid tu-
ples. Note that the overhead of the incremental filtering necessary for preserving
the timeline does not seem to have an important impact on performance.

We also measured the memory consumption of DnSTR, STR and DnGAC4
with RCSP 〈8, 20, 3, 100, p2〉. In order to have significant measures, we added

166 Non-binary Dynamic CSP with Simple Tabular Reduction

all the constraints and assigned values to random variables until the problem
stopped being consistent. Table 8.1 shows the mean memory consumption of the
algorithms for different values of p2, just before the system became inconsistent.
As we can see, the memory consumption between DnGAC4 and DnSTR is close,
although DnSTR performs a bit better, while STR uses much less memory, as
it has much less data structures to maintain.

Chapter 9

CSP Formalisation of the
Configuration Framework

We now describe how the Configuration Modelling Framework and ProCoLa,
detailed in Chapters 5 and 6 are converted into a CSP for the model’s constraints
to be solved at configuration time. We first explain our choice of CSP solving
formalism and technology, then present the framework translation, and finally
discuss the result of this Chapter.

9.1 CSP Formalism Chosen

The semantics behind our modelling approach (and ProCoLa) have been defined
by implementing the translation of models to the Conditional CSPs (CondCSPs)
formalism, using explicit activity variables with boolean domains. These activ-
ity variables are used in the CondCSP constraints to regulate the activity of the
different model instances, depending on the different model elements involved,
e.g., partonomic or taxonomy relations. In some cases, special variables need to
be added to the model instance, e.g., to manipulate the number of subelement
instances involved in a partonomic relation with a dynamic cardinality. The
CondCSP constraints representing user-defined model constraints such as com-
patibility or implementation constraints involve also activity variables in order

168 CSP Formalisation of the Configuration Framework

to be consistent with the configuration model’s semantics, especially when deal-
ing with the existential quantifiers implied by the implementation constraints.
A single CSP model is usually used for all views, allowing the propagation of
any domain change to all views. However, it is also possible to isolate a single
view (by removing inter-view dependencies such as implementation and map-
ping constraints).

Performance in interactive configuration is very important, so we chose to use
Dynamic CSP (DCSP) mechanisms to take advantage of the dynamic addition
and removal of CSP constraints at runtime. We combine two of the most recent
algorithms for solving DCSPs: the DnSTR algorithm (see Chapter 8) to handle
table constraints and an adaptation of the AC|DC-2i algorithm [11] for the other
constraints. Those two algorithms use the same data structures to compute
justifications when restoring values, and thus can be easily associated.

9.2 CSP Semantics of the Model

Configuration models created using our configuration framework need to be
translated into the CondCSP formalism for the different constraints to be solved.
At configuration time, an instance of a well-formed configuration model M =
〈Vf ,Vs,Vr, SpM〉 is created from the different views as follows:

• A feature view is chosen by the user from the views available in the feature
views hierarchy. A tree of feature instances is created from feature types,
starting from the root of the view. If this view is a refined view, the
elements from the parent views have to be taken into account in order to
create the instance. More details are given in Section 9.2.1.

• A view instance is created from each structure view in Vs. As for the
feature view, structure types are instantiated into a tree starting from the
root component type of each structure view.

• Types from each realisation view are instantiated and mapped to instances
of structural types from their associated structure view.

As explained before, type or attribute instances can be active or inactive, ac-
cording to the choices of the user and the different constraints of the model:
for example, mapping constraints may specify activity for specific instances of
realisation types.

9.2 CSP Semantics of the Model 169

Once the configuration model has been instantiated, the corresponding Condi-
tional Constraint Satisfaction Problem P = 〈X,D,C〉 is created. After detailing
the instantiation of feature views, we describe in the following sections how the
different elements in the configuration framework are related to the CSP vari-
ables and constraints.

9.2.1 Feature View Instantiation

A feature view Fn that has been chosen by the end-user for configuration may
be the refinement of one or several parent views, up until the base feature view.
More specifically, there exists a sequence of feature views Fi such that

∀i ∈ [0, n],Fi+1 = SpM(Fi+1)

with F0 = baseM and n ≥ 0 and SpM the specialisation function between feature
views of the model M.

Each intermediary view thus needs to be taken into account in order to construct
the instance of Fn. Whenever a view Fi declares a new root feature type (i.e.,
Troot

Fi
∈ TFi), a new tree of instances must be created from this root type. This

tree becomes the current feature tree, i.e., the tree on which configuration will
be done, until another view Fj with j > i+ 1 declares a new feature tree. Each
of the intermediate feature trees needs to be part of the CSP model just like the
current feature tree, as they are all related using implementation constraints,
and make the link from Fn to the base feature view F0 (and the structure views).

When a feature type T is instantiated, its refinements need to be incorporated
into its instances: each instance t of T takes into account the latest “version”
of each attribute and subfeature declarations, i.e., with DFi the set of attribute
definitions of the feature view Fi, all α∗ ∈

⋃
i∈[0,n]DFi for which

α∗ = 〈n,T,D, v, r〉 and @α, k ∈ [i, n] s.t. α ≺Fk α
∗

and, with SFi the set of subfeature definitions of Fi, all σ∗ ∈
⋃

i∈[0,n] SFi for
which

σ∗ = 〈n,T,Tt, r1, r2〉 and @σ, k ∈ [i, n] s.t. σ ≺Fk σ
∗

as well as all the constraints c ∈
⋃

i∈[0,n](CcFi ∪ C
i
Fi

) with T as context type.

170 CSP Formalisation of the Configuration Framework

Note that properties from supertypes and subtypes also need to be taken into
account, although we omit them here for sake of brevity. Taxonomic relations
are treated in Section 9.2.4.

Example 50 Consider the feature view Fref described in Figure 5.10 on page 80
. This view is a direct refinement of the base feature view Fbase , and defines no
new root feature type. An instantiation of this feature view would then create a
tree from the root type of the base feature view.
However, types in Fref refine properties of the model or add constraints, e.g.,
the attribute declaration

α∗type = 〈“type”,Assistance, {“classic”, “pro”},Visible, 1〉

in DFref
is considered for instances of the Assistance type instead of

αtype = 〈“type”,Assistance, {“classic”, “extended”, “pro”},Visible, 1〉

defined in DFbase .

On the other hand, the feature view Fpackages declares a new root type: an
instance tree is creating for the base feature view Fbase , another for Fpackages ,
and both are related via implementation constraints.

9.2.2 Type Instances and Attributes

Once the model has been instantiated, it is converted to a CondCSP model. As
explained before, a CondCSP model contains two types of variables: “classic”
variables and activity variables. In the coming sections, we detail how these
variables are created and what constraints are derived from an instance of con-
figuration model.

Although a model instance is tree-like thanks to partonomic and taxonomic
relations between the different types instances in feature and structure views,
the constraint model is flat: this means that variables are not related besides
the constraints they are involved with.

For each instance t of a type T, an activity variable At is created. This variable
represents whether or not the instance should be present in the final configura-
tion, and thus has a boolean domain D(At) = {true, false}.

9.2 CSP Semantics of the Model 171

An instance t of type T also defines variables for each attribute of its possible
types. For an attribute definition α = 〈“a”,T,Da, v, r〉, a variable xa is created
with domain Da. An activity variable Axa is also associated to each attribute.

The variables of type instances and attributes may be involved in constraints,
whether explicit (compatibility, implementation, mapping constraints, resource
uses) or implicit (e.g., as part of partonomic or taxonomic relations). While
these variables may not be active at all time during the configuration, most
constraints that contain an inactive variable should be evaluated to true. There-
fore, each constraint c is preceded by an activity guard Ac, except stated other-
wise. For a constraint c on variables (x1, ..., xp), the constraint actually added
to the CondCSP is

Ax1 ∧ ... ∧Axp ⇒ c

For the sake of readability, activity guards will be omitted in the rest of the
chapter whenever possible.

9.2.3 Partonomic Relations

Partonomic relations relate instances with each other, whether it is as subfea-
ture, subcomponent, subitem, or suboperation.

In case of a direct partonomic relation, i.e., with a static multiplicity of 1, the
activity of an instance is directly equal to the activity of its subelements.

Example 51 Consider the subcomponent definition

σsupport = 〈“support”,DeviceServices,Support, 1, 1〉

defined in the service structure view of our case study (Figure 5.6(c)), and an
instance deviceServices of DeviceServices. We then have:

AdeviceServices = Asupport

However, in case the partonomic relation σ = 〈“s”,Ts,Tt, r1, r2〉 has a dynamic
multiplicity, a variable counts with domain [r1, r2] is created. This variable is
related to a generated model attribute that the end-user may modify to specify

172 CSP Formalisation of the Configuration Framework

the multiplicity of the partonomic relation. It entails that an activity variable
Acounts is also created.

For each instance ti (with i ∈ [r1, r2]) created from σ, its activity is constrained
by counts ≥ i ⇔ Ati , i.e., the activity of the instances acting as subelements
are dependent on the value of counts.

As stated in Section 9.2.2, this constraint is preceded by an activity guard
(omitted here for brevity), and is directly evaluated to true if the instance t of
Ts is not active (and thus Acounts = false). The variable counts can also be
used in the product model’s constraints, when the built-in Count(...) function
is used.

Example 52 Consider the subcomponent definition

σwC = 〈“wirelessChip”,Motherboard,WirelessChip, 0, 3〉

defined in the physical structure view of our case study (Figure 5.6(a) on page 69),
and an instance m of Motherboard. We then have:

Amotherboard = AcountwC

and

AcountwC ⇒ (countwC ≥ i⇔ AwCi) for i ∈ [0, 3]

with wC1, wC2, wC3 being the three instances of the WirelessChip component
type.

9.2.4 Taxonomic Relations

An instance t of a feature or structure type T contains the attributes, the sub-
parts, the associations, and the constraints of its type and all its supertypes
when involved in taxonomic relations. It may also contain the properties of a
subtype Tsub, for example if the instance t is specialised as Tsub during config-
uration.

A variable typet is thus created for each instance t of T. This variable specifies
the actual type of the instance: its domain is the possible types that the instance

9.2 CSP Semantics of the Model 173

can take, i.e., its original type or one of its subtypes. As for the counta variable,
the variable typet is related to a generated model attribute that may be modified
by the end-user during configuration, and is associated to an activity variable
Atypet .

A variable representing a property (attribute, subelement, association) in a
subtype becomes active if t becomes an instance of that (sub)type. This means
that, if ST (T′) represents the set of subtypes of any type T′ in D(typet), and δ
a property of T′, we have

typet ∈ (ST ({T′) ∪ {T′})⇔ Axδ

Example 53 Consider an instance scr of the Screen component type in the
physical structure view of the Mobile Device product family. We have

(TouchScreen,Screen) ∈ ISphys

which means that TouchScreen is a (direct) subtype of Screen. The domain of
the typescr variable is {Screen,TouchScreen}, as Screen does not have other
subtypes. The variable for the attribute αtechnology defined in the Screen type
is always active, while the one for αoleophobicCoating defined in the TouchScreen
type is only active if the scr instance is specialised as a TouchScreen:

typescr ∈ {Screen,TouchScreen} ⇔ Axtechnology

typescr ∈ {TouchScreen} ⇔ AxoleophobicCoating

9.2.5 Associations

Associations connect instances of component types and of association types in
structure views. In a component instance t of type T , an association instance a of
type Ta related to t because of an association definition ρ = 〈“s”,T,Ta, d, r1, r2〉
is treated like a subelement, potentially with a potential variable counta. It also
defines an additional variable connecta. The domain of this variable contains
the possible associations in the destination type. Again, a generated model
attribute represents the connecta variable in the type instances, and an activity
variable Aconnecta takes care of its activity.

