
Open Research Online
The Open University’s repository of research publications
and other research outputs

Progressing problems from requirements to
specifications in problem frames
Thesis

How to cite:

Li, Zhi Z. (2008). Progressing problems from requirements to specifications in problem frames. PhD thesis
The Open University.

For guidance on citations see FAQs.

c© 2007 Zhi Z. Li

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Progressing Problems from Requirements to

Specifications in Problem Frames

Zhi Z. Li, B.Sc., M.Sc.

A thesis submitted in partial fulfilment of the requirements for the degree

of Doctor of Philosophy in Computer Science

Department of Computing

Faculty of Mathematics and Computing

The Open University

September 2007

ProQuest Number: 13890034

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13890034

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

ABSTRACT

One of the problems with current practice in software development is that often cus

tomer requirements are not well captured, understood and analysed, and there is no

clear traceable path from customer requirements to software specifications. This often

leads to a mismatch between what the customer needs and what the software developer

understands the customer needs.

In addition to capturing, understanding and analysing requirements, requirements

engineering (RE) aims to provide methods to allow software development practition

ers to derive software specifications from requirements. Although work exists towards

this aim, the systematic derivation of specifications from requirements is still an open

problem.

This thesis provides practical techniques to implement the idea of problem progres

sion as the basis for transforming requirements into specifications. The techniques allow

us to progress a software problem towards identifying its solution by carefully investi

gating the problem context and re-expressing the requirement statement until a specifi

cation is reached. We develop two classes of progression techniques, one formal, based

on Hoare’s Communicating Sequential Processes (CSP), and one semi-formal, based

on a notion of causality between events. The case studies in this thesis provide some

validation for the techniques we have developed.

D
c 2 3 JAN 2008
c .
O
Cix:

H* T he Library

DONATION

AUTHOR’S DECLARATION

Some of the material in this thesis appears in the following papers.

• L. Rapanotti, J. G. Hall and Z. Li, Deriving specifications from requirements

through problem reduction, Journal of IEE Proceedings - Software, Volume 153,

issue 5, pages 183-198, October 2006.

• Z. Li, J. G. Hall and L. Rapanotti, From requirements to specifications: a for

mal approach, Proceedings of the 2nd International Workshop on Advances and

Applications of Problem Frames, pages 65-70, ICSE’06, ACM Press, Shanghai,

China, May 2006.

• L. Rapanotti, J. G. Hall and Z. Li, Problem Reduction: a systematic technique for

deriving Specifications from Requirements, Technical Report No.2006/02, Centre

for Research in Computing, The Open University, February 2006.

• Z. Li, J. G. Hall and L. Rapanotti, A Constructive Approach to Problem Frame

Semantics, Technical Report No.2004/26, Centre for Research in Computing, The

Open University, December 2004.

• Z. Li, J. G. Hall and L. Rapanotti, Reasoning about decomposing and recompos

ing Problem Frames developments: a case study, Proceedings of the 1st Interna

tional Workshop on Advances and Applications of Problem Frames, pages 49-53,

ICSE’04, IEEE CS Press, Edinburgh, UK, May 2004.

• • •

111

I declare that no part of this material has previously been submitted to a degree or

any other qualification at this University or another institution.

I further declare that this thesis is my original work, except for clearly indicated

sections where appropriate attributions and acknowledgements are given to work by

other authors.

ZhiLi

ACKNOWLEDGEMENTS

Thanks are due to the following individuals and organisations without whose assistance

this thesis would not have been possible.

Financial and facility support was provided by the Research School and the Faculty

of Mathematics and Computing at the Open University.

I am grateful to an extremely dedicated team of supervisors: this thesis could not

have been written without the supervision, guidance and support of Jon G. Hall and

Lucia Rapanotti.

As my supervisor, Jon provided me with the inspiration and endless encouragement

to help me pursue my dream of getting a PhD. He has been unfailingly supportive,

patient and generous. His door is always open to me whenever I have any questions

about formal methods and problem orientation.

As my supervisor, Lucia taught me many things about doing research in academia,

and improved my writing greatly. She has been extremely supportive and generous to

my research project, devoting a lot of time and attention to make sure that I produced a

quality thesis.

Marian Petre and Trevor Collins have taught me how to make the transition from

a research student to a qualified researcher. The PG-Forum (Postgraduate Forum) has

become a great help to our research students.

Bashar Nuseibeh has been very generous towards all research students, making sure

we are treated the same way as members of staff.

Michael A. Jackson kindly spent some time talking to me about problem frames at

the early start of my PhD. His encouragement and generosity is much appreciated.

Friendship and help from John Brier, my colleague from Yorkshire, has always been

greatly appreciated. Friendship from Debra Haley and Charles Haley has been a joy.

Encouragement from students and staff in the department is acknowledged.

Thanks should go to Jonathan Moffett who made me aware of the PhD project in

the Open University. A special thanks should also go to Michael D. Harrison who made

this project possible with his reference.

Last but not least, the support of my family has been with me beyond the PhD years:

my mother Suwen Zhang, my father Kelin Li and my elder sister Ping Li have been

supporting my interest and determination of pursuing a PhD in computer science since

I came to the UK in 2001. My mother-in-law Xiangyang Cao, and my father-in-law

Zhonghua Shen have encouraged me and helped look after my son during my stay in

the UK, for which I am very grateful. I am extremely grateful to my wife Yan Shen and

my son Zongze Li, for their long-lasting understanding, patience and endurance so that

I can get the thesis completed.