For each pair (a1, a2) of possibly connected associations, constraints ensure that
the two association instances match, and that all the attributes (and association
types) are equal.

174 CSP Formalisation of the Configuration Framework

The following constraints are thus added to the CondCSP:

Aa1
∧ (connecta1

= a2)⇔ Aa2
∧ (connecta2

= a1)

and

connecta1
= a2 ∧ connecta2

= a1
⇒ (typea1

= typea2
) ∧ (∀α = 〈“x”,Ta, ...〉 ∈ DS, xa1

= xa2
)

where xa1
and xa2

are the variables for the instances of α in a1 and a2.

Example 54 Consider the association definitions

ρstylusTS = 〈“stylus”,TouchScreen,Stylus,None, 0, 1〉
ρstylusE = 〈“stylus”,Enclosure,Stylus,None, 0, 1〉

defined in the physical structure view of the case study. For each instance ts of
TouchScreen and each instance e of Enclosure, if stylusts and styluse are the
variables for the associations ρstylusTS and ρstylusTS, we have

Astylusts ∧ (connectstylusts = styluse)⇔ Astyluse ∧ (connectstyluse = stylusts)

and

connectstylusts = styluse ∧ connectstyluse = stylusts
⇒ (typestylusts = typestyluse) ∧ (sizestylusts = sizestyluse)

with sizestylusts and sizestyluse being the variables for the attribute size of
the Stylus association type for the two instances created from ρstylusTS and
ρstylusTS.

This means that, for the two association instances stylusts in ts and styluse
in e, if one connects to the other, then they should both be connected together,
and, in that case, the size attribute of the association instance stylusts should
be mirrored in styluse.

9.2 CSP Semantics of the Model 175

9.2.6 Model Constraints

We describe in this section how the different constraints expressed in the config-
uration model are taken into account in the Conditional Constraint Satisfaction
Problem.

9.2.6.1 Compatibility constraints

Compatibility constraints are also subject to taxonomy constraints. In a type
instance t of type T, for a constraint c = 〈T′, ec〉 with ec a symbolic constraint
expression, the following constraint, including its activity guard, is added to the
Conditional CSP:

AcCSP ∧Atypet ∧ typet ∈ ({ST (T′) ∪ {T′})⇒ cCSP

with cCSP being the CSP constraint generated from the constraint expression ec,
where all the model attributes are replaced by their attribute variables for the
corresponding instance t. T

his means that the constraint is only taken into account if its variables are active
and the instance t has a corresponding type.

The case of table constraints is a bit different. As DnSTR only takes table
constraints into account, using implication constraints for rows in tables is not
possible. The activity of a table constraint is thus solved by inserting a new
column and a new line into each table.

The new column is used for the table constraint’s activity variable Atable. Atable

is the conjunction of the activity variable for the property variables in the table
as well as the potential guard corresponding to the taxonomic relation.

The column for the Atable variable is equal to true for each row except for the
first one. That first row corresponds to the case where the constraint is not
active, and thus all the other cells in the row are filled with a special value “*”.
The DnSTR algorithm has been modified to interpret this new value as the
entire domain of values for the variable specified in each column.

176 CSP Formalisation of the Configuration Framework

sizee sizes nbSlots

“115x58” 3 6

“240x190” 9 10

“268x178” 10 12

“295x210” 12 14

Atable sizee

sizes

nbSlots

0 * * *

1 “115x58” 3 6

1 “240x190” 9 10

1 “268x178” 10 12

1 “295x210” 12 14

Figure 9.1: Transformation of the TableSize table constraint from the Mobile
Device physical structure view. The first column of the new table represents the
activity guard of the constraint, while the first row is filled with the value “*”,
that represents the entire domain of each associated variable.

Example 55 Consider again the table constraint TableSize from Example 17
declared in ProCoLa by:

TableSize: {

type:table[enclosure.size ,screen.size ,motherboard.nbSlots];

value: {

["115x58" , 3 , 6],

["240 x190", 9 , 10],

["268 x178", 10, 12],

["295 x210", 12, 14]

};

};

For an instance dP of type DevicePhysical, the conversion to CondCSP of the
table constraint is shown in Figure 9.1, with sizee, sizes and nbSlots respectively
the variables for the attributes

αsizeE = 〈“size”,Enclosure,Dsizee ,Visible, 1〉
αsizeS = 〈“size”,Screen,Dsizes ,Visible, 1〉
αnbSlots = 〈“nbSlots”,Motherboard,DnbSlots,Readonly, 1〉

The activity variable of the table constraint is equal to

Atable = Asizee ∧Asizes ∧AnbSlots ∧AtypedP ∧ typedP ∈ {DevicePhysical}

If Atable evaluates to false, any values can fit for the variables in the table
constraint, which is equivalent to the constraint being inactive.

9.2 CSP Semantics of the Model 177

9.2.6.2 Implementation constraints

Activity in an implementation constraint c = 〈T, ecC, eiP,Op〉 is handled differ-
ently for the child expression ecC and the parent expression eiP. On the one hand,
as for compatibility constraints, an activity guard is introduced: this activity
guard contains the taxonomic constraint as well as the activity for variables in
ecC.

On the other hand, the semantics of eiP include existential constraints on the
different properties (attributes, subelements and maybe associations) specified
in the implementation expression. Indeed, properties in eiP are not dependent
on the context type T in which the constraint is declared, and thus associated
CondCSP variables are not specific to instances of T, like a compatibility con-
straint would. Instead, these properties are defined using a local type, e.g.,
RFCard→ αcardType, where the attribute definition αcardType is dependent on
the RFCard type, and thus must be considered for all instances of RFCard.

Variables in eiP must thus be “expanded” to reflect the existential quantifier
implied by the semantics of the expression. The conversion of implementation
expressions into CSP constraints gives rise to two cases. First, boolean con-
structs involving properties are expanded using the CondCSP variables for all
potential instances of the local type specified. The Present(T) function is also
expanded directly for all instance of T. Corresponding activity variables ensure
that a variable is not taken into account if it is inactive.

Example 56 Consider two instances t1, t2 of a type T. The following expan-
sions are made during the creation of CondCSP constraints:

T→ ...→ αb ; (Abt1
∧ bt1) ∨ (Abt2

∧ bt2)
T→ ...→ δs is T′ ; (Ast1

∧ (st1 is T′)) ∨ (Ast2
∧ (st2 is T′))

Present(T) ; (At1 ∧ (t1 is T)) ∨ (At2 ∧ (t2 is T))

with αb (resp. δs) being an attribute definition with a boolean domain (resp. a
subelement or association definition) and bti (resp. sti) the corresponding Cond-
CSP variable derived from instance ti.

For example, in the first case, this means that both variable bt1 and bt2 repre-
senting αb in each instance t1 and t2 have to be taken into account due to the
implicit existential semantics of the implementation constraint.

On the other hand, for any binary relational expression, i.e., ei1 opr e
i
2, model

variables with arithmetic domains cannot be directly used in disjunction as

178 CSP Formalisation of the Configuration Framework

above. If the model variables in ei1 and ei2 are the set V i = (vi1, ..., v
i
n), each

model variable vij ::= Tj → vj is expanded into variable instances xjk for all
the instances tjk of its local type Tj . Sets X1, ..., Xp are created with all the
different combinations of variables xjk for the set V i, and are used to convert
the binary relational expression ei1 opr e

i
2 into

(AX1
∧ cei1 [V i 7→ X1] opr cei2 [V i 7→ X1]) ∨ ...∨

(AXp ∧ cei1 [V i 7→ Xp] opr cei2 [V i 7→ Xp])

with cei1 [V i 7→ X1] representing the CondCSP constraint expression derived

from ei1 where model variables from V i are converted into CondCSP variables
from X1, and AX1

representing the activity guard from all variables in X1.

Example 57 Consider two instances t1, t2 of a type T and two instances t3, t4
of a type T’. The expression

T→ αa ≥ T′ → αb

contains the model variables V i = (T → αa,T
′ → αb) and would generate the

combination sets

X1 = (at1 , bt3)
X2 = (at1 , bt4)
X3 = (at2 , bt3)
X4 = (at2 , bt4)

The generated CondCSP constraint would then be

(Aat1
∧Abt3

∧ (at1 ≥ bt3)) ∨ (Aat1
∧Abt4

∧ (at1 ≥ bt4))∨
(Aat2

∧Abt3
∧ (at2 ≥ bt3)) ∨ (Aat2

∧Abt4
∧ (at2 ≥ bt4))

9.2.6.3 Mapping constraints

Finally, mapping constraints are integrated into the instances of structure views.
Considering a mapping constraint c = 〈Ts,Tr, e

c〉, for each instance ts of the
structure type Ts, an instance tr of the realisation type Tr is created.

9.2 CSP Semantics of the Model 179

Its activity is bound by

Atr ⇔ (AcCSP ∧ cCSP)

where cCSP is the CSP constraint generated from the expression ec, where all the
model attributes are replaced by their attribute variables for the corresponding
instance ts. The activity guard AcCSP ensures that if a variable is inactive in
cCSP , the expression (cCSP ∧AcCSP) is false and the realisation instance is not
included in the configuration. Activity guards from taxonomic relations may
also be added to the final constraint.

Example 58 If scr is an instance of Screen, the following mapping constraint

ccoating = 〈TouchScreen,Coating, αoleophobicCoating = true〉

generates, with oCscr the variable for the attribute αoleophobicCoating in scr:

Acoating ⇔
(Atypescr ∧ typescr ∈ {TouchScreen} ∧AoCscr

∧ oCscr = true)

9.2.7 Successor relations

Successor relations constrain the order in which operations should happen. To
model these relations in the Conditional Constraint Satisfaction Problem, each
instance t of an operation type T ∈ T o

R for a resource view R is associated
a variable indext with an integer domain, and related to a generated model
attribute. Then, for two instances t1 and t2 of types T1 and T2 for which
〈T1,T2〉 ∈ NR, the following constraint is added to the CondCSP:

At1 ∧At2 ⇒ indext1 < indext2

9.2.8 Resources

Each resource declared in structure views needs to be balanced: the amount pro-
duced for a resource must always be equal or greater than the amount consumed.
Each time an instance produces (resp. consumes) a part of the resource, the
arithmetic expression defining the production (resp. consumption) is summed
(resp. subtracted) to create the final resource constraint.

180 CSP Formalisation of the Configuration Framework

In case of resource constraints, activity guards are handled differently than most
other constraints. If a production (resp. consumption) expression is inactive
(e.g., because one of the variables involved is inactive), the expression should
be omitted in the resource calculation, instead of evaluating the whole resource
constraint to true. This is handled by multiplying the numeric value (0 or 1) of
the activity guards of the expression to its production (resp. consumption), so
that it is not taken into account if it is inactive (i.e., the value is equal to 0).

If P (resp. C) is the set of production (resp. consumption) expressions for a
specific resource, the corresponding resource constraint is expressed by:

0 ≤
∑

eP∈P (AeP ∗ eP)−
∑

eC∈C(AeC ∗ eC)

Example 59 Consider the AvailableSlots resource declared in the Mobile De-
vice product family. Resource uses defined in USphys have to be taken into account
for all contributing types:

0 ≤ ((AmbnbSlots ∧AmbnbChips) ∗ (mbnbSlots −mbnbChips)−
(ArfCard ∗ 1 +Aprocessor ∗ 1 +Agps ∗ 1 +Aethernet ∗ 1 +

∑3
i=1AwirelessChipi ∗ 1))

with mbnbSlots and mbnbChips the variables for the motherboard’s αnbSlots and
αnbChips attributes, and rfCard, processor, wirelessChipi, ethernet and gps
respectively the instances of the RFCard, Processor, WirelessChip, Ethernet
and GPS types.

All contributions are summed up in this constraint when the corresponding vari-
able instances are active. For example, if the instance mb of type Motherboard
is active (and thus the variables for its attributes mbnbSlots and mbnbChips are
active), then it produces an amount of resource AvailableSlots equal to the value
of (mbnbSlots −mbnbChips). Also, if the gps instance is active, it consumes the
resource by 1.

9.3 Discussion

Using Conditional CSPs to solve the configuration problem in our modelling
framework has both advantages and limitations in regards to other formalisms
and solving techniques like Generative CSPs [61,95]. One important issue with
Conditional CSPs is that all variables need to be declared when the CSP is
created. This means that it is not possible to generate variables on-demand,

9.3 Discussion 181

which does not permit to model features such as partonomic relations with an
unbounded number of subelements. The variables representing all instances of
the types and model elements must be generated from the start, which can
lead to an large amount of variables. As in the previous sections, CondCSP
constraints for partonomic and taxonomic relations must consider all the cases
for the different instances of attributes and subelements, and this for all potential
subtypes the instances can take. It can also get complicated when dealing with
quantifiers, as is the case in implementation constraints: all combinations of
instance variables must be considered.

However, the formulation as Conditional CSPs offers some very interesting ad-
vantages. The first one lies in the simplicity of the solving implementation. It is
indeed possible to use the same algorithms as for normal CSPs, as handling the
activity of the variables is equivalent to adding constraints including some activ-
ity variables. Then, state-of-the-art algorithms need almost no modifications to
handle the newly formulated problems. In the case of our configuration frame-
work, this permits to use DCSP algorithms such as AC|DC-2i [11] or our own
DnSTR algorithm (Chapter 8) for dynamic arc consistency in table constraints.

Also, the formulation of constraints that involve all the variables permits a full
propagation of the changes in one single phase, without requiring a variable
generation phase like in Generative CSP solving. The consistency is ensured
on all variables via classic propagation: all elements of the model are linked
together, which streamline the propagation of domain changes, whether it comes
from a resource constraint, the addition of a new component or feature, the
connection of associations or the subtyping of an instance.

Finally, using DCSP for solving constraints at runtime brings great flexibility
to the user of the model. DCSP can indeed be used to handle the dynamic
addition and retraction of the end-user value assignments, but it can also be
used to modify the model’s constraints at runtime. This can greatly facilitate
the work of the knowledge engineer with respect to diagnosis and debugging of
models, as it allows to observe in real-time the effect of adding and removing
model constraints on-the-fly.

182 CSP Formalisation of the Configuration Framework

Part IV

Prototype and Evaluation

Chapter 10

Prototype Implementation of
the Framework

Creating a product model can be a long and complex process, even if the product
modeller knows the modelling language well. In order to assist him in the
modelling process, the ProCoLa modelling language has been integrated into a
development environment, supplemented by some tool support to facilitate the
creation and maintenance of the model. A runtime system for our framework has
also been implemented in order to provide the necessary support for configuring
models. In this chapter, we present our prototype implementation and discuss
the features of the system. The current version of the prototype can be found
in [74].

10.1 Language Integration

In order to provide support for developing configuration models in ProCoLa, we
implemented a prototype compiler for the language.

186 Prototype Implementation of the Framework

ProCoLa models are recognised using two elements:

1. A lexical analyser, that takes as input ProCoLa files and returns a set
of tokens identifying the different elements in the files, like keywords
(e.g., “componentType”), identifiers (e.g., for type names), ...etc.

2. A language parser, which, given the grammar of the ProCoLa language and
the tokens from the lexical analyser, tries to identify the different syntactic
patterns in order to create an internal representation of the ProCoLa views
described in the input file.

The ProCoLa compiler has been integrated within the Microsoft Visual Studio
environment [94], by implementing a language service to extend the function-
alities of this environment for ProCoLa models. Visual Studio provides tools
to support the model development, including syntax highlighting, word com-
pletion, outlining, or syntax and semantic checks. It is our belief that such
a development environment can greatly improve the productivity of the prod-
uct modeller. The adaptation time to a configuration-specific language such
as ProCoLa is reduced by the accessibility of the keywords defined according
to well-defined configuration concepts, and an integrated textual language can
provide an easy access to techniques for checking the well-formedness of the
product configuration model.

Figure 10.1 shows a screenshot of a Visual Studio window in which the ProCoLa
file for the physical structure view of our example case study is opened. The
main panel shows the ProCoLa model of the Mobile Device example with syntax
highlighting and word completion tooltip. Another advantage of such integra-
tion is the potential for extending the language integration. For example, the
top left panel in Figure 10.1 shows a tree-structured model outline, akin to the
PVM representation [51]. Although ProCoLa is a textual language, it is thus
possible to create more graphical add-ons to give a better overview of the model.

10.2 Tool Support for Modelling

Developing a large configuration model can be a difficult and time-consuming
task, especially when several views of the model are considered, due to their
dependencies and interactions. In this section, we present the implementation
of several mechanisms to provide additional tool support during a ProCoLa
model’s creation and maintenance.

10.2 Tool Support for Modelling 187

Figure 10.1: ProCoLa language integration into the Visual Studio development
environment.

10.2.1 UML

As explained before, providing a graphical representation of the configuration
model is important during model creation and also in the context of communi-
cation between stakeholders and model knowledge exchange. The Unified Mod-
elling Language (UML) is a well-known language to represent object-oriented
models, and its potential for representing configuration models has been demon-
strated in Section 3.1. Although shortcomings of the language have been dis-
cussed, UML remains a widely used and studied formalism, as opposed to SysML
(Section 3.2), relatively recent. UML is thus of prime interest for disseminating
knowledge about product models in addition to ProCoLa.

We implemented a generator that automatically translates the ProCoLa model
into a UML model and generates a profile to define relevant stereotypes for
the different views of ProCoLa. The UML models are created using the XML
Metadata Interexchange (XMI) format, an XML-based OMG standard for the
exchange of UML models. One of the drawbacks of UML is the differences
between the UML tools available currently when it comes to the compliance
with the UML standard. The UML models generated from ProCoLa are thus
tailored to be imported in the open source Eclipse UML2 Tools [102].

188 Prototype Implementation of the Framework

Figure 10.2: UML representation for the physical structure view of the Mobile
Device product family.

Example 60 The UML generated from the physical structure view of our ex-
ample product family can be seen Figure 10.2. The XMI file for this ProCoLa
view has been imported into the Eclipse tool, along with the ProCoLa profile.

10.2.2 Table Constraints

Table constraints are very often used in product configuration because they
can easily represent product catalogues. The design of ProCoLa includes the
possibility of declaring table constraints inline as compatibility constraints in
the feature and structure views.

However, product catalogues can become very large, which makes writing the
corresponding constraints in ProCoLa tedious and difficult to maintain. That
is why we implemented connections between ProCoLa and tools such as spread-
sheet applications and databases in order to give the modeller the possibility
to create and maintain large table constraints outside of the ProCoLa views.
Besides providing a more adapted interface for declaring these constraints, such

10.2 Tool Support for Modelling 189

Figure 10.3: Spreadsheet applications and database integration for table con-
straints.

tools also permit to separate these product catalogues from the design of the
view: the management of these constraints can be delegated to separate mod-
ellers, and the product catalogues may be shared and exchanged with relevant
stakeholders.

The two connectors currently implemented interface with the Excel applica-
tion [35] and the Microsoft SQL Server database [89]. Spreadsheets and database
tables are dynamically translated to ProCoLa table constraints when the model
instance is created at configuration time in order to take into account the latest
version of the constraints.

Example 61 Figure 10.3 shows how to declare in ProCoLa the table constraint
TableSize from Example 17, created and maintained using Excel or SQL Server.

10.2.3 Analyses Implementation

One of the main issue when dealing with large configuration models is their
maintenance. Our modelling framework is based on multiple modelling views,
which permit to create an integrated model, but may also make it more complex.
Models evolve, and the elements of the different views may be modified multiple
times in order to fit a model’s purpose. It can thus be difficult to keep track of the
model elements’ dependencies, to introduce cycles in the model’s architecture
or to clutter the model with unused elements.

190 Prototype Implementation of the Framework

In order to help the modeller in creating and maintaining the models, the three
analyses from Section 6.4.2 have been implemented for our prototype:

• The Dependency Analysis permits to identify which elements are depen-
dent on a specific type, attribute, etc. The implementation of this analysis
in our prototype gives the possibility to the modeller to lookup the results
of such an analysis from within the ProCoLa models editor by selecting a
specific element that he would like to removed, for example.

• The Use Analysis and the Cycle Analysis can be used on the full Pro-
CoLa model. The Use Analysis permits to detect the unused elements
of each view, giving some insights on how to cleanup the model, e.g., af-
ter removing a model type. The Cycle Analysis gives feedback on whether
partonomic and taxonomic cycles exist in the model (and where they are).
Such cycles can come from a bad model design or simply represent a mod-
elling error, and have to be removed in order to ensure the well-formedness
of the ProCoLa model.

10.3 Runtime Implementation

We implemented a runtime system for ProCoLa. After choosing a feature view
in the hierarchy, the different views of a configuration model are instantiated
as described in Section 9.2, and the resulting instances are presented using a
configuration user interface.

The end-user can enter his requirements by assigning values to the different at-
tributes of the model, or remove some of the requirements provided earlier. The
consistency of the Conditional Constraint Satisfaction Problem corresponding
to the configuration instance is ensured by a C# constraint solver using algo-
rithms such as DnSTR and AC|DC-2i (Section 9.1). Each time a value is set
or cleared, the solver propagates the event by maintaining maximal arc consis-
tency, deleting or restoring values from the domains of the other variables. This
results in the reduction (or augmentation) of the domains of possible values
for the other attributes, or a change of activity that renders certain variables
inactive, hiding some of the attributes and components from the end-user.

The configuration interface for the service structural view of the Mobile Device
product family can be seen in Figure 10.4. The main goal of this interface is
to provide basic guidance to the user for configuration: the order of variable
selection is free (in contrast to other systems with incremental configuration),
and no explanations are provided when a conflict occurs, although inconsistent
values cannot be selected.

10.4 Debugging 191

Figure 10.4: Configuration of the Mobile Device product family. The value for
talkTime has been fixed by the end-user, while the one for favoriteNumber has
been bound by the solver.

10.4 Debugging

Errors in complex models may provoke unwanted behaviours and incorrect re-
sults, and visualisation tools can provide support to the modeller for under-
standing why. Several tools for constraint debugging have been designed for
general constraint programs.

For example, Meier presents Grace [66], a graphical environment for tracing
Constraint Logic Program with Finite Domains on top of the constraint solver
ECLiPSe; Goualard and Benhamou developed a tool [46] based on a hierar-
chical organization of sets of constraints; Bouvier [21] contributes with Prolog
IV visual tools that are able to set breakpoints to stop the execution of the
program; and Carro and Hermenegildo [22] with visualization tools focusing on
the representation of run-time values of the variables and the constraints among
them.

However, all these techniques and tools are not specifically targeted at product
configuration. One of the main issues remains being able to provide relevant
debugging information to a product modeller that is not an expert in constraint
programming. The concept of model-based diagnosis has thus been adapted to
configuration by Felfernig et al. [38] in order to test the knowledge base with

192 Prototype Implementation of the Framework

test cases. Those test cases are originally declared as either valid or invalid
configurations, and are fed to the system to determine whether the product
model is correctly defined or not.