CONTENTS

1. Introduction .. 1

1.1 Aim and Research M ethodology.. 2

1.2 Thesis Contribution.. 4

1.3 Thesis O utline.. 4

2. Literature Survey ... 6

2.1 Why Requirements Engineering?.. 6

2.1.1 Software Crisis and Important F in d in g s 6

2.1.2 The Role of Requirements Engineering in Software Development 8

2.2 Narrative Approaches... 10

2.2.1 U seC ases... 10

2.2.2 Scenarios... 15

2.2.3 Deriving Specifications from Requirements Using Use Case and

Scenario Approaches... 17

2.3 Goal-Oriented A pproaches.. 18

2.3.1 The KAOS Approach.. 18

2.3.2 The i* A pp ro ach .. 19

2.3.3 Deriving Specifications from Requirements Using Goal-Oriented

Approaches... 20

Contents vii

2.4 A Formal Approach to Relating Requirements and Specifications - The

Four Variable M o d e l ... 21

2.5 Problem-Based Approaches.. 23

2.5.1 Foundation .. 23

2.5.2 Problem Frames .. 25

2.5.3 Problem-Oriented Software Engineering....................................... 27

2.6 Transformational Approaches in Software Engineering 27

2.7 S u m m ary ... 28

3. Problem Progression...30

3.1 The Problem Frames Approach... 30

3.1.1 The Engineering Root of P F ... 31

3.1.2 Representing Problem s.. 32

3.1.3 Transforming Problems... 42

3.2 Problem Progression and its Significance... 45

3.3 S u m m ary ... 48

4. A Formal Approach to Problem Progression.. 49

4.1 An Exam ple.. 50

4.2 Semantics of Problem D iagram s... 52

4.3 Formalising a Problem Diagram Using CSP as a D R D L......................... 53

4.3.1 The CSP la n g u ag e .. 53

4.3.2 Modelling a Domain as a CSP Process... 59

4.3.3 The (Stable) Failures Model in C S P .. 59

4.3.4 Modelling a Requirement and b drdl in the Predicative Failures

M odel... 67

Contents

4.3.5 Modelling the Sharing of Phenomena as Parallel Composition . 68

4.3.6 Distinguishing “Control” and “Observe” in CSP Descriptions . 69

4.3.7 Achieving a Complete Interpretation of Hall et al. ’s PF Seman

tics in C S P ... 70

4.4 Solving the Challenge Using Lai’s Q uo tien t.. 71

4.4.1 Interpreting Problem Progression as Stepwise Applications of

Lai’s Quotient .. 74

4.5 Case Study - Solving the POS Example Problem 75

4.5.1 Formalising the Domain and Requirement.................................... 75

4.5.2 Solving the Problem Using Lai’s Quotient.................................... 83

4.5.3 Using SKIP instead of S T O P ... 88

4.5.4 Validating the Derived Specification Using F D R 89

4.6 Discussion on our Formal Approach to Problem Progression 92

4.6.1 Com plexity.. 92

4.6.2 Weakening Problem D escrip tions... 93

4.7 Summary 94

5. A Semi-Formal Approach to Problem Progression... 96

5.1 Causality .. 97

5.1.1 Basic N o ta tio n 98

5.1.2 Types of C au sa lity .. 100

5.2 Causality in Problem Description... 102

5.2.1 Using Causality to Describe Domain Behaviour..............................102

5.2.2 Realtionship between Control and Causality of Phenomena . . . 103

5.3 Progressing Problems Based on Graph G ra m m a r.....................................105

___Contents ix

5.3.1 Graph G ram m ars... 106

5.3.2 Interpreting Problem Diagrams as Directed Labelled Graphs . . 114

5.3.3 Interpreting Problem Progression as Rule-Based Graph Trans

formation 119

5.4 Causality-Based Rules for Problem Progression..121

5.4.1 The Reducing through Cause and Effect Rule C lass124

5.4.2 The Changing Viewpoint Rule C lass.. 133

5.4.3 The Removing Domain Rule C lass... 139

5.5 Discussion on Heuristics for Applying the Transformation Rules 145

5.6 S u m m ary ..147

6. Case S tu d ie s ...149

6.1 The Point-of-Sale (POS) Problem ...149

6.1.1 First Step of Progression.. 152

6.1.2 Second Step of Progression .. 153

6.1.3 Third Step of P rog ressio n ... 154

6.1.4 Fourth Step of Progression...................................155

6.1.5 Fifth Step of Progression.. 156

6.1.6 Sixth Step of Progression.. 157

6.1.7 Seventh Step of P rogression.. 158

6.1.8 Eighth Step of Progression... 159

6.1.9 Ninth Step of P rogression ... 160

6.1.10 Tenth Step of P rogression .. 161

6.1.11 Eleventh Step of Progression...162

6.1.12 Twelfth Step of P rogression ...163

Contents x

6.1.13 Thirteenth Step of Progression...164

6.2 The Package Router Problem ..167

6.2.1 First Step of Progression... 173

6.2.2 Second Step of Progression ... 174

6.2.3 Third Step of Progression ..175

6.2.4 Fourth Step of Progression..176

6.2.5 Fifth Step of Progression...177

6.2.6 Sixth Step of Progression... 179

6.2.7 Seventh Step of Progression...180

6.2.8 Eighth Step of Progression..181

6.2.9 Ninth Step of P rogression ..182

6.2.10 Tenth Step of P rog ression ..183

6.2.11 Eleventh Step of Progression...184

6.3 D iscussions........................ 187

6.4 Chapter Sum m ary.. 188

7. Discussions, Conclusions and Future W o r k ...189

7.1 Aim of the Thesis and Contribution Evaluation ...189

7.1.1 How Systematic Are They? ...190

7.1.2 Scope of Their Application...190

7.1.3 Practicality of Their Application.. 191

7.2 Conclusion and Future W o rk ... 192

Appendix 194

A. Details o f Distinguishing “Control” and “Observe” in CSP Descriptions . . . 195

Contents xi

B. Details o f Problem Progression R u le s ...198

B.l The Reducing through Cause and Effect Rule C la s s 198

1. INTRODUCTION

One of the problems with current practice in software development is that often cus

tomer requirements are not well captured, understood and analysed, and there is no

clear traceable path from customer requirements to software specifications. This often

leads to a mismatch between what the customer needs and what the software developer

understands the customer needs [27].

This problem has been known to the software engineering community for a long

time. For example, in the 2nd International Conference on Software Engineering in

1976, the review by Bell and Thayer [12] confirmed that “the rumoured ‘requirements

problems’ are a reality”. Later in 1994, the “Chaos Report” [152] by the Standish

Group indicated that this problem continued to exist in software development practice.

Historically, the discipline of requirements engineering (RE) was bom because of the

realisation that there had not been enough focus on requirements [143].

In addition to capturing, understanding and analysing requirements, an important

aim of requirements engineering is to provide methods to allow software development

practitioners to derive software specifications from requirements. Although work exists

towards this aim, such as the scenario approaches [3] and goal-orinted approaches [166,

159], the problem of systematically deriving specifications from requirements is still an

open problem in RE. After reviewing the current state of the literature this thesis will

address this open problem in a systematic way.

1. Introduction 2

1.1 Aim and Research Methodology

We adopt the problem-oriented approach to requirements and specifications proposed

by Jackson [82] and in particular his work on problem frames [83]. Jackson distin

guishes between requirements and specifications, where a specification is a behavioural

description of the computing machine in terms of its shared interface with its environ

ment; and a requirement is a description of some desired behaviour in the environment

that the computing machine must eventually bring about.

We take this approach for several reasons:

Firstly, it encompasses the basic idea that having a proper understanding of the prob

lem (the requirement in its context) is a first essential step in providing an appropriate

solution. There is evidence that many failed software projects did not get their require

ments right in the first place so that mistakes were propagated through the entire devel

opment process, and became much more expensive to fix in later phases [152, 105].

Secondly, it underlines an important distinction between the problem space, where

the requirements are, and the solution space, where the specifications are. By separating

the description of requirements from that of specifications, we can formulate a clear

argument about how the requirements can be adequately satisfied by the specifications.

Thirdly, it provides a notation (the problem diagram) to represent details of the prob

lem space in relation to the solution space, hence the means to reason about require

ments, contexts, specifications and their relationships.

The aim of this thesis is to provide practical techniques to implement the idea of

problem progression sketched in [83] as the basis for transforming requirements into

specifications. The techniques we will provide for problem progression will allow us

to progress a problem towards identifying its solution by carefully investigating the

1. Introduction 3

problem context and re-expressing the requirement statement until a specification is

reached.

We develop two classes of progression techniques, one formal, based on Hoare’s

Communicating Sequential Processes (CSP) [68], and one semi-formal, based on a no

tion of causality between events [111]. We choose CSP because it has a rich set of

operators we can exploit for describing and transforming problems, in particular, the

parallel composition operator and Lai’s quotient operator [101]. This fully-formal tech

nique allows for the derivation of specifications from requirements by formal calculus.

We develop rule-based techniques based on causality because they can be applied to a

wider variety of problems where fully-formal descriptions can not be easily obtained.

We test our techniques on a range of case studies1. We apply the formal technique

to a simplified version of a point-of-sale (POS) system; we apply the semi-formal tech

niques to more complex case studies - a conventional point-of-sale (POS) problem and

a package router control problem. We argue that although they are not real-world case

studies, they are sufficiently complex and representative of real-world situations to test

our hypothesis - that we have solved the problem of systematically deriving software

specifications from requirements using our techniques. With these examples, we have

demonstrated that our techniques can be practically applied in solving realistic software

development problems that are described using causal phenomena.

Both empirical studies and well-chosen exemplars are very common ways of val

idating software engineering research [149]. Through these case studies we support

the claim that we have developed adequate techniques for problem progression in the

context of requirements engineering.

1 In this thesis, case studies refer to examples with various complexity usually taken from the literature.

1. Introduction 4

1.2 Thesis Contribution

The main contributions of the thesis are:

• A formal approach and associated techniques for the derivation of specifications

from requirements based on CSP;

• A semi-formal approach and associated rule-based techniques for the practical

derivation of specifications from requirements in a wide range of problems;

• An assessment of the proposed techniques on a number of examples and case

studies.

1.3 Thesis Outline

This thesis is structured as follows:

Chapter 2 surveys related literature, focusing on how current RE approaches tackle

the problem of deriving specifications from requirements. Their advantages and disad

vantages are examined. A gap is highlighted in the literature which this thesis intends

to fill.

Chapter 3 describes what problem progression is and its conceptual basis, which

includes the problem frames approach (i.e., its engineering background and some basic

elements).

Chapter 4 describes a formal approach to problem progression using CSR In this

chapter, problem progression is interpreted in a formal setting and constructive tech

niques are applied in a case study to derive specifications from requirements. Limita

tions of applying such a formal technique in problem progression are discussed, and the

necessity of further less-formal techniques is argued.

1. Introduction 5

Chapter 5 describes a semi-formal approach to problem progression based on the

notion of causality. A working definition of causality and some derived notations and

techniques are given. Progression rules are defined for the practical achievement of

problem progression.

Chapter 6 applies the techniques defined in chapter 5 to two case studies. The first

case study is a typical point-of-sale (POS) problem, and the second one is a package

router problem.

Chapter 7 discusses how the aim of this thesis is fulfilled, concludes the thesis, and

sets an agenda for future work.

2. LITERATURE SURVEY

This chapter reviews current requirements engineering approaches with a focus on their

advantages and disadvantages. After examining how each of them allows for the deriva

tion of specifications from requirements, we highlight a gap in the literature which our

work intends to fill.

2 .1 Why Requirements Engineering?