We focus in our framework on the representation of the configuration model at
runtime, attached to the real object to be solved, i.e., the constraint model. The
main issue is indeed to map the two models such that the product modeller can
understand as much as possible the interactions between the different variables
of the model, as well as the consequences of any change in the user requirements.
Representing the constraint graph is an easy task, but representing it in such a
way that it is accessible to a product modeller is more challenging. Indeed, re-
alistic configuration models may have thousands of variables and constraints, so
representing the entire constraint graph is impossible and without any practical
use.

In our approach to debugging we use the hierarchical structure of the configu-
ration model to represent the constraint graph. Nodes in the graph represent
variables in the constraint network, and have different visuals according to the
nature of their configuration counterpart (type instances, attributes, etc). Each
type instance node can be expanded or collapsed, in which case nodes represent-
ing any child variables are not displayed. Constraints defined in the product
model are displayed as edges between the different variables. As the graph is
aimed at the product modeller, activity variables are not represented in the
graph, but activity constraints are displayed between the corresponding vari-
ables instead. Different types of constraints (user defined or activity constraints)
are also visually different.

Finally, while the end-user configuring the product should only see relevant
attributes and components, the product modeller debugging his model should
be able to see all variables that can interact with the system, even when they are
inactive. Inactive variables are thus also shown to him both in the debugging
configuration form and in the constraint graph representation.

A screenshot of the implementation of this hierarchical graph can be seen in Fig-
ure 10.5. Information about nodes and edges is directly accessible by clicking on
the nodes representing objects. A contextual menu is also available to collapse
and expand nodes, as well as to interact with constraints. One of the main ad-
vantages of this graph is that it is fully interactive. It is possible for the product
modeller to modify it by adding and removing constraints during debugging,
without having to stop the debugging process for modifying the model. This
feature is available in the solving engine implementation using DCSP algorithms
such as AC—DC-2i or DnSTR (Section 9.1).

10.5 Summary and Discussion 193

Figure 10.5: ProCoLa framework debugging form. The graph on the right repre-
sents the part of the constraint graph where the highlighted attribute “Number
of subcomponents” (countsdCard variable) is involved. Contextual information
is shown for the expanded node sdCard[1], while the DeviceFeatures node is
collapsed.

10.5 Summary and Discussion

In this chapter, we presented the implementation of a prototype for our config-
uration framework. The different parts of the framework (Figure 10.6) together
provide tool support to the modeller for the development of configuration mod-
els for heterogeneous product families. It is based on the ProCoLa modelling
language, which is integrated into the Visual Studio development environment,
and interacts with a constraint solver at configuration time.

Tool support is provided in the prototype, from verification of the model’s well-
formedness (language services, model analyses) to the integration with a well-
known graphical language like UML and tools like spreadsheet applications and
databases. These tools are essential to assist in the creation and maintainable
of the models, in particular when the number of views and types increases, as it
can become difficult to keep an overview of all model elements for the knowledge
engineers.

194 Prototype Implementation of the Framework

Visual Studio

Tools
(Outline, Excel/
DB connection)

Language
Service

UML
Export

Constraint Solver

Configuration UI

Runtime

Parsers
Lexical

Analysers

Compiler

Model
Analyser

graph

ProCoLa
definition

Model
instance

CondCSP

XMI

Figure 10.6: Configuration Framework architecture

Although the configuration models created with our framework can be exported
as UML diagrams, the development of the different views focuses on the Pro-
CoLa modelling language. Some users may be reluctant to use a textual lan-
guage instead of a graphical interface to create configuration models, although
we argue that using a language with standardised keywords and a well-defined
conceptual approach as in ProCoLa may be an advantage. Firstly, despite the
tool support that a development environment can provide, a model in ProCoLa
may be viewed and edited in a simple text editor, without the need of a spe-
cial tool, removing some barriers when communicating and exchanging product
knowledge. The clear semantics of ProCoLa also allow an easy interpretation of
the language, which increases the potential for implementing tools or customised
graphical interfaces. Finally, we believe that a textual language with appropri-
ate development support may be faster and more practical for advanced users
when dealing with certain repetitive tasks, e.g., creating similar types, adding
many subpart definitions or writing complex constraints.

The debugging tool implemented in our prototype is an attempt to help the
knowledge engineer in understanding the runtime behaviour of the configuration
models. The hierarchical representation of the graph helps reduce the amount
of variables displayed to the modeller by collapsing and expanding parts of the
graph. It is also important to show only the variables relevant to the current
context in the configuration. Constraint graphs representing configuration prob-
lems can sometimes be split into smaller subgraphs. This is used to show only
the relevant graph to the product modeller when he modifies a specific variable.

10.5 Summary and Discussion 195

However, the usefulness of the debugging tool is limited when dealing with larger
model, as it may be difficult to foresee all the changes a value assignment might
provoke. We thus believe our debugging approach to be a complement to more
advanced techniques, such as model-based diagnosis [38]. The visualisation of
the configured system and the interactivity of the tool give a lot of freedom to
the knowledge engineer, who can modify the model on-the-fly using dynamic
constraint addition/retraction, which is made possible by the Dynamic CSP
algorithms implemented in the constraint solver. On the other hand, the work
by Felfernig et al. provides a generalized diagnostic of the model, but requires
the creation of test cases. The question of how to define those test cases is
still a good topic for more research [39]. Fully appreciating the potential of our
debugging tool and the whole prototype requires large user experience studies,
which is out of scope of this dissertation and left for future work.

196 Prototype Implementation of the Framework

Chapter 11

Framework Evaluation

Finding relevant models for evaluating a configuration framework is not an easy
task. Models presented in the literature are often rather small in the number
of variables and constraints, and most of the benchmark models coming from
industry are very difficult (or almost impossible) to obtain in a project without
real-life industrial case studies [100].

In this chapter, we describe a series of experiments that aim at providing some
insights on the capabilities of the implemented framework. The main issue in
evaluating our work is to find a single configuration model that incorporates all
the dimensions described in our framework. That is why we decided to design
a larger version of our case study, the Mobile Device product family, in order
to assess to what extent our configuration framework is able to cope with its
modelling and solving. We thus provide some experimental results for applying
the different techniques developed in this dissertation. Moreover, in order to
obtain more insights on the performance of our configuration framework, we
modelled and experimented on several test cases used in the literature, as well
as some industrial configurators benchmarks.

We will now introduce the different benchmark programs in Section 11.1, and
present the evaluation results in Section 11.2.

198 Framework Evaluation

11.1 Benchmark models

Before discussing the evaluation results, we first give an overview of the bench-
mark models used in this chapter. We introduce each of them, and provide some
information on their general properties.

Eight different configuration models have been used in these experiments:

• Extended Mobile Device: The Mobile Device example described in Sec-
tion 2.2 has been extended for the purpose of this evaluation. Many types
have been added to the models, including feature types (e.g., cloud fea-
tures, graphics), structure types (e.g., cameras, keyboard, synchronisation
services, additional software libraries and applications) and corresponding
realisation types. Additional feature views have also been designed, e.g.,
in order to target more markets. The ProCoLa files for the example can
be found in [74].

• ESVS, FS, FX, and Machine: These configuration models represent
four product families used in [99]. The first three products are screw com-
pressors manufactured by Gardner Denver [34]. Each configuration model
represents a complete sales configuration view of a compressor family. The
models are detailed to production quality, except for some constant val-
ues. The fourth product represents a 4-wheel vehicle. It was modeled
for demonstration purposes and represents about half of the sales view of
the product. These models are originally defined in the PCML modelling
language [101].

• Bike, PC, BigPC: These three models represent a Bike model and
two versions of a Personal Computer product family. They are available
through the CLib Configuration Benchmarks Library [25], where they are
modelled using the PM language from [70].

• Renault: This relatively large test model is used in a benchmark by
Amilhastre et al [5]. It has been provided by Renault DVI [83], a french
car manufacturing company, and deals with the configuration of a family
of cars, called Renault Megane. The variables in this problem represent
the type of engine, the country, options like air cooling, etc. This model
is also available in the CLib Configuration Benchmarks Library [25].

The test cases modelled in ProCoLa are characterized in Tables 11.1 and 11.2.
The “#types” column gives the numbers of abstract and all feature and struc-
ture types. Realisation types, which are only modelled in the Mobile Device
model, are not shown in these measures. The “#attributes” column indicates

11.1 Benchmark models 199

Table 11.1: Properties of the benchmark programs

Model #types #attributes constraints
ab total avg total total avg arity ref

Mobile Device 2 114 1.5 174 222 2.3 2.6
ESVS 3 10 2.4 24 11 2.2 20
FS 1 4 5.5 22 14 3.2 24.9
FX 0 1 18 18 21 2.7 13.9
Machine 5 30 0.3 8 7 2.0 2.3
Bike 0 9 3.7 34 31 2.1 10.5
PC 0 6 3.8 23 16 2.5 4.1
BigPC 0 20 5.2 103 54 3.6 49
Renault 0 1 99 99 113 4.9 11400

Table 11.2: Properties of the benchmark programs (continued)

Model partonomy #taxonomic
avg dynamic total relations

Mobile Device 0.96 64 109 16
ESVS 0.30 0 3 6
FS 0.25 0 1 2
FX 0 0 0 0
Machine 0.33 10 15 15
Bike 0.56 0 5 0
PC 1.33 0 8 0
BigPC 1 0 20 0
Renault 0 0 0 0

the average number of attributes per type, as well as the total number of at-
tributes in each model. The column “constraints” specifies the total number of
user-defined constraints, the average constraint arity (i.e., the number of vari-
ables per constraint) and the average number of references to properties in a
constraint. In the second table, the “partonomy” column states the average
partonomic relations per type (as well as associations in structure types), the
number of relations with dynamic cardinalities ([r1, r2] with r1 6= r2), and the
total number of partonomic relations in the model. Finally, the “#taxonomic
relations” column specifies the number of taxonomic (subtypes/supertypes) re-
lations between types of the model.

These tables show clear differences between the models. For example, our Mobile
Device model has much more types than the other models, as its architecture

200 Framework Evaluation

is much more complex, and involves several views. Also, very few models make
use of dynamic partonomic relations and inheritance. Instead, models like the
compressor product family (ESVS, FS, FX) are using mainly attributes. The
three biggest models (Mobile Device, BigPC and Renault) are fairly different
from each other. On the contrary to the Mobile Device, Renault has a minimalist
structure, with only one type and many attributes in it. This model has been
made anonymous in order to prevent any sensitive information to be divulged
publicly1, so all variables are called VarX. Although BigPC looks more balanced,
its partonomic tree is quite flat: the average value of one partonomic relation
per type is misleading, as most of these relations are within the root component.

The average constraint arity is a good indication of the complexity of each
model’s constraints. All models have a reasonable value for this metric, which
indicates that constraints are broken up in a relatively nice way. However, the
average number of property references per constraint shows that some models
have much more than one reference per property involved. This is mainly due
to large constraints defined in extension, where all combinations of values are
enumerated. The BigPC and especially the Renault models are declaring par-
ticularly large constraints, which may have an impact on the maintenance and
the runtime performance of the model.

11.2 Results

In this section, we detail the results from our benchmark with the models pre-
sented in the previous section. We first discuss our experience in the modelling
of these models in ProCoLa, and then detail results related to the framework
runtime. All measurements have been taken on a Macbook Pro running Win-
dows 7 with a 2.4GHz Core 2 Duo and 3GB main memory.

11.2.1 Modelling

The benchmark test cases are originally presented using different modelling
languages, e.g., PCML or the PM language. We thus attempted to model them
using the ProCoLa modelling language defined in this dissertation.

The translation of each model has been done with relative ease, in the sense that

1In general, IP issues relative to models from industrial products have been difficult to
handle throughout this project, as companies were often reluctant to share information about
how their products are modelled.

11.2 Results 201

all constructs from these other modelling languages were successfully mapped
to ProCoLa constructs, except for default values, which are yet not available
in ProCoLa. As stated before, only our extended Mobile Device case study
explicitly offered different views of the product family. However, although all
the models are easily mapped to a single view, some of them contain elements
that could belong to different views, from a conceptual point of view. For
example, the Bike model defines some attributes related to the physical design
of the system (e.g., the frame size), while others are related to its functionalities
(e.g., the bike type), and could be defined in the feature view, linked with
implementation constraints such as

(frame.biketype = “RacerBike”orframe.biketype = “CityBike”)→
((frame.size >= 15andframe.size <= 20))

It is also worth noting that some models do not include dynamic partonomy,
maybe due to the limitations of the language they are defined in. For example,
in the PC model, there needs to be at least one block of Random Access Memory
(RAM), and up to four. This could easily be handled if the ramBlock partonomic
relation between the PC and the RamBlock types had a dynamic cardinality of 1
to 4. However, the model is defined with a fixed cardinality of 4 for this relation,
and the attribute id in the RamBlock type can be of value “No RAM block”.
Besides requiring additional constraints in the RamBlock type to ensure the
correctness of the model, this is not consistent with the conceptual semantics of
a type, as a RamBlock instance could be present in the model without actually
being needed for the real product.

Finally, many of the constraints in these models are defined in extension, as
a disjunction of conjunctions of value assignments for attributes. These con-
straints can be written in ProCoLa using table constraints. From a modelling
point of view, this has several advantages: repeating the variables in assignments
may introduce unwanted mistakes, and transforming these constraints into ta-
bles reduces the clutter in the model. Also, for models with large constraints like
BigPC or the Renault model, transferring these constraints to other tools like
spreadsheet applications and databases may also improve their maintainability.

We provide some measurements related to modelling in Table 11.3. We recorded
the time spent in seconds by our prototype for compiling ProCoLa models,
for generating the analysis graph and then for applying the two full model
analyses, in order to verify that there are no cycles and unused elements in
the models. The measurements show that the compilation and analysis of the
configuration model is done almost instantaneously, apart for the Renault model,
which requires more time for compilation due to the very large size of the model.

202 Framework Evaluation

Table 11.3: Experimental results (modelling)

Model Compilation Analysis Graph Full model analyses
time generation Cycles Unused elts

Mobile Device 1.08 0.25 0.24 0.14
ESVS 0.56 0.08 0.03 0.02
FS 0.57 0.07 0.02 0.02
FX 0.56 0.07 0.03 0.02
Machine 0.56 0.07 0.03 0.02
Bike 0.61 0.08 0.03 0.02
PC 0.68 0.08 0.03 0.02
BigPC 0.59 0.09 0.04 0.03
Renault 12.02 0.08 0.04 0.03

11.2.2 Runtime

In order to assess the performance of our prototype implementation at runtime,
we performed some measures on the following criteria: the time in seconds
spent for creating a configurable instance from each model; the time in seconds
for generating the variables and constraints for the corresponding CondCSP; the
time spent in seconds for the first consistency check done before the configuration
starts; and finally the average time for consistency checks during configuration.
In order to get that last value, we took each configuration instance, then for a
100 times, chose randomly between:

1. picking a random unassigned variable and assigning a random value among
its feasible ones.

2. removing a previous assignment.

The results of the experiments can be seen in Table 11.4, with two versions
of the PC, BigPC and Renault models: the original version and another one
where extensive constraints have been replaced by table constraints. One of
the first interesting point in this table is that the creation of the configuration
instance and the generation of the CondCSP variables and constraints is done
very quickly. When looking at the model consistency, most of the models besides
BigPC, Renault and the Mobile Device are in average checked in a very short
time (≤.25s). The Mobile Device model takes longer on average, due to its
high number of types and constraints, which is expected. Because of its poor
performance, the only a subset of constraints were considered in the non-table
version of the Renault model.

11.2 Results 203

Table 11.4: Experimental results (runtime)

Model Instance CondCSP model Initial Average
creation generation consistency consistency

Mobile Device 0.11 0.19 84.12 4.66
ESVS 0.08 0.08 0.29 0.11
FS 0.08 0.08 0.20 0.07
FX 0.07 0.06 0.11 0.03
Machine 0.07 0.08 0.03 0.01
Bike 0.08 0.06 0.28 0.02
PC 0.08 0.09 13.2 0.25
PC (tables) 0.09 0.18 9.5 0.01
BigPC 0.08 0.13 430.2 20.93
BigPC (tables) 0.08 0.10 0.51 0.12
Renault 0.08 0.5 894.23 39.84
Renault (tables) 0.07 1.69 2.84 0.18

What is very interesting is to see the significant difference in performance for
the BigPC and Renault models, depending on whether the constraints defined
in extension are declared with predicates (disjunctions and conjunctions) or
as table constraints. Indeed, large constraints defined as predicates involving
many references to variables do not exploit the constraints’ special structure like
table constraints do. When table constraints are used, our specialised algorithm
DnSTR (see Chapter 8) can be used instead of the AC3-like algorithm used for
non-table constraints. The gain in performance gets even more important when
the constraints arity is higher. As a comparison, it is worth noting that the
average time for consistency checks with the Renault model is on par with
results by [5]. However, this comparison needs to be taken with a pinch of salt,
as on the one hand the work from Amilhastre et al. requires a 2 hour-long
compilation of the model into an automaton, but results in checks with a higher
level of consistency than the arc consistency considered here.

204 Framework Evaluation

Chapter 12

Conclusion

Product configuration has been an active research topic for some time now.
Configuration models can be quite complex and large, and therefore, efficient
methods for managing, modelling and reasoning about those models are needed.
Several configuration-specific languages for modelling in configuration have been
studied, but very few have been rigorously defined with precise semantics.

We started with the objective in thesis to analyse modelling and constraint-
based solving methods for product configuration, and design and implement a
framework for creating and configuring modern product models. In this dis-
sertation, we studied several well-known modelling languages in the context
of configuration and then presented the design and implementation of a new
configuration framework for heterogeneous products composed of physical com-
ponents, software and services. The aim of this framework is to synthesize,
unify and extend existing approaches in the domain of product configuration,
software variability and service configuration. We clearly defined the framework,
first conceptually then formally, and designed a configuration-specific modelling
language with clear semantics, along with several analyses for checking the cor-
rectness of configuration models. Our configuration framework is supported
by a constraint system, centered around a novel algorithm for dealing with
often-used table constraints. The feasibility of our approach is proven by the
implementation of a practical prototype for our work.

206 Conclusion

In this chapter, we give an outlook on possible future development and detail
our contributions before concluding.

12.1 Further Work

The work presented in this dissertation can be extended in various ways. Addi-
tional views could be added to our framework in order to consider other aspects
of the product family configuration, like views describing what the environ-
ment of the product family may provide (or request), in a similar way as in the
object-of-services world from [49]. Adding support for modelling the evolution
of product models in time is also a topic for future work, whether it is on the
conceptual point of view or for solving during configuration. Some work has
already been done on this topic [55].

The formal analysis of configuration models defined in ProCoLa could be ex-
tended. More insight on the model’s status could be derived, e.g., establishing
which elements do not participate in the implementation of a higher level view,
thus requiring direct configuration. Specific model metrics could also be used
to improve the structure of the model, such as presenting potential taxonomic
relations that could be added to improve the model. However, finding those
metrics may not be an easy task, and would require more research.

Improving the constraint system is also a topic of future work. Several re-
searchers [95,112] have considered Generative Constraint Satisfaction Problems
instead of Conditional CSP to solve configuration problems (dicussed in Sections
7.2.1 and 9.3). An interesting idea would be to compare the performance of both
alternatives, or even to perform an analysis of the model and determine what
framework would be the most appropriate to use, improving execution times
when possible. Our solving algorithms would then need to be adapted to han-
dle GCSPs, in particular when dealing with table constraints. Other potential
improvements of the constraint system include the support for soft constraints,
which could be used to model suggestions and default values.

Our prototype implementation could benefit from some improvements, for ex-
ample importing UML models into the framework. Integration with SysML
may be considered as well. Additional features could be added to the runtime
support of the prototype implementation, such as the support for explanations
when a conflict occurs in the configuration.

Last but not least, demonstrating the practical applicability of our configuration
framework requires modelling real-life systems in industrial contexts. Both the

12.2 Contributions and Concluding Remarks 207

expressiveness and the usability of the ProCoLa language would benefit from
strong empirical evaluation.

12.2 Contributions and Concluding Remarks

In this dissertation, we have presented a new framework for modelling and
solving configuration in heterogeneous product families that consist of several
dimensions, e.g., physical, software, and services.

We first drew a list of requirements for industrial configurators [75, 79], based
on literature and previous experience, and used it to discuss and evaluate the
potential for configuration of several general modelling languages such as the
Unified Modelling Language (UML), the System Modelling Language (SysML),
and the EXPRESS language from STEP, the International Standard ISO 10303.

We detailed a complete conceptual framework based on the concept of modelling
views [77] that differentiate the different aspects of a heterogeneous product
family. This framework has been motivated by four research questions, and il-
lustrated by the example of a Mobile Device product family. We then described
the design of ProCoLa, a configuration-specific modelling language to support
our conceptual work. ProCoLa has been given clear semantics using a trans-
lation to a formalism of our conceptual framework. We defined a type system
and well-formedness rules for configuration models in ProCoLa, and presented
several model analyses based on a graph created from configuration models.

In order to support the configuration of ProCoLa models, we designed a novel
algorithm DnSTR [78] for maintaining arc consistency in table constraints for
Dynamic Constraint Satisfaction Problems. This algorithm is based on Simple
Tabular Reduction and allows the dynamic addition and removal of constraints
at runtime. We then implemented a whole constraint system for solving the
configuration of ProCoLa models by translating model instances to Conditional
Constraint Satisfaction Problems, including when dealing with table constraints.

We provided a practical prototype of our configuration framework. We imple-
mented a language service to extend the Visual Studio development environment
to support ProCoLa models and provide tool support, including real-time well-
formedness checks, outlining and auto completion, as well as export of ProCoLa
into UML models using a predefined UML profile. We also provided connec-
tors for handling table constraints using spreadsheet applications and databases,
supporting currently the Excel tool and Microsoft SQL Server. We implemented
a runtime system for configuring ProCoLa models, as well as a visual tool for

208 Conclusion

debugging and modifying models directly at runtime, supported by our own
constraint solver. Finally, we performed an evaluation of our prototype imple-
mentation using an extended version of our motivating case study and multiple
benchmark models used in literature.

In conclusion, this dissertation contributes to the theory and practice of product
configuration by introducing a new integrated framework supported by concep-
tual and formal work, as well as practical implementation. We believe this
framework can serve as a common basis for collaborative configuration knowl-
edge base design and maintenance, as it takes into account the multiple views
necessary to model complex products with multiple dimensions.

Appendix A

Case Study in EXPRESS

This Appendix contains the source code of the Mobile Device model from Part
I in EXPRESS.