2.1.1 Software Crisis and Important Findings

The formation of Software Engineering (SE) was led by the so-called “software crisis”

[2] in late 1960s. At that time, requirements analysis was perceived as a potentially

high-leverage but neglected area in software development [55]. By the mid-1970s, the

review by Bell and Thayer [12] had produced plenty of empirical data, confirming that

“the rumoured ‘requirements problems’ are a reality”. The growing recognition of the

critical nature of requirements in software engineering gradually established Require

ments Engineering (RE) as an important sub-field of Software Engineering [55]. (It was

not until 1993 that the 1st international conference dedicated to requirements engineer

ing - 1st IEEE International Symposium on Requirements Engineering [143] - was held

in San Diego, CA, U.S.A.)

The software crisis was also highlighted by the publication of Brooks’ famous book

2. Literature Survey 7

The Mythical Man-Month: Essays on Software Engineering [19] and his seminal paper

No Silver Bullet: Essence and Accidents o f Software Engineering [20], which became

chapter 16 of the 20th anniversary edition of the book [21]. Brooks attributed the soft

ware crisis to two distinct kinds of difficulties in software development (engineering)

- essential difficulties and accidental difficulties. The paper suggested that there is no

need for “a silver bullet” for solving major accidental difficulties because they have been

solved by past breakthroughs in software engineering. Essential difficulties are much

harder to solve because of the inherent properties of modem software systems - com

plexity, conformity, changeability, and invisibility, and they should be the targets for the

silver bullet.

Although most of these properties seem inherent in software and hardware, in fact

many of them are caused by the nature of their interaction with the outside world: for

example, Brooks [21] argues that conformity is caused by the involvement of different

people, and “cannot be simplified out by any redesign of the software alone”; this is

more true as to changeability: “the software product is embedded in a cultural matrix of

applications, users, laws, and machine vehicles. These all change continually, and their

changes inexorably force change upon the software product.”

In [20], Brooks puts “requirements refinement” as one of the promising ways to

tackle such essential difficulties:

“The hardest single part of building a software system is deciding precisely

what to build. No other part of the conceptual work is as difficult as es

tablishing the detailed technical requirements, including all the interfaces

to people, to machines, and to other software systems. No other part of the

work so cripples the resulting system if done wrong. No other part is more

2. Literature Survey 8

difficult to rectify later.”

Since requirements refinement is a difficult task in SE, it deserves to be the focus

of engineering efforts in modem software development. An interesting observation of

this thesis on Brooks’ comments about requirements refinement is that the “detailed

technical requirements” essentially refer to software specifications, and the process of

“deciding precisely what to build” can be regarded as deriving specifications from re

quirements.

Although much progress has been made since the 1960s, requirement deficiencies

in many software development projects are still a main contributing factor to project

failures [43]. Sommerville and Sawyer [151] observe that a large number of project

cost overruns and late deliveries still exist because of poor requirements engineering

processes.

2.1.2 The Role o f Requirements Engineering in Software Development

Before investigating the role that RE plays in software development, let us look at Zave’s

definition of RE [168]:

“Requirements engineering is the branch of software engineering concerned

with the real-world goals for, functions of, and constraints on software sys

tems. It is also concerned with the relationship of these factors to precise

specifications of software behavior, and to their evolution over time and

across software families.”

From the above definition, Nuseibeh and Easterbrook have argued that the role of RE

is representing the “why” and “what” of a system, analysing its requirements, validating

2. Literature Survey 9

that they are really what stakeholders want, defining what should be built, verifying

that it has been built correctly, and adapting to the changing world by reusing partial

specifications in RE [115].

Although there is now little dispute about the importance of requirements engineer

ing in software development and a lot of different approaches and frameworks have been

developed for RE, there is still little consensus on process support or even a common

vocabulary of definitions [41,122].

Recently, there have been some attempts to provide a common foundation and some

processes for RE. For example, Zave and Jackson [169] have identified weaknesses (i.e.,

the “four dark comers”) in RE and they have proposed a conceptual foundation for RE:

they argue all descriptions involved in RE should describe the environment, provide nec

essary control information, support requirement refinement, etc. They propose a mini

mum criteria for determining exactly what it means for RE to be considered successfully

completed, based on a relationship among requirements, domain knowledge and speci

fications. Nuseibeh et al. [114, 59] have proposed the Twin-Peaks process model [114]

as a way to embed RE in software development practice: the model is an adaptation of

the spiral model [14] based on experiences in industrial development projects. It pro

poses to relate software requirements and architectures in an iterative fashion, in which

the role of requirements engineering is to achieve a satisfactory structure in the problem

space as early as possible to inform architectural design in the solution space. However,

these proposals have yet to be widely accepted in the academic community and adopted

in industrial practice.

This thesis contributes to the investigations of the above proposals, and it views the

role of requirements engineering in software development in the following way: firstly

it helps to start the process of moving from the problem space to the solution space

2. Literature Survey 10

by eliciting requirements and domain knowledge, and structuring them in a suitable

way to derive specifications that can influence and justify design decisions, and then

drive successive iterations of the development process by fine-tuning such knowledge

either informed by the problem space (e.g., mistakes, conflicts or changes in domain

knowledge or requirements, etc) or the solution space (e.g., architectural styles or de

sign choices, etc). In the following section, we will review current main approaches in

requirements engineering and discuss how they support the derivation of specifications

from requirements.

2.2 Narrative Approaches

There are two main types of “narrative” approaches to requirements engineering - use

cases and scenarios, which often overlap with each other. We use the term narrative

to indicate that these approaches describe the context and requirements in natural lan

guage. Narratives are used for eliciting and validating requirements with project stake

holders [108], and are popular in software development practice [162].

2.2.1 Use Cases

Use cases are a technique for capturing the intended requirements of a new system or

software change. Each use case consists of one or more scenarios that narratively de

scribe how the intended system should interact with the user or other systems to achieve

a particular goal [164].

Use cases are thought to facilitate the elicitation and communication of requirements

from the user’s point of view [139, 144]. Although use cases are not object-oriented in

nature, historically, they have been closely linked to UML (Unified Modelling Language

2. Literature Survey 11

[16]) and OOAD (Object-Oriented Analysis and Design [104]) to support a complete

development process.

What Is the Definition o f a Use Case?

There have been many different definitions of use case in the literature, each of which

has a slightly different focus. Here are some of them:

“A use case is a narrative document that describes the sequence of events of

an actor (an external agent) using a system to complete a process.” [89]

“They are stories or cases of using a system. Use cases are not exactly

requirements or functional specifications, but they illustrate and imply re

quirements in the stories they tell.” [103]

“A use case is a description of a set of sequences of actions, including vari

ants, that a system performs to yield an observable result of value to an

actor.” [16]

In [30], Cockburn summaries 18 different definitions of use case given by different

experts, teachers and consultants and gives the following definition:

“Scenario. A sequence of interactions happening under certain conditions,

to achieve the primary actor’s goal, and having a particular result with re

spect to that goal. The interactions start from the triggering action and

continue until the goal is delivered or abandoned, and the system completes

whatever responsibilities it has with respect to the interaction.”

“Use Case. A collection of possible scenarios between the system under

discussion and external actors, characterized by the goal the primary actor

2. Literature Survey 12

has toward the system’s declared responsibilities, showing how the primary

actor’s goal might be delivered or might fail.”

Scope and Elements o f a Use Case

According to the above definition, a use case consists of the following elements: firstly,

the “system under discussion ” mostly refers to the digital computer where the hardware

and its intended software reside. It is typically treated as a “black box” perceived from

the outside world to prevent premature assumptions about how the intended system is

implemented; secondly, the “actors” are parties outside the system that interact with it.

An actor can be a class of users or other systems (including other software systems).

Actors can be classified into the primary actors and secondary actors. The primary actor

is the stakeholder whose goal is the main theme of the use case and the secondary actor

is an external actor who provides a service to the system under discussion; and thirdly,

the “goal” is a single task or purpose that a use case must achieve.

The “system under discussion”

There is some ambiguity with the word “system” in the above use case definition (a

detailed discussion on this can be found in [83]):

If, traditionally, the system strictly means the digital computer (including its hard

ware and software), then what all use cases are describing is the computer’s interaction

with actors outside. This view is heavily focused on the computer and its close neigh

bourhood, with assumptions that its relationship with the wider neighbourhood is trivial.

Figure 2.1 is a typical use case diagram illustrating this focus on the boundary be

tween the system under discussion and the actors.

2. Literature Survey 13

Arrange a
meeting Retrieve

contact details

Update calendar
entry

Departmental
memberAdministrator

Fig. 2.1: Use case diagram for the shared calendar system taken from f 124] unmodified

A brief narrative description of the use case - arranging a meeting using the shared

calendar system - can be as follows [124]:

• The user chooses the option to arrange a meeting.

• The system prompts the user for the names of attendees.

• The user types in a list of names.