(* Main schema *)

SCHEMA DeviceModel;

(* User -defined functions *)

FUNCTION SumChips(mb:Motherboard): INTEGER;

LOCAL

result: INTEGER := mb.nbTouchChips;

END_LOCAL;

IF (mb.hasAccelerometer)

result := result + 1;

END_IF;

IF (mb.hasCompassChip)

result := result + 1;

END_IF;

RETURN(result);

END_FUNCTION;

(* User -defined types *)

TYPE MHZ = INTEGER;

WHERE SELF >= 0; END_TYPE;

TYPE INCH = INTEGER;

210 Case Study in EXPRESS

WHERE SELF >= 0; END_TYPE;

TYPE GB = INTEGER;

WHERE SELF >= 0; END_TYPE;

TYPE SSD_TYPE = ENUMERATION OF (flash ,DRAM); END_TYPE;

TYPE MINIUSBADAPTER_TYPE = ENUMERATION OF (none ,VGA ,DVI ,HDMI

); END_TYPE;

TYPE RFCARD_TYPE = ENUMERATION OF (GSM ,GSM_UMTS); END_TYPE;

TYPE CHIP_TYPE = ENUMERATION OF (Wifi ,Bluetooth ,FM);

END_TYPE;

TYPE PORT_TYPE = ENUMERATION OF (none ,VGA ,DVI ,HDMI ,miniUSB);

END_TYPE;

TYPE ENCLOSURE_SIZE = ENUMERATION OF (115x58 ,240x190 ,268x178

,295 x210); END_TYPE;

TYPE STYLUS_SIZE = ENUMERATION OF (compact ,large); END_TYPE;

TYPE TOUCHSCREEN_TYPE = ENUMERATION OF (resistive ,capacitive

); END_TYPE;

TYPE SCREEN_TECHNOLOGY = ENUMERATION OF (OLED ,LCD); END_TYPE

;

(* Root component *)

ENTITY Device;

motherboard: Motherboard;

screen: Screen;

drive: StorageDrive;

enclosure: Enclosure;

miniUSBAdapter: MINIUSBADAPTER_TYPE;

WHERE

((motherboard.nbSlots = 6) AND (enclosure.size = 115 x58)

AND (screen.size = 3)) OR

((motherboard.nbSlots = 10) AND (enclosure.size = 240 x190)

AND (screen.size = 9)) OR

((motherboard.nbSlots = 12) AND (enclosure.size = 266 x178)

AND (screen.size = 10)) OR

((motherboard.nbSlots = 14) AND (enclosure.size = 295 x210)

AND (screen.size = 12));

(TYPEOF(screen) = TouchScreen) = (motherboard.nbTouchChips

> 0);

(SIZEOF(motherboard.ethernetCard) = 1) = enclosure.

ethernetPort;

(enclosure.port <> miniUSB) -> miniUSBAdapter = none;

END_ENTITY;

(* Abstract base component for storage drives *)

ENTITY StorageDrive ABSTRACT SUPERTYPE;

capacity: GB;

END_ENTITY;

211

ENTITY SSD SUBTYPE OF (StorageDrive);

WHERE

(capacity = 16) OR (capacity = 32) OR (capacity = 64);

END_ENTITY;

ENTITY HDD SUBTYPE OF (StorageDrive);

WHERE

(capacity = 128) OR (capacity = 256) OR (capacity = 320)

OR (capacity = 500);

END_ENTITY;

ENTITY Motherboard;

rfCard: SET [0:1] OF RFCard;

processor: Processor;

gps: SET [0:1] OF GPSReceiver;

wirelessChip: SET [0:3] OF WirelessChip;

ethernet: EthernetCard;

nbTouchChips: INTEGER;

nbSlots: INTEGER;

hasCompassChip: BOOLEAN;

hasAccelerometer: BOOLEAN;

DERIVE

nbChips : INTEGER := SumChips(SELF);

WHERE

0 <= nbTouchChips <= 3;

END_ENTITY;

ENTITY RFCard;

type: RFCARD_TYPE;

END_ENTITY;

ENTITY Processor;

frequency: MHZ;

WHERE

(frequency = 600) OR (frequency = 1000) OR (frequency =

1600);

END_ENTITY;

ENTITY GPSReceiver; END_ENTITY;

ENTITY WirelessChip;

chipType: CHIP_TYPE;

END_ENTITY;

ENTITY EthernetCard; END_ENTITY;

ENTITY Screen SUPERTYPE;

212 Case Study in EXPRESS

ppi: INTEGER;

size: INCH;

technology: SCREEN_TECHNOLOGY;

WHERE

(ppi = 132) OR (ppi = 330);

(size = 3) OR (size = 9) OR (size = 10) OR (size = 12);

END_ENTITY;

ENTITY TouchScreen SUBTYPE OF (Screen);

type: TOUCHSCREEN_TYPE;

oleophobicCoating: BOOLEAN;

INVERSE

associatedStylus: SET [0:1] OF Stylus FOR

associatedTouchScreen;

WHERE

(type = resistive) = (SIZEOF(associatedStylus) = 1);

END_ENTITY;

ENTITY Enclosure;

port: RFCARD_TYPE;

DVDSlot: BOOLEAN;

ethernetPort: BOOLEAN;

hasStylusSlot: BOOLEAN;

size: ENCLOSURE_SIZE;

stylus: SET [0:1] OF Stylus;

WHERE

(size = 115x58) = (stylus [1]. size = compact);

(size = 115x58) = (port = miniUSB);

(SIZEOF(stylus) = 1) = (hasStylusPort);

END_ENTITY;

ENTITY Stylus;

size: STYLUS_SIZE;

associatedTouchScreen: TouchScreen;

END_ENTITY;

END_SCHEMA;

Appendix B

Formalisation of Structure
and Realisation Views

In this Appendix, we present the formalisation rules of ProCoLa for structure
and realisation views.

In order to interpret units and constants, we use two auxiliary mappings defined
as follow:

u ∈ UnitsS ::= Idu 7−→ Du with Idu ∈ S, Du ∈ P(N ∪ B ∪ S)
c ∈ ConstS ::= Idc 7−→ 〈c, Idu〉 with Idc ∈ S, c ∈ N ∪ B ∪ S, Idu ∈ S ∪ {ε}

The units mapping UnitsS maps a string, the unit name Idu, to a set of con-
stant values, the domain of the unit. The constants mapping ConstS maps a
string, the constant name Idc, to a pair composed by the constant value c and
a potential unit name Idu (ε is used when no specific unit is assigned to the
constant).

Tables B.1, B.2, and B.3 show the formalisation rules for a structure view S,
while Table B.4 gives the formalisation rules for a realisation view R;

214 Formalisation of Structure and Realisation Views

[C1] : c ;S 〈c, ε〉

[C2] : Idc ;S 〈c, u〉 if (Idc 7−→ 〈c, u〉) ∈ ConstS

[Type1] : Idu ;S 〈Du, Idu〉 if (Idu 7−→ Du) ∈ UnitsS

[Type2−4] : integer ;S 〈N, ε〉 boolean ;S 〈B, ε〉 enum ;S 〈S, ε〉

[DomReduc1] :
Ci ;S 〈ci, u〉

{C1, ..., Cn};S 〈D = {c1, ..., cn}, u〉

[DomReduc2] :
Ci ;S 〈ci, u〉

[C1..Cn] ;S 〈D = {n/c1 ≤ n ≤ cn}, u〉

[DomReduc3] :
C ;S 〈c, u〉

[-inf..C] ;S 〈D = {n/n ≤ c}, u〉

[DomReduc4] :
C ;S 〈c, u〉

[C..inf] ;S 〈D = {n/c ≤ n}, u〉

[TypeDecl] :
Type;S 〈D1, u〉; DomReduc;F 〈D2, u〉

TypeDomReduc;S 〈D2, u〉
if D2 ⊆ D1

[ConstrDecl1] :
CSymExp;S e

c

{CSymExp};S 〈Tc, ec〉

[ConstrDecl2] :
ConstrV al ;S e

c

[Id]:[description:[c;]] ConstrV al ;S 〈Tc, ec〉

[ResourceUse] :
CSymExp;S e

c

{Idr:=CSymExp};S 〈Tr, Idr, ε, ec〉
if Idr ∈ RS

[Direction] : provides ;S Provides requires ;S Requires ε;S None

[AssocDecl1] :
Direction;S d

Direction Ida:Tt... ;S ρ = 〈Ida,Ta,Tt, d, 1, 1〉
if Tt ∈ T a

S

[AssocDecl2] :
Direction;S d; C ;S 〈r, ε〉

Direction Ida[C]:Tt... ;S ρ = 〈Ida,Ta,Tt, d, r, r〉
if Tt ∈ T a

S

[AssocDecl3] :
Direction;S d; Ci ;S 〈ri, ε〉 ifTt ∈ T a

S

Direction Ida[C1..C2]:Tt... ;S ρ = 〈Ida,Ta,Tt, d, r1, r2〉

Table B.1: Formalisation of ProCoLa structure view

215

[V isibility] : readonly ;S Readonly hidden ;S Hidden ε;S Visible

[AttrDecl1] :
V isibility ;S v; TypeDecl ;S 〈D,u〉

V isibility Ida:TypeDecl... ;S α = 〈Ida,Ta, D, v, 1〉

[AttrDecl2] :
V isibility ;S v; TypeDecl ;S 〈D,u〉; C ;S 〈r, ε〉

V isibility Ida[C]:TypeDecl... ;S α = 〈Ida,Ta, D, v, r〉

[SubPDecl1] : Ids:Tt... ;S σ = 〈Ids,Ts,Tt, 1, 1〉 if Tt ∈ T c
S

[SubPDecl2] :
C ;S 〈r, ε〉

Ids[C]:Tt... ;S σ = 〈Ids,Ts,Tt, r, r〉
if Tt ∈ T c

S

[SubPDecl3] :
Ci ;S 〈ri, ε〉

Ids[C1..C2]:Tt... ;S σ = 〈Ids,Ts,Tt, r1, r2〉
if Tt ∈ T c

S

[CTypeDecl1] : ...componentType T...;S T ∈ T c
S

[CTypeDecl2] : [Root]...componentType T...;S Troot
S = T

[CTypeDecl3] : ...abstract...componentType T...;S T ∈ T Ab
S

[CTypeDecl4] : ...componentType T subtypeOf T1, ..., Tn...
;S (T1,T), ..., (Tn,T) ∈ IS if Tt ∈ T c

S

[CTypeDecl5] :
Ai ;S αi = 〈...,Tai, ...〉

...componentType T...attributes : A1, ..., An...
;S αi = 〈...,T, ...〉 ∈ DS

[CTypeDecl6] :
Si ;S σi = 〈...,Tsi,Tt, ...〉

...componentType T...subParts : S1, ..., Sn...
;S σi = 〈...,T,Tt, ...〉 ∈ SS

[CTypeDecl7] :
Asi ;S Asi = 〈..., ,Tai,Tt, ...〉

...componentType T...associations : As1, ..., Asn...
;S Asi = 〈...,T,Tt, ...〉 ∈ AS

[CTypeDecl7] :
Ui ;S Ui = 〈...,Tri, ...〉

...componentType T...produces : U1, ..., Un...
;S Ui = 〈T, ...,Produces, ...〉 ∈ US

Table B.2: Formalisation of ProCoLa structure view (continued)

216 Formalisation of Structure and Realisation Views

[CTypeDecl8] :
Ui ;S Ui = 〈...,Tri, ...〉

...componentType T...consumes : U1, ..., Un...
;S Ui = 〈T, ...,Consumes, ...〉 ∈ US

[CTypeDecl9] :
Consi ;S Ci = 〈...,Tci, ...〉

...componentType T...constraints : Consc1, ..., Cons
c
n...