• The system checks that the list is valid.

• The system prompts the user for meeting constraints.

• The user types in meeting constraints.

• The system searches the calendars for a date that satisfies the constraints.

• The system displays a list of potential dates.

• The user chooses one of the dates.

2. Literature Survey 14

• The system writes the meeting into the calendar.

• The system emails all the meeting participants informing them of the appoint

ment.

From the above example, we can see that use cases (especially the textbook version

by Cockbum [31]) tend to focus on details about how users interact with the computer

system. However, from a requirements engineering perspective, their subject matter

should be wider. For instance, Robertson and Robertson [132] suggest that “business

use cases” are needed where the scope is much wider than the system-actor boundary.

Instead of using the term “the system”, they use the term “the work” to cover a much

wider context. In [133] they have named Cockbum’s use case “product use case” to

distinguish from their “business use case”. Figure 2.2 shows the “business use case” in

relation to the “product use case” in the wider context of “business event”.

Justness event

Work
boundary

Fig. 2.2: Connections between the product use case, business use case and business events (taken
from [133] unmodified)

2. Literature Survey 15

Advantages o f the Use Case Approach

In use cases, the focus is on the boundary between the digital computer and the actors,

thus avoiding detailed design of the solution before the requirements are explored. The

narrative nature of a use case often makes it accessible for requirements elicitation,

documentation and validation from the actor’s perspective.

Disadvantages o f the Use Case Approach

Use cases have downsides as well: the focus of the textbook version of a use case (e.g.,

[31]) is limited to the boundary between the digital computer and the actor in its envi

ronment, in other words, not enough context is considered for requirements engineering.

Like other natural languages, badly-written use cases suffer from ambiguity and incon

sistency due to lack of sound guidelines. Use cases are not well suited to capturing

non-functional requirements, hence, there is always an “other specification” section in

addition to use cases (e.g., [104]). Regnell et al. [130] observe that we usually get “a

loose collection of use cases which are separate, partial models, addressing narrow as

pects of the system requirements” in this approach, which suggests use cases should be

guided or complemented by more complete models.

2.2.2 Scenarios

Scenarios have been a focus in requirements engineering research and practice because

they can offer narratives to bridge the communication gap among various stakeholders

in a development project. In requirements engineering, they have been effective in

eliciting, describing and validating requirements [5, 132, 3]. Scenarios are also used in

other fields such as human-computer interaction (HCI) [25,124] and strategic planning

2. Literature Survey 16

[22], etc.

What Is a Scenario ?

A scenario has been defined as an “informal narrative description” by Carroll [24].

Preece et al. [124] observe that in human-computer interaction (HCI), a scenario de

scribes human activities or tasks in a story format which allows stakeholders to explore

and express contexts, needs, and requirements. Within use cases, a scenario usually

represents one path through the actor’s interaction with the machine.

Another definition of a scenario is given by Haumer [66]: a scenario presents a con

crete story or instance of a specification, i.e., examples of using a system to accomplish

some desired function.

Advantages o f the Scenario Approach

Robertson and Robertson’s approach to requirements [132] shows how and why a sce

nario approach has some advantage over the textbook version of use case by looking at

a wider context - responding to the real business event behind use cases in support of

product innovation.

Scenarios provide an informal, narrative and concrete style of descriptions that focus

on the dynamic aspects of the computer-environment interactions [160]. They help get

the user involved in the RE process, increase the developer’s understanding of domain

modelling, and facilitate communication between developers and customers [142].

Haumer [66] observes that scenarios help project stakeholders reach partial agree

ment and consistency because scenarios can ground discussions and negotiations on real

examples. He also points out that scenarios are good for maintaining certain concrete

levels of traceability in the whole development process, e.g., writing test cases [66].

2. Literature Survey 17

Lamsweerde et al. [160] argue that scenarios may serve many purposes in the re

quirements engineering life-cycle, such as requirements elicitation [123] [8]; populat

ing conceptual models [140] [138], business rules [136] or glossaries [162]; validating

requirements together with prototyping [153], animation [44], or planning generation

tools [7] [53]; reasoning about usability during system development [26]; generating

acceptance test cases [75]; and structuring requirements through user-oriented decom

position for subsequent work assignment [162].

Disadvantages o f the Scenario Approach

Scenarios share many of the disadvantages and limitations of use cases. For example,

they are mainly described in a natural language, whose ambiguity may be an issue

[23,90], Sutcliffe [154] observes that scenarios may encourage “confirmation bias”, that

is, people tend to seek only positive examples that agree with their preconceptions [93].

He also points out that scenario approaches have sampling and coverage problems -

scenarios can bias beliefs in frequencies of events and probabilities [155], which reflects

the conflict between particular details in scenarios and the high level of abstractions

required in requirements.

2.2.3 Deriving Specifications from Requirements Using Use Case and Scenario

Approaches

In use case and scenario approaches, high-level use cases or scenarios usually capture

business processes within organisations [31, 132, 3]. These high-level narratives are

then manually re-expressed as low-level use cases or scenarios which capture the direct

interaction between a software system and its actors. Once the low-level use cases or

scenarios have been re-expressed as the direct interaction between the system and actors,

2. Literature Survey 18

other techniques, such as UML, are used to generate software design or code [104]. This

process is not systematic and is left to the developer’s ability and experience.

The main difficulty with use case and scenario approaches is how to transform high-

level descriptions into low-level ones. The fact that scenarios have sampling and cov

erage problems [154] reflects some difficulties for deriving specifications from require

ments if scenarios are not complemented by other models.

2.3 Goal-Oriented Approaches

There are two major goal-oriented approaches to requirements engineering, namely the

KAOS approach [160] and the i* approach [166]. Goal-oriented approaches have be

come popular in requirements engineering because they are useful in acquiring require

ments, relating requirements to organisational and business context. They also play

some roles in dealing with conflicts and in driving design [167].

The definition of a goal is given by van Lamsweerde as follows [159]: “A goal is an

objective the system under consideration should achieve. Goal formations thus refer to

intended properties to be ensured; they are optative statements as opposed to indicative

ones, and bounded by the subject matter [82,169].”

2.3.1 The KAOS Approach

KAOS is a method for eliciting, specifying and analysing goals, requirements, scenarios

and responsibility assignments [38]. It is aimed at providing support for the whole

requirements process through elaboration from high-level goals to requirements, objects

and assigning operations to various agents. It consists of a specification language, an

elaboration method, and meta-level knowledge [160].

2. Literature Survey 19

Advantages o f the KAOS Approach

KAOS’s starting points are goals, which can be seen as high-level requirements. They

are usually far away from implementation details. They provide an appropriate language

to communicate with those stakeholders whose primary concerns are the overall goals

or strategies of the organisation, e.g., high-level managers and decision makers [158].

The KAOS approach uses logic to support reasoning about goal refinement with

some patterns and tool support, such as GRAIL, which can be integrated with other

CASE tools such as DOORS [39], and Objectiver [1].

Disadvantages o f the KAOS Approach

KAOS’s primary focus is on goals rather than contexts so that the way in which goals

are decomposed does not always reflect the complex structures and relationships among

requirements and real-world contexts; therefore sometimes a bad goal decomposition

will dictate a set of sub-goals that are more difficult or even impossible to satisfy by the

software or environment agents.

2.3.2 The i* Approach

What is i*?

The i* framework has been developed for modelling and reasoning about organisational

contexts and their information systems. It has two major modelling components: the

Strategic Dependency (SD) model and the Strategic Rationale (SR) model. SD de

scribes the dependency relationships among actors in an organisational environment;

SR describes stakeholder interests, concerns, and how they may be addressed by vari

ous configurations of systems and environments [166]. The framework is used in con-

2. Literature Survey 20

texts where there are multiple parties with strategic interests that may be reinforcing or

conflicting each other [165].

Advantages o f the i* Approach

The starting point of the i* approach is usually far away from the computing machine.

Unlike KAOS, the primary focus of i* are soft goals [29], that is, the so-called non

functional requirements. Since this approach focuses on soft goals, some global non

functional property requirements such as security, usability, performance or flexibility

can be expressed as goals for refinement [163]. Since it supports an agent-oriented ap

proach to RE, it has the potential to be linked to agent-oriented programming languages

[120].

Disadvantages o f the i* Approach

The i* approach shares similar disadvantage of the KAOS approach. Soft goals are

difficult to quantify, thus its modelling is mostly a rough approximation to the real world.

2.3.3 Deriving Specifications from Requirements Using Goal-Oriented Approaches

In goal-oriented approaches, requirements are expressed as goals, which may range

from high-level goals (e.g., strategic concerns within an organisation) down to low-

level operational goals (e.g., technical constraints on the software agent or particular

concerns on the environment agent), therefore goal refinement can be seen as a form

of requirement transformation [129]. Software specifications are then derived from the

subset of operational goals which are assigned to software agents.

In the KAOS approach, goal refinement is made systematic through the associa

tion of the goal model with a small set of related models that capture structural and

2. Literature Survey 21

behavioural aspects of the solution software [106], For example, scenarios and tabular

event-based specifications have been exploited for the elaboration of behavioural mod

els in [160] and [102], respectively. Generic refinement patterns were given in [40] to

justify the appropriate reuse of sound goal refinement steps that have been proven for

mally correct. Therefore, goal decomposition in KAOS can be systematic in the sense

that high-level goals (i.e., close to requirements) can be transformed into operational

goals (i.e., close to specifications) by following some well-formed refinement patterns.

In the i* approach, research towards this direction is ongoing, e.g., the Tropos

project [113]. According to our literature survey, there is yet to be a systematic way

of deriving specifications from requirements in this approach.

2.4 A Formal Approach to Relating Requirements and Specifications -

The Four Variable Model

The four-variable model proposed by Pamas and Madey provides a rigourous way of

relating requirements and specifications [118]. The model was used for documenting

requirements and specifications for the A7-E aircraft using the Software Cost Reduction

(SCR) method [6], where tabular formalism was applied. The Consortium Require

ments Engineering (CoRE) methodology was developed based on the model [50], which

was later applied to some avionics systems in the aviation industry [51, 109].

The four variable model consists of the following four variables [110]:

• MON - monitored variable in the environment that the system1 observes and

responds to;

1 In this context, the word “system” refers to the software and its I/O devices.

2. Literature Survey 22

• CON - controlled variable in the environment that the system controls;

• INPUT - input variable through which the software senses the monitored vari

able;

• OUTPUT - output variable through which the software changes the controlled

variablle.

The following four mathematical relations are defined under the model [110]:

• NAT defines the natural constraints by the environment, such as those imposed

by the physical law;

• REQ defines the system requirements, dictating how the controlled variable is

to respond to changes in the monitored variable, which is to be imposed by the

system;

• IN defines the relationships of the monitored variable to the input variable;

• OUT defines the relationship of the output variable to the controlled variable.

One of the advantages of this model is that it explicitly defines the boundary between

the system and its environment and represents them as separate mathematical variables

whose relationships must obey some mathematical relations. Its tabular representation

and decomposition of complex logic formulas facilitates tool support such as SCR and

CoRE methods.

However, as pointed out by Jackson [83], the original four-variable model is suitable

for developing software for certain kinds of behaviour control problems. The range

of its applicability is restricted mainly because of its underlying assumption that the

requirements are always expressed in terms of the monitored and/or controlled variables.

2. Literature Survey 23

2.5 Problem-Based Approaches

The problem-based approach was started by Jackson’s first description of problem anal

ysis in [82], which was later developed more fully in [83]. A problem is viewed as a

requirement in a real-world context for which a software solution is sought. The process

of software development is then regarded as a problem-solving process, eventually lead

ing to a solution that satisfies the requirement in its context. Central to this approach

is the problem frames framework [83], which delivers a whole set of concrete ideas

that are usable in guiding problem analysis and associated development in requirements

engineering.

In summary, the term “problem-based approach” refers to all the work that shares

the same philosophy as Jackson’s view on software development [83].

2.5.1 Foundation

The work by Zave and Jackson [169] provides the foundation and motivations for

problem-based approaches in requirements engineering. It points out fundamental weak

nesses of existing approaches in RE at that time (1997), and states that the following

four aspects (the so-called “four dark comers”) should be addressed (exact quotes from

[169], as listed in italics below):

1. “A// the terminology used in requirements engineering should be grounded in the

reality o f the environment for which a machine is to be built”

2. “7r is not necessary or desirable to describe (however abstractly) the machine to

be built. Rather, the environment should be described in two ways: as it would be

without or in spite o f the machine and as we hope it will become because o f the

machine.”

2. Literature Survey 24

3. “Assuming that formal descriptions focus on actions, it is essential to identify

which actions are controlled by the environment, which actions are controlled by

the machine, and which actions o f the environment are shared with the machine.

All types o f actions are relevant to requirements engineering, and they might need

to be described or constrained formally. I f formal descriptions focus on states,

then the same basic principles apply in a slightly different form.”

4. “The primary role o f domain knowledge in requirements engineering is in sup

porting refinement o f requirements to implementable specifications. Correct spec

ifications, in conjunction with appropriate domain knowledge, imply the satisfac

tion o f the requirements.”

The paper then proceeds with a proposal on how the four dark comers can be ad

dressed through problem-oriented requirements engineering, although it falls short of

indicating how a requirement engineering process can be built on such a foundation.

Following up from the Four Dark Comers paper, Gunter et al. [56] provide formal

isation of the work by Zave and Jackson [169], with extended clarifications by Hall and

Rapanotti in [60]. Their work focuses on formal models in order to be as rigourous as

possible in describing and reasoning about the relationships between requirements and

specifications.

Despite the importance of the work on formalisation, the problem with applying

formal models to requirements engineering still remains because there is a lot of infor

mality to deal with in requirements engineering. As argued by Jackson in [85, 86], there

is always a mismatch between formal modelling and the informal world in the formali

sation. Formal models are at best a simplified approximation to the real world. In many

cases, the limitations of these models can not be ignored in requirements engineering.

2. Literature Survey 25

2.5.2 Problem Frames

Problem frames were introduced in Jackson’s book Software Requirements & Specifi-

catons: a lexicon o f principles, practices and prejudices [82] in 1995 (they were first

mentioned in Jackson’s paper [88] a year earlier). A fuller and more systematic repre

sentation of problem frames can be found in his later book Problem Frames: analysing

and structuring software development problems [83] in 2001.

Problem frames propose an approach to describing, analysing and giving early solu

tion to software-intensive problems, such as control, information, business, military or

medical systems [35]. Since the work in this thesis is based on this approach, we will

describe problem frames more fully in chapter 3.

This approach explicitly separates the solution machine from its environment and the

requirement. It provides a graphical notation for representing a problem and its parts.

It requires that all descriptions be grounded in the real world, that is, be as faithful as

possible to reality, and be the basis of communication with domain experts and users in

a language that they can understand: problem owners usually do not have expertise in

the computing machine but have experiences or expertise in the application domains.

There is a great emphasis on domain properties, which are the basis for defining the

scope of a development project - getting the scope right is crucial to any development

[132] [131],

In many ways, the problem frames approach remains an open framework in that it

does not prescribe a particular process or description language, thus enabling links to

other frameworks or integration with other approaches. It also provides patterns for

recognising basic problem classes, which can help solve more complex problems.

2. Literature Survey 26

Deriving Specifications from Requirements Using Problem Frames

The problem frames approach includes two forms of problem transformation to allow

for the derivation of specifications from requirements:

Problem decomposition

Problem decomposition adopts a divide-and-conquer approach to solving a problem:

from an initial complex problem, simpler and smaller subproblems are derived. Each

solution to the subproblems will contribute to the solution of the original problem. De

composition may be achieved by matching basic problem frames defined in [83], by

applying generic decomposition heuristics [83], or based on specific knowledge of the

problem, which requires specific skills of the analyst [35].

Currently, the process of problem analysis is based primarily on problem decompo

sition guided by heuristics until the problem becomes so simple that we can define the

specifications. No systematic techniques have been provided to support the process.

Problem progression

Problem progression is an idea given in [83] which is a form of transforming problem

contexts and requirements so that the analysis of the problem can be progressed towards

the computing machine. However, not many details are given, and it remains an under

explored area of the problem frames approach [35].

This thesis gives a definition of problem progression, develops associated tech

niques, and applies them to several case studies. Details on problem progression will be

given in Chapter 3.

2. Literature Survey 27

2.5.3 Problem-Oriented Software Engineering

Recently, Hall et al. [64] have proposed Problem-Oriented Software Engineering (POSE)

which extends and generalises Jackson’s problem frames in the following way: it per

mits various forms of solution descriptions that stretch to different levels of abstraction,

such as from high-level specifications, design down to low-level code; it supports ar

chitectural structuring of the solution space; the process of problem solving is transfor

mational, providing traceability between problem and solution domains and is accom

panied by adequacy justification of the transformation. Hence, POSE stretches from

requirements engineering through to program code. Development in POSE is stepwise

with transformations by which problems are moved towards software solutions. The

framework takes the form of a sequent calculus in the Gentzen style [95], in which both

formal and informal steps of software development are accommodated.

2.6 Transformational Approaches in Software Engineering

As observed by Rapanotti et al. in [127], since the late 1970s, many approaches to

software development have been focusing on the transformation of software specifica

tions into code using techniques and processes that work within the solution domain.