;S Ci = 〈...,T, ...〉 ∈ CcS

[ATypeDecl1] : ...associationType T...;S T ∈ T a
S

[ATypeDecl2] : ...abstract...associationType T...;S T ∈ T Ab
S

[ATypeDecl3] : ...associationType T subtypeOf T1, ..., Tn...
;S (T1,T), ..., (Tn,T) ∈ IS if Tt ∈ T a

S

[ATypeDecl4] :
Ai ;S αi = 〈...,Tai, ...〉

...associationType T...attributes : A1, ..., An...
;S αi = 〈...,T, ...〉 ∈ DS

[ATypeDecl5] :
Consi ;S Ci = 〈...,Tci, ...〉

...associationType T...constraints : Consc1, ..., Cons
c
n...

;S Ci = 〈...,T, ...〉 ∈ CcS

[ConstDecl1] : Idc:= c ;S (Idc 7−→ 〈c, ε〉) ∈ ConstS

[ConstDecl2] : Idc:Idu:= c ;S (Idc 7−→ 〈c, Idu〉) ∈ ConstS

[UnitDecl] :
TypeDecl ;S 〈Du, ε〉

Idu:TypeDecl ;S (Idu 7−→ Du) ∈ UnitsS

[ResourceDecl1] : Idr: integer ;S Idr ∈ RS

[ResourceDecl2] : Idr:Idu:= c ;S Idr ∈ RS

[StructureV iew] : dimension Dimension; StructureDecl ;S S ∈ Vs

Table B.3: Formalisation of ProCoLa structure view (end)

217

[UseDecl] : Idu:Tr ;R 〈Idu,Tu,Tr〉 if Tr ∈ T r
R

[SubEltDecl1] : Ids:Tt ;R 〈Ids,Ts,Tt, 1〉

[SubEltDecl2] : Ids[c]:Tt ;R 〈Ids,Ts,Tt, c〉

[MappingDecl] :
CSymExp;S e

c

Ts:{CSymExp};R 〈Ts,Tm, ec〉
if Ts ∈ TS

[RTypeDecl] : resourceType Tr ;R Tr ∈ T r
R

[OTypeDecl1] : ...operationType T...;R T ∈ T o
R

[OTypeDecl2] :
Mi ;R mi = 〈Tsi,Tmi, e

c〉
...operationType T...mapping : M1, ..., Mn...

;R mi = 〈Tsi,T, e
c〉 ∈ MR

[OTypeDecl3] : ...operationType T...successors : T1, ..., Tn...
;R 〈T,Ti〉 ∈ NR if Ti ∈ T o

R

[OTypeDecl4] :
Ui ;R ωi = 〈Idui,Tui,Tri〉

...operationType T...uses : U1, ..., Un...
;R ωi = 〈Idui,T,Tri〉 ∈ ΩR

[OTypeDecl5] :
Si ;R σi = 〈...,Tsi, ...〉

...operationType T...subOperations : S1, ..., Sn...
;R σi = 〈〈...,T, ...〉 ∈ SoR

[ITypeDecl1] : ...itemType T...;R T ∈ T i
R

[ITypeDecl2] :
Mi ;R mi = 〈Tsi,Tmi, e

c〉
...itemType T...mapping : M1, ..., Mn...

;R mi = 〈Tsi,T, e
c〉 ∈ MR

[ITypeDecl3] :
Si ;R σi = 〈...,Tsi, ...〉

...itemType T...subItems : S1, ..., Sn...
;R σi = 〈...,T, ...〉 ∈ SiR

[StructureV iew] : ResourceV iew ;R R ∈ Vr

Table B.4: Formalisation of ProCoLa realisation view

218 Formalisation of Structure and Realisation Views

Bibliography

[1] Mohd Syazwan Abdullah, Andy Evans, Ian Benest, and Chris Kimble.
Developing a uml profile for modelling knowledge-based systems. pages
202–216, 2004. jf.

[2] Mohd Syazwan Abdullah, Richard Paige, Chris Kimble, and Ian Benest. A
uml profile for knowledge-based systems modelling. pages 871–878, 2007.

[3] H. Akkermans, Z. Baida, J. Gordijn, N. Peña, A. Altuna, and I. Lares-
goiti. Value webs: Using ontologies to bundle real-world services. IEEE
Intelligent Systems, 19(4):57–66, 2004.

[4] M. Aldanondo, K. Hadj-Hamou, G. Moynard, and J. Lamothe. Mass cus-
tomization and configuration: Requirement analysis and constraint based
modeling propositions. Integr. Comput.-Aided Eng., 10(2):177–189, 2003.

[5] J. Amilhastre, H. Fargier, and P. Marquis. Consistency restoration and
explanations in dynamic csps—-application to configuration. AI, 135(1-
2):199–234, 2002.

[6] T. Asikainen, T. Männistö, and T. Soininen. Kumbang: A domain on-
tology for modelling variability in software product families. Advanced
Engineering Informatics, 21(1):23–40, 2007.

[7] Timo Asikainen, Tomi Mannisto, and Timo Soininen. A unified conceptual
foundation for feature modelling. pages 31–40, 2006.

[8] Timo Asikainen, Timo Soininen, and Tomi Mannisto. A koala-based ap-
proach for modelling and deploying configurable software product families.
Proc. International Workshop on Product Family Engineering, pages 225–
249, Jan 2003.

220 BIBLIOGRAPHY

[9] F. Bacchus, X. Chen, P. Beek, and T. Walsh. Binary vs. non-binary
constraints. Artificial Intelligence, 140:1–37, 2002.

[10] V. Barker, D. O’Connor, J. Bachant, and E. Soloway. Expert systems for
configuration at digital: Xcon and beyond. Communications of the ACM,
32(3):298–318, 1989.

[11] R. Bartak and P. Surynek. An improved algorithm for maintaining arc con-
sistency in dynamic constraint satisfaction problems. Proc. FLAIRS’05,
pages 161–166, 2005.

[12] D. Batory. Feature models, grammars, and propositional formulas. SPLC
2005, LNCS, 3714:7–20, 2005.

[13] M. Becker. Towards a general model of variability in product families. In
Proc. of the First Workshop on Software Variability Management, 2003.

[14] C. Bessière. Arc-consistency in dynamic constraint satisfaction problems.
Proc. AAAI’91, pages 221–226, 1991.

[15] C. Bessière. Arc-consistency for non-binary csps. Proc. ECAI’92, pages
23–27, 1992.

[16] C. Bessière. Arc-consistency and arc-consistency again. Artificial Intelli-
gence, 65:179–190, 1994.

[17] C. Bessière, E. Hebrard, B Hnich, and T. Walsh. The complexity of
reasoning with global constraints. Constraints, 12(2):239–259, 2007.

[18] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability
management with feature models. Science of Computer Programming,
53(3):333–352, 2004.

[19] T. Böhmann, M. Junginger, and H. Kremar. Modular service architec-
tures: a concept and method for engineering it services. In Proc. Interna-
tional Conference on System Sciences, 2003.

[20] J. Bosch. Design and Use of Software Architectures: Adapting and Evolv-
ing a Product-Line Approach. Addison-Wesley, 2000.

[21] Pascal Bouvier. Visual tools to debug prolog iv programs. DiSCiPl, Lec-
ture Notes in Computer Science 1870, pages 177–190, 2000.

[22] Manuel Carro and Manuel V Hermenegildo. Tools for constraint visuali-
sation: The vifid/trifid tool. DiSCiPl, Lecture Notes in Computer Science
1870, pages 253–272, 2000.

BIBLIOGRAPHY 221

[23] V. Cechticky, A. Pasetti, O. Rohlik, and W. Schaufelberger. Xml-based
feature modelling. In Proc. 8th International Conference on Software
Reuse, 2004.

[24] P. Clements and L. Northrop. Software Product Lines — Practices and
Patterns. Addison-Wesley, 2001.

[25] CLib. http://www.itu.dk/research/cla/externals/clib/.

[26] K. Czarnecki, M. Antkiewicz, Chang Hwan, and Peter Kim. Multi-level
customization in application engineering. Communications of the ACM -
Software product line, 49(12):61–65, 2006.

[27] K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker. Genera-
tive programming for embedded software: an industrial experience re-
port. Proc. ACM SIGPLAN/SIGSOFT Conference on Generative Pro-
gramming and Componen Engineering, pages 156–172, 2002.

[28] K. Czarnecki and U. W. Eisenecker. Generative Programming - Methods,
Tools, and Applications. Addison-Wesley, 2000.

[29] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software Process: Improve-
ment and Practices, 10(1):7–29, 2005.

[30] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged configuration
through specialization and multilevel configuration of feature models. Soft-
ware Process: Improvement and Practices, 10(2):143–169, 2005.

[31] E. Dashofy, André van der Hoek, and Richard Taylor. An infrastructure
for the rapid development of xml-based architecture description languages.
In ACM, editor, Proc. International Conference on Software Engineering,
pages 266–276, 2002.

[32] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353–366, 1989.

[33] Marcos Didonet Del Fabro and Patrick Albert. Software product lines:
Lessons learned when applying configuration techniques. In Proc. Work-
shop on Configuration, ECAI, 2010.

[34] Gardner Denver. http://www.gardnerdenver.com/.

[35] Microsoft Excel. http://office.microsoft.com/en-us/excel/. 2010.

[36] EXPRESS. 10303-11 ISO - Part 11: The EXPRESS language reference
manual, 2004.

222 BIBLIOGRAPHY

[37] A. Felfernig, G. Friedrich, and D. Jannach. Conceptual modeling for con-
figuration of mass-customizable products. Artificial Intelligence in Engi-
neering, 15(4):165–176, 2001.

[38] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-
based diagnosis of configuration knowledge bases. AI, 152:213–234, 2004.

[39] A. Felfernig, K. Isak, and T. Kruggel. Testing knowledge-based recom-
mender applications. OEGAI Journal, Special Issue on Recommender
Systems, 24(4):12–18, 2005.

[40] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. Uml as
domain specific language for the construction of knowledge-based config-
uration systems. 1999.

[41] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. Generating
product configuration knowledge bases from precise domain extended uml
models. pages 284–293, 2000.

[42] D. Garlan, R. Monroe, and D. Wile. Acme: An architecture description
interchange language. In J. Howard Johnson, editor, The 1997 Conference
of the Centre for Advanced Studies on Collaborative Research, 1997.

[43] E. Gelle and B. Faltings. Solving mixed and conditional constraint satis-
faction problems. Constraints, 8(2):107–141, 2003.

[44] F. Geller and M. Veksler. Assumption-based pruning in conditional csp.
Proc. CP’05, 3709:241–255, Oct 2005.

[45] Martin Gogolla, Fabian Büttner, and Mark Richters. Use: A uml-based
specification environment for validating uml and ocl. Science of Computer
Programming, 69(1-3):27–34, 2007.

[46] Frédéric Goualard and Frédéric Benhamou. A visualization tool for con-
straint program debugging. Proceedings of the 14th IEEE International
Conference on Automated Software Engineering, page 110, 1999.

[47] A. Haag. Sales configuration in business processes. IEEE Intelligent Sys-
tems, 13(4):78–85, 1998.

[48] Xiao He, Zhiyi Ma, Weizhong Shao, and Ge Li. A metamodel for the
notation of graphical modeling languages. pages 219–224, 2007.

[49] M. Heiskala, J. Tiihonen, and T. Soininen. A conceptual model for con-
figurable services. In IJCAI Workshop on Configuration, Scotland, 2005.