For example, many formal approaches to software development have been focusing on

logic and calculi. Representatives of such approaches are Feather’s approach to formal

specification of closed systems using the language Gist [52], the refinement calculi of

Morgan [112] and Back et al. [9], and the categorical refinement of Smith [150]. Some

recent developments in automatic tool support have given hopes of achieving large scale

program verifications [70,71, 94]. However, to what extent these formal techniques are

suitable for the systematic derivation of specifications from requirements remains, by

2. Literature Survey 28

and large, an open question. Chapter 4 of this thesis explores this issue and gives some

observations and arguments on one particular formal technique.

Many researchers have also explored transformational approaches in requirements

engineering. For example, Johnson’s work on deriving specifications from requirements

[92] proposes automated support for transforming requirements into specifications. He

has defined a language [91] for the description of requirements and environmental prop

erties, from which simulations of the behaviour of the system and environment can be

derived. Jackson and Zave [87] give some elements of a method for transforming re

quirements to specifications, and illustrate them with an example. We share in this the

sis much of the principled basis of their approach. The work in this thesis (in particular

chapter 5) embodies such principles as practical techniques for transforming require

ments into specifications in the context of problem frames.

2.7 Summary

This chapter has reviewed major current approaches in requirements engineering and

examined how each of them contributes to the systematic transformation of require

ments into specifications. Results of the review suggest the following points. Use case

and scenario approaches need to be complemented by other models to derive low-level

scenarios from high-level ones due to their sampling and coverage problems [155]. One

variant of goal-oriented approaches, KAOS, has some well-formed patterns to help the

systematic derivation of operational goals from high-level goals, but transformation of

contexts is not explicit in goal refinement. The problem frames approach explicitly

allows for the transformation of both requirements and contexts, but systematic trans

formational techniques are currently missing from this approach. To fill this gap in

2. Literature Survey 29

the problem frames approach, this thesis provides some transformational operators and

rules (which will be defined in later chapters) for one class of problem transformation -

problem progression.

3. PROBLEM PROGRESSION

In this chapter we describe problem progression and its conceptual basis in problem

frames. We describe only those aspects of problem frames that are relevant to our work.

A more complete presentation can be found in [83].

3.1 The Problem Frames Approach

The idea of problem frames was published in Jackson’s book Software Requirements &

Specifications [82], in which it was outlined as one of a small number of topics related

to software development. He gave a more systematic account of problem frames later

in Problem Frames: Analyzing and Structuring Software Development Problems [83].

For more than a decade, researchers in the requirements community have explored

and extended problem frames into a conceptual framework for requirements engineering

(see [35, 36, 62] for collections of recent work). This framework suggests a principled

approach to software development. As Jackson puts it [84], “The problem frames ap

proach is not a development method. It is, rather, a perspective and a conceptual frame

work, embodying a certain way of looking at an important group of problem classes and

of structuring the intellectual processes of developing good solutions.”

In this thesis, “the problem frames approach” is used interchangeably with “the

problem frames framework”; we will simply use “problem frames” or “PF” to represent

both in most situations. Wherever we need to make the meaning explicit, we often

3. Problem Progression 31

prefer the phrase “the problem frames approach”.

3.1.1 The Engineering Root o f PF

The problem frames approach takes an engineering view of software development. For

example, in [82] Jackson gives an account of various possible aspects of software devel

opment, such as the concerns and expertise voiced by the mathematician, the financier,

the management, the sociologist, the lawyer, or the stockbroker, etc. He argues that

although each of them may play a crucial role in certain development projects, yet the

central point of all software development should be the task of the software engineer.

He points out that as software engineers, “our business is engineering - making ma

chines to serve useful purposes in the world. And our technology is the technology of

description”.

Of course, this does not mean that the knowledge and expertise of mathematicians,

financiers, project managers, sociologists, lawyers or stockbrokers are ignored by engi

neering. In fact, they can be elicited from these domain experts as domain knowledge,

which is an important part of requirements engineering. In PF, they are encoded as do

main properties. PF does not prescribe any particular language for describing them so

as to accommodate a variety of languages used by these experts.

This engineering perspective is emphasised and elaborated again by Jackson in [84]

based on Rogers’ definition of engineering [134], which is quoted and expanded by

Vincenti [161]:

“Engineering refers to the practice of organizing the design and construc

tion of any artifice which transforms the physical world around us to meet

some recognized need.”

3. Problem Progression 32

In the PF view of software development, Jackson [84] interprets the artifice to be

designed and constructed as the machine, on which software is built and executed to

serve a particular purpose. The purpose is to satisfy a recognised need, which is called

requirement. In order to satisfy the requirement, we need the machine to transform part

of the physical world around us, which is called the problem world. The satisfaction

of the requirement can be observed only in the problem world, therefore PF views the

requirement as existing only in the problem world.

In PF, problem descriptions are captured and expressed by diagrams (notations will

be introduced later), which model the machine, the problem world, the requirement, and

their relationships. Moreover, in order to serve engineering purposes, PF also provide

tools to help analyse problems and derive solutions, such as problem decomposition,

subproblem recomposition, and dealing with some standard concerns that arise in the

analysis process [83].

3.1.2 Representing Problems

Phenomena - The Most Basic Elements o f Problem Descriptions

In order to describe the problem world in a way that facilitates understanding and com

munication, Jackson proposes the notion of phenomenon as the basis of descriptions.

He defines a phenomenon to be “an element of what we can observe in the world” [83].

The word “element” implies that phenomena provide the fundamental vocabulary or

alphabet for describing the world, in other words, identifying all the relevant phenomena

in the context provides enough basic elements for describing the problem at hand.

Of course, as Jackson argues in [84], abstractions are unavoidable in any treatment

of physical phenomena. We can write abstract phenomena as long as they can be un

3. Problem Progression 33

ambiguously explained in terms of phenomena that we can observe. For example, if we

regard the pressing of a button by a lift user to be a phenomenon in a problem address

ing the specification of a lift controller, then we are making abstractions from a chain

of causal events which start from depression of the button all the way to, let us assume,

assigning the corresponding encoded value to a machine register. We can consider this

complex chain of causal events as a single event at certain higher level of abstraction,

provided that we can unambiguously interpret it using observable phenomena: in our

example, when a lift user presses a button, the physical movement of the button connects

the associated circuit, which sends an electronic signal through the cable connected to

the controller machine, which then matches one of the predefined key codes, for which

an encoded value is correspondingly assigned to a register of the machine. This ab

straction of phenomena is not only convenient for communication but also powerful in

controlling complexity in analysis and design [45].

According to Jackson [83], phenomena consist of individuals (something that can

be named and distinguished from others) and relations (a set of associations among

individuals):

• An individual can be an event - an occurrence at some point in time, regarded

as atomic and instantaneous, e.g., a keystroke; or an entity - something that can

persist or change over time, e.g., a motor car; or a value - something that can not

change over time, e.g., the character “X” or the number 23.

• A relation can be a state - a relationship among individual entities and values that

can be true at one time and false at another, e.g., Temperature(Room, 29.5); or

a truth - a relationship among values that is either true at all times or false at all

times, e.g., LengthOf(“ABCD”, 6); or a role - a relationship between an event and

3. Problem Progression 34

its participating individuals.

Jackson [83] introduces two categories of phenomena: causal phenomena are di

rectly caused or controlled by some domain, and they can cause other phenomena in

turn, e.g., a pulse event in a traffic light unit can cause a state change in the Stop and Go

lights; symbolic phenomena are used to symbolise other phenomena and relationships

among them because they can neither change themselves nor cause changes elsewhere,

though they can be changed by external causation, e.g., the data content of a floppy disk

record. As we will see later, a large part of this thesis focuses on causal phenomena and

associated cause-and-effect relationships.

Domains are an abstraction of phenomena grounded in the real world: a domain is

defined to be “a set of related phenomena that are usefully treated as a unit in problem

analysis” by Jackson [83]. Another characteristic of a domain is that it is usually a con

crete and self-contained artefact that maps to domain experts’ intuition and knowledge

on how they partition the problem world into well-understood parts whose phenomena

are potentially relevant to the problem. PF makes an explicit distinction between the

internal phenomena and the external phenomena of a domain. The internal phenomena

of a domain are private to the domain un-shared with other domains; while the external

phenomena are shared with other domains.

Jackson’s classification of domains is also based on phenomena [83]: a causal do

main is one whose properties include predictable causal relationships among its phe

nomena; a biddable domain usually consists of people, and it lacks positive predictable

internal causality among its phenomena; a lexical domain is a physical representation

of data of symbolic phenomena (a lexical domain can be regarded as a structure of

symbolic phenomena, or as a causal domain).

3. Problem Progression 35

Similarly, a requirement is grounded in the real world since it is “a condition on one

or more domains of the problem context that the machine must bring about” [83]. In

other words, the only way that we (including the customer and the developer) can judge

if the requirement is satisfied is by observing the desired phenomena in the real world.

From above, we can see that every artefact in PF is an abstracted form of phenomena

with certain characterisation; therefore phenomena are the building blocks for PF. Any

reasoning or analysis in PF is based on phenomena descriptions.

Adopting the notion of phenomenon to describe the problem world has at least two

advantages:

• Descriptions that are based on phenomena are firmly grounded in the real world.

In PF, the soundness of complex phenomena descriptions can be validated with

domain experts by elaborate structures of “designations” and “refutable descrip

tions” [81, 82]: a designation refers to the relationship between a phenomena

description and what it describes in the real world, thus allowing for informal ex

planation of how the phenomena can be recognised; a refutable description says

something about the problem world that can, in principle, be refuted by finding a

counter example of the description.

• It is a way of allowing certain important stakeholders (e.g., domain experts) to be

involved early in establishing the problem scope for analysis [107].

Domain Properties - Indicative Relationships among Phenomena

A domain is defined to be an encapsulated set of related phenomena and its properties

are the inherent (or indicative) relationships among its internal and external phenomena.

In Jackson’s own words, domain properties are “the expected and assumed relationships

3. Problem Progression 36

among the phenomena of a domain” [83].

In many realistic software development problems, several phenomena are not shared

directly with the solution machine, but they still need to be affected indirectly by the

machine for the requirements to be satisfied. As we will see later, domain properties

are important for bridging the gap between phenomena that are directly shared with the

solution machine and those phenomena that are not.

Problem Diagrams - Schematic Organisation and Scalable Abstraction o f Phenomena

Descriptions

In any problem descriptions, the scope of observable phenomena needs to be estab

lished. PF provides a graphical notation to express the scope of a problem and its parts.

A context diagram shows the structure of the problem context in terms of domains and

connections between them [83]. A Problem diagram augments the context diagram

with a representation of the requirement. An example of problem diagram is given in

Figure 3.1.

{is-on, is-off)CM! {on, off}
DeviceController

machine
Work

regime /

Fig. 3.1: A sim ple problem diagram taken from [35] m odified

Figure 3.1 shows a control problem in which the machine is to control a device for

a work regime. There are the following basic elements of a problem diagram:

• The machine domain named Controller machine is represented by a box with a

double stripe; the device domain named Device is represented by a box with no

stripe; the requirement named Work regime is represented by a dashed oval.

3. Problem Progression 37

• The shared phenomena between the Controller machine domain and the Device

domain are represented by a solid line connecting them, identified by CM! {on,

off}, where CM! represents that these shared phenomena are controlled by the ma

chine (in other words, they are observed by the device). There is a convention to

follow about shared phenomena in a problem diagram containing many domains

- if there is no line linking two domains in a the diagram, then it is assumed that

they do not directly share any phenomena - this implicit convention is important

for any problem analysis.

• The fact that the requirement Work regime constrains certain internal phenomena

of the device is represented by a dashed line with an arrowhead pointing towards

the Device domain, identified by {is-on, is-off}.

• Phenomena {on, off} are known as specification phenomena because they are

shared with the machine; while phenomena {is-on, is-off} are known as require

ment phenomena because they are the subject of the requirement references [83].

Problem diagrams provide a schematic organisation of the phenomena that are within

the scope of the problem to be solved. Their roles in describing problems are twofold:

• on the one hand, they help visualise the topological complexity of the software

development problem (depending on the complexity of the problem, an arbitrary

number of application domains with varied connections could be drawn in the

same problem diagram, see Chapter 6 for more complex examples);

• on the other hand, for clarity of the model, they omit details of the domains’

internal phenomena unless they are referred to or constrained by the requirement.

3. Problem Progression 38

Problem diagrams are complemented by problem descriptions with details about the

domain’s internal phenomena.

Basic Problem Classes and Frames

Central to the PF approach is the idea of providing a catalogue of recurrent software

problems for reuse. Essentially, a problem frame is a recurrent problem template repre

senting a problem class. Jackson [83] introduces five basic frames as an initial catalogue

of identified problem classes for structuring and decomposing complex problems and

their solution.

Practitioners can follow the same principle and build their own repertoire of problem

patterns as their ability to solve problems grows over time. For example, the problem

frames community have found new problem frames such as the user interaction frame

[61], the simulator frame [17] and the pipe-and-filter or model-view-controller AFrames

[126].

Next, for the purpose of illustration, we will look closely at the required behaviour

frame, which is one of the five basic problem frames.

The required behaviour frame - an example

The problem described by the required behaviour frame is: “There is some part of the

physical world whose behaviour is to be controlled so that it satisfies certain conditions.

The problem is to build a machine that will impose that control.” [83]. The graphi

cal representation of a problem frame is called a frame diagram. The frame diagram

associated with the required behaviour frame is given in Figure 3.2.

In the diagram, Cl, C2, C3 are causal phenomena; the C annotation in the bottom

right comer of the Controlled domain represents the fact that the domain type of this

3. Problem Progression 39

Control CM! C1 Controlled C3

machine CD! C2 domain c
Required
behaviour

Fig. 3.2: Required behaviour: frame diagram (taken from [83] unmodified)

domain is causal; the annotation CM! represents the fact that the shared phenomena

Cl are controlled by the Control machine domain (e.g., this is where the machine can

exert control); the annotation CD! represents the fact that shared phenomena C2 are

controlled by the Controlled domain (e.g., this is where the machine gets the feedback

about the controlled domain); and the dashed arrow line labelled C3 constrains certain

internal causal phenomena C3 of the Controlled domain.

The above diagram is a template for recurrent problems. In order to match a problem

diagram to this template, the domain types, the phenomena types, and the control and

observation characteristics of the phenomena have to be the same.

A frame concern [83] is an argument that we must make, by fitting descriptions

of the requirement, the machine and the problem domains together, to convince our

customers that the requirement is adequately satisfied. The frame concern is expressed

diagrammatically, as shown in Figure 3.3 for the required behaviour frame.

Control
machine

Controlled
domain

Required
behaviour

We will build the
m achine to behave
like this, so th a t ...

(specification)

d)

... knowing that the
controlled domain behaves

like this,

(domain description)

(2)

... we'll be su re tha t the
required behaviour will

b e enforced like this

(requirement)

(3)

Fig. 3.3: The frame concern for the required behaviour frame

3. Problem Progression 40

Here is an example of a required behaviour problem - a simple automatic tempera

ture control problem.

A modem office building needs an automatic heating control system during the cold

winter months in a year. The building has a fixed pattern o f usage - the building needs

heating on every working day from 9:00 am till 5:00 pm, which are the regular working

hours in the offices. The problem is to build a simple controller machine that will switch

on the heating devices (we assume the heating devices have a mechanism to maintain

the temperature) at 8:45 am and switch them off at 4:45 pm every day.

Figure 3.4 shows the problem diagram for this problem:

{is-on, is-off} / ' Heating
regime /

Fig. 3.4: A simple automatic heating control problem diagram

Heating devices: devices used to generate heat. They can be in either the is-on state

or the is-off state. Pulse events on and off can affect state changes, thus this domain is

a causal domain.

Heating regime: the requirement is that the heating devices should be on between

8:45 am and 4:45 pm every day.

{on, off}: these are shared phenomena between the Heating controller domain and

the Heating devices domain; HC! means that the phenomena are controlled by the Heat

ing controller domain; they are the specification phenomena.

{is-on, is-off}: these are the requirement phenomena, which happen to be internal

to the Heating devices domain; {is-on, is-off} represent the two states of the Heating

devices: is-on represents the devices being on; is-off represents the devices being off.

The task of problem analysis is to find a machine behaviour that will make the heat

HC! {on, off} Heating
devices

Heating
controller

3. Problem Progression 41

ing devices do what is required. Once a machine behaviour is found, the frame concern

captures the form of argument we need to have in terms of all problem descriptions.

Therefore, addressing the frame concern adequately means making sure that require

ment, domain and machine specification descriptions match properly, and the problem

is solved.

Heating Heating
controller / N

N
\

devices « * - - - p — q — >x
Heating
regime

We will build the
Heating controller to
behave like this, so

t h a t ...