[50] Brian Henderson-Sellers and Cesar Gonzalez-Perez. Uses and abuses of the
stereotype mechanism in uml 1.x and 2.0. In 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2006),
pages 16–26, 2006.

BIBLIOGRAPHY 223

[51] L. Hvam, N. H. Mortensen, and J. Riis. Product customization, volume
XII. Springer, 2008.

[52] D. Janitza, M. Lacher, M. Maurer, U. Pulm, and H. Rudolf. A product
model for mass-customisation products. LNCS, 2774:1023–1029, 2003.

[53] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and S .A. Peter-
son. Feature-oriented domain analysis (foda) — feasibility study. Techni-
cal Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[54] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. Form: a feature-
oriented reuse method with domain-specific reference architectures. An-
nals of Software Engineering, 5:143–168, 1998.

[55] Tero Kojo, Tomi Männistö, and Timo Soininen. Towards intelligent sup-
port for managing evolution of configurable software product families.
Proc. of the 11th International Workshop on Software Configuration Man-
agement, 2003.

[56] P. Kotler. Marketing Management, 11th edition. Prentice-Hall, 2003.

[57] Lam-Son Le and Alain Wegmann. Definition of an object-oriented mod-
eling language for enterprise architecture. page 222.1, 2005.

[58] C. Lecoutre. Optimization of simple tabular reduction. Proc. CP’08, pages
128–143, 2008.

[59] C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectional-
ity in coarse-grained arc consistency algorithm. Proc. CP’03, pages 480–
494, 2003.

[60] A K Mackworth. On reading sketch maps. Proc. IJCAI’77, pages 598–606,
1977.

[61] D. Mailharro. A classification and constraint-based framework for config-
uration. AI EDAM, 12:383–395, Sep 1998.

[62] T. Männistö, H. Peltonen, T. Soininen, and R. Sulonen. Multiple abstrac-
tion levels in modelling product structures. Data & Knowledge Engineer-
ing, 36(1):55–78, 2001.

[63] Tomi Männistö, Hannu Peltonen, Asko Martio, and Reijo Sulonen.
Modelling generic product structures in step. Computer-Aided Design,
30(14):1111–1118, 1998.

[64] John McDermott. R1: A rule-based configurer of computer systems. Ar-
tificial Intelligence, 19(1):39–88, 1982.

224 BIBLIOGRAPHY

[65] H. Meier, J. J. Schramm, and A. Werding. Development of a stage model
based configurator to generate more customer-specific services and to sup-
port cooperative service networks. In 3rd CIRP International Seminar on
Intelligent Computation in Manufacturing Engineering, Ischia, Italy, 2002.

[66] Micha Meier. Debugging constraint programs. Proceedings of the First
International Conference on Principles and Practice of Constraint Pro-
gramming, pages 204–221, 1995.

[67] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems.
1990.

[68] R Mohr and TC Henderson. Arc and path consistency revisited. Artificial
Intelligence, 28:225–233, 1986.

[69] R Mohr and G Masini. Good old discrete relaxation. Proceedings ECAI’88,
pages 651–656, 1988.

[70] J. Moller, H. R. Andersen, and H. Hulgaard. Product configuration over
the internet, 2001.

[71] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principle of
Program Analysis. 2005.

[72] OCL. OMG Object Constraint Language v2.0 Specification, 2001.

[73] B. J. Pine. Mass Customization - The New Frontier in Business Compe-
tition. Harvard Business School Press, 1993.

[74] ProCoLa. http://www2.imm.dtu.dk/ mq/procola/.

[75] Matthieu Quéva. General purpose modelling languages for configuration.
Technical report, DTU Informatics, 2010.

[76] Matthieu Quéva, Tomi Männistö, Laurent Ricci, and Christian Probst. A
conceptual modelling approach for managing variability in heterogeneous
product families. in progress, 2011.

[77] Matthieu Quéva, Tomi Männistö, Laurent Ricci, and Christian Probst.
Modelling configuration knowledge in heterogeneous product families. In
Proceedings of the IJCAI’11 Workshop on Configuration, 2011.

[78] Matthieu Quéva, Christian Probst, and Laurent Ricci. Maintaining arc
consistency in non-binary dynamic csps using simple tabular reduction.
In Proceedings of the Fifth European Starting AI Researcher Symposium,
Lisbon, Portugal, 2010.

BIBLIOGRAPHY 225

[79] Matthieu Quéva, Christian Probst, and Per Vikkelsøe. Industrial require-
ments for interactive product configurators. In Proceedings of the IJ-
CAI’09 Workshop on Configuration, 2009.

[80] J.-C. Régin. A filtering algorithm for constraints of difference in csps.
Proc. AAAI’94, pages 362–367, 1994.

[81] Jean-Charles Régin. Maintaining arc consistency algorithms during the
search without additional space cost. Lecture notes in computer science,
3709:520–533, 2005.

[82] Mark-Oliver Reiser and Matthias Weber. Managing highly-complex prod-
uct families with multi-level feature trees. In Proc. of the 14th IEEE In-
ternational Requirements Engineering Conference, pages 149–158, 2006.

[83] Renault. http://www.renault.fr/.

[84] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satis-
faction problems. Proc. ECAI, pages 550–556, 1990.

[85] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

[86] D. Sabin and E. C. Freuder. Configuration as composite constraint satis-
faction. pages 153–161, 1996.

[87] D. Sabin, E. C. Freuder, and R. J. Wallace. Greater efficiency for condi-
tional constraint satisfaction. LNCS - CP 2003, pages 649–663, 2003.

[88] Daniel Sabin and Rainer Weigel. Product configuration frameworks-a
survey. IEEE Intelligent Systems, 13:42–49, July 1998.

[89] Microsoft SQL Server. http://www.microsoft.com/sqlserver/en/us/default.aspx.
2008.

[90] M. Sinnema, S. Deelstra, j. Nijhuis, and J. Bosch. Cowamof: A framework
for modeling variability in software product families. In Springer Verlag,
editor, Proc. of the Third Software Product Line Conference, volume 3154,
pages 197–213, 2004.

[91] Marco Sinnema and Sybren Deelstra. Classifying variability modeling
techniques. Information and Software Technology, 49:717–739, 2007.

[92] T. Soininen and E. Gelle. Dynamic constraint satisfaction in configuration.
Proc. of AAAI Workshop on Configuration, Jan 1999.

[93] T Soininen, J Tiihonen, T Männistö, and R Sulonen. Towards a general
ontology of configuration. AI EDAM, 12(4):357–372, 1998.

226 BIBLIOGRAPHY

[94] Microsoft Visual Studio. http://www.microsoft.com/visualstudio/. 2010.

[95] M. Stumptner, G. Friedrich, and A. Haselböck. Generative constraint-
based configuration of large technical systems. AI EDAM, 12(4):307–320,
1998.

[96] SysML. OMG Systems Modeling Language (OMG SysML) v1.0 Specifica-
tion, 2001.

[97] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[98] J. Tiihonen, M. Heiskala, K.-S. Paloheimo, and A. Anderson. Config-
uration of contract-based services. In Proc. ECAI 2006 Workshop on
Configuration, pages 25–30, 2006.

[99] J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen. Empirical testing
of a weight constraint rule based configurator. In Workshop on Configu-
ration, ECAI, pages 17–22, 2002.

[100] Juha Tiihonen. Characterization of 26 configuration models. In Proceed-
ings of the IJCAI’09 Workshop on Configuration, 2009.

[101] Juha Tiihonen, Timo Soininen, Ilkka Niemelä, and Reijo Sulonen. A
practical tool for mass-customising configurable products. In Proc. of the
International Conference on Engineering Design, 2003.

[102] Eclipse UML2 Tools. http://www.eclipse.org/modeling/mdt/?project=uml2.

[103] J. R. Ullmann. Partition search for non-binary constraint satisfaction.
Information Science, 177:3639–3678, 2007.

[104] UML. OMG UML V2.1.2 Specification, 2007.

[105] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The koala
component model for consumer electronics software. IEEE Computer,
33(3):78–85, 2000.

[106] M. Véron and M. Aldanondo. Yet another approach to ccsp for configu-
ration problem. Proc. ECAI’00, pages 59–62, 2000.

[107] A. Wimmer, J. I. Mehlau, and T. Klein. Object oriented product meta-
model for the financial services industry. In Proc. 2nd Interdisciplinary
World Congress on Mass Customization and Personalization, Munich,
Germany, 2003.

[108] R. Winter. Mass customization and beyond — evolution of customer
centricity in financial services. In Workshop on Information Systems for
Mass Customization, Dubai, 2001.

BIBLIOGRAPHY 227

[109] Helen Xie, Philip Henderson, and Michael Kernahan. A constraint-based
product configurator for mass customisation. International Journal of
Computer Applications in Technology 2006, 26(1/2):91–98, 2006.

[110] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint
satisfaction: Easy generation of hard (satisfiable) instances. Artificial
Intelligence, 171:514–534, 2007.

[111] L.A. Zaid, F. Kleinermann, and O. De Troyer. Feature assembly: a new
feature modeling technique. In J. Parsons et al., editor, ER 2010, LNCS,
volume 6412, pages 233–246, 2010.

[112] Markus Zanker, Dietmar Jannach, Marius Silaghi, and Gerhard Friedrich.
A distributed generative csp framework for multi-site product configu-
ration. In Matthias Klusch, Michal Pechoucek, and Axel Polleres, edi-
tors, Cooperative Information Agents XII, volume 5180 of Lecture Notes
in Computer Science, pages 131–146. Springer Berlin / Heidelberg, 2008.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Mass Customisation
	1.2 Product configuration
	1.3 Outline of the Thesis and Overview of the Contribution

	I Modelling in Product Configuration
	2 Setting the Scene
	2.1 Background
	2.2 Case Study
	2.3 Modelling Requirements for Product Configuration

	3 General Purpose Modelling Languages
	3.1 UML and OCL
	3.2 SysML
	3.3 EXPRESS/STEP (ISO 10303)
	3.4 Comparison and Conclusion

	II Heterogeneous Products
	4 Research Problem
	4.1 Background
	4.2 Research Questions

	5 Conceptual Modelling Framework
	5.1 Overview of the Approach
	5.2 Description of the Views
	5.3 Dependencies Within and Between Views
	5.4 Feature Views Hierarchy
	5.5 Discussion
	5.6 Comparison with related work

	6 Framework Implementation
	6.1 The ProCoLa Modelling Language
	6.2 Formalism Definition
	6.3 Formalising ProCoLa
	6.4 Analysing ProCoLa Models
	6.5 Summary

	III Constraint Solving
	7 Constraint Satisfaction Problems and Configuration
	7.1 Classic CSP
	7.2 Extensions to CSP
	7.3 CSP with Non-Binary Constraints

	8 Non-binary Dynamic CSP with Simple Tabular Reduction
	8.1 The DnSTR Algorithm
	8.2 Analysis
	8.3 Experimental Results

	9 CSP Formalisation of the Configuration Framework
	9.1 CSP Formalism Chosen
	9.2 CSP Semantics of the Model
	9.3 Discussion

	IV Prototype and Evaluation
	10 Prototype Implementation of the Framework
	10.1 Language Integration
	10.2 Tool Support for Modelling
	10.3 Runtime Implementation
	10.4 Debugging
	10.5 Summary and Discussion

	11 Framework Evaluation
	11.1 Benchmark models
	11.2 Results

	12 Conclusion
	12.1 Further Work
	12.2 Contributions and Concluding Remarks

	A Case Study in EXPRESS
	B Formalisation of Structure and Realisation Views