(specification)

d)

N
... knowing that the

Heating devices work like
this,

(domain description)

♦ (2)

... we'll be su re tha t
the Heating regime

will be this

(requirement)

-► (3)

Fig. 3.5: Frame concern in the heating control problem

For this heating control problem our descriptions must support the argument shown

in Figure 3.5, that is, we must establish that the specified behaviour of the Heating

controller (1), combined with the domain properties of the Heating devices (2), will

adequately achieve the required behaviour - the Heating regime (3). A controller speci

fication which would allow us to make such an argument is:

Heating controller, the heating controller machine should send an on pulse at 8:45

am and send an off pulse at 4:45 pm every day.

And the argument is:

(1) We will build the Heating controller to behave like this: “the heating controller

machine should send an on pulse at 8:45 am and send an off pulse at 4:45 pm every

day”, so th a t...

3. Problem Progression 42

(2)... knowing that Heating devices work like this: “devices used to generate heat.

They can be in either the is-on state or the is-off state. Pulse events on and off can affect

state changes”,

(3) ... we’ll be sure that the requirement Heating regime will be this: “the heating

devices should be on between 8:45 am and 4:45 pm every day”.

The advantage of using the basic frames is that we can utilise the expertise of others

and the structured analysis that has been proven useful in software development. In

other words, the basic frames give a template of the problem and an associated argument

template for us to use. However, for realistic problems that do not necessarily fit any of

the basic frames, we need to find other ways of solving them.

One approach proposed in [83] is to decompose the problem into a combination of

simpler subproblems that match basic frames. Then the solutions to these subproblems

are eventually recomposed into a machine specification.

Another approach, which is the subject of this thesis, is to transform the complex

problem into something that is more amenable to solution (something that we are more

familiar with or have previous experiences in solving, but which does not necessarily

fit a basic frame), while preserving the requirement traceability [54] expressed in the

problem diagram by following some systematic rules (as suggested in [129]).

3.1.3 Transforming Problems

According to Jackson [84], although the PF does not prescribe particular steps of de

velopment, we can imagine a development process where we begin by capturing the

customer’s requirement, and proceed with the given domain properties to devise a ma

chine behaviour specification. Part of this process is what Jackson calls problem pro

gression (or reduction) - starting from an overall problem involving all the observable

3. Problem Progression 43

phenomena in the problem world, we need to derive a reduced problem where only the

specification phenomena are left. At this point, Jackson suggests: “a problem of en

gineering in the world has been reduced to the problem of building a machine with a

specified external behaviour” [84].

In this thesis, we consider problem progression as starting from a situation where

the problem world consists of a complex structure of interacting problem domains. We

propose ways of progressing the problem in a stepwise manner by successively remov

ing domains which are farthest from the machine and re-interpreting the requirement

appropriately. In other words, we propose ways of deriving specifications from require

ments in a systematic fashion. This is reminiscent of the work on deriving code from

specification [70, 72]. The similarity between the two can be summarised as follows:

the main purpose of the former is to provide a systematic way of deriving a specification

that satisfies the customer’s requirements; the main purpose of the latter is to system

atically derive code to satisfy a specification. The two notions complement each other

within an overall development process.

Tools for Problem Analysis

In problem frames, a number of tools have been given for problem analysis:

Problem decomposition through projection [83]: also known as the “divide-and-

conquer” principle in solving complex problems; the idea is to apply some heuristics

or previous knowledge in order to divide the overall problem into a finite number of

projected subproblems that are easier to solve than the overall problem. Moreover,

very often the subproblems are fitted to basic frames. This projection is different from

partitioning the overall problem, as illustrated in Figure 3.6: in problem decomposition

through projection, the relationships among subproblems are like those among A, B, C

3. Problem Progression 44

and D on the left-hand side of the figure, e.g., subproblems A and B may include the

same domains or shared phenomena in their overlap area; in contrast, in partition, as in

the right-hand side of the figure, the overall problem is partitioned into non-overlaping

subproblems.

Projection Partition

Fig. 3.6: A comparison between projection and partition (taken from [83] unmodified)

Problem variant [83]: this includes Jackson’s treatment of variant problems. A

variant frame is a variant of a basic problem frame in which an additional problem

domain is added, or the control characteristics of a shared phenomenon are changed.

Four variants are introduced to deal with problems that do not fit the basic frames,

namely, by adding connection variants, description variants, operator variants to the

problem diagram or elaborating control variants in the diagram [83].

AFrames: Hall et al. [61, 126] have introduced architectural frames (known as

AFrames) as the means to apply architectural patterns to identify subproblems based on

standard solution architectures. One of the merits of this approach is that both problem

decomposition and subsequent recomposition are addressed at the same time.

Problem progression: this will be discussed in detail in the next section as it is the

subject of this thesis.

3. Problem Progression 45

3.2 Problem Progression and its Significance

The idea of problem progression was briefly explained in [83], reflected in Figure 3.7.

In the words of Jackson:

“You can think of any problem [expressed in PF] as being somewhere on a progres

sion towards the machine, like this:

— i RC

— » RD J

DD

DD

DC

DC

DB

DA

DC

DBDD

DD

Fig. 3.7: A progression of problems (taken from [83] unmodified)

The top problem is deepest into the world. Its requirement RA refers to domain

DA. By analysis of the requirement RA and the domain DA, a requirement RB can be

found that refers only to domain DB, and guarantees satisfaction of RA. This is the

requirement of the next problem down. Eventually, at the bottom, is a pure program

ming problem whose requirement refers just to the machine and completely ignores all

problem domains.”

This discussion emphasises that we cannot just look at software development prob

lems very close to the machine. We should look at the problem in its wider context.

When we are solving problems that are very close to the machine, we have to make sure

3. Problem Progression 46

that the solution satisfies the wider problem.

The above general principle of moving closer to the machine by analysing assump

tions about deeper contexts in relation to the requirements is valuable because it enables

the possibility for a problem analyst to move systematically from an unfamiliar prob

lem to a familiar problem: the closer you get to the machine, the easier it becomes for

the software developer to apply his or her expertise, thus the more familiar the prob

lem becomes. Diagrammatically in Figure 3.7, the solution to each of the problems

is represented by the same machine M. This indicates that from the initial problem at

the top, we transform each problem in a solution-preserving way: that is, the solution

to the progressed problem satisfies the original problem. Note that in each step of the

transformation, we change the requirement to compensate for the reduced context by

making appropriate assumptions. This is required to guarantee that the solution to the

progressed problem will satisfy the initial problem when embedded in the wider context.

In order to explain our interpretation of problem progression in [83], let us take the

heating control problem as an illustrative example of problem progression:

Recall that the requirement Heating regime is “the requirement is that the heating

devices should be on between 8:45 am and 4:45pm every day”, and the heating devices’

domain properties are: “Heating devices: devices used to generate heat. They can be in

either the is-on state or the is-off state. Pulse events on and off can affect state changes,

thus this domain is a causal domain”. It follows that in order for the heating devices

to be is-on between 8:45 am and 4:45 pm every day, they have to be switched on at

8:45 am (caused by the pulse event on) and switched off at 4:45 pm (caused by the

pulse event off). Then we can re-express the requirement as the specification Controller

commands: “the heating controller machine should send an on pulse at 8:45 am and

send an off pulse at 4:45 pm every day”. The transformation is carried out in such a

3. Problem Progression 47

way that it takes into consideration domain properties of the heating devices so that the

solution Controller commands will work in the initial problem (expressed by the top

diagram in Figure 3.8).

Heating
regime /

progression bridged by
properties of

Heating d evices domain

HC! {on, off} ' Controller
4 i ^ commands /

Fig. 3.8: Problem progression for the simple automatic heating control problem

Problem progression is not well-developed in Jackson’s original book [83], but only

mentioned as an idea in one of the question-and-answer sections of the book. In this

thesis, we take this idea forward by working out the details of transforming both the

requirement and the problem context. Therefore, we claim that the work in this thesis

contributes to this idea in a practical and constructive way.

Very recently, Seater and Jackson [148] have done some related work on deriv

ing specifications from requirements in the context of problem frames, in which the

requirement is transformed into a specification, and, as a by-product of the transforma

tion, a record of domain assumptions, which they call “breadcrumbs”, are produced as

justification for the progression. The focus of the transformation is on rephrasing the

requirement progressively until it is expressed as a machine specification, while devel

oping domain assumptions which make the requirement transformation sound. They

call such transformation “requirement progression” as their focus is rewriting the re

Heating
controller

HC! {on, off} Heating
devices

Heating
controller

3. Problem Progression 48

quirement rather than transforming the whole problem as we do in this thesis. Also

Seater and Jackson’s work is focused on Alloy [79], a first-order logic modelling lan

guage, while we apply a wider range of techiques from fully formal, based on Hoare’s

CSP, to semi-formal, based on causal reasoning.

3.3 Summary

In this chapter, we introduce Jackson’s idea of problem progression based on the prob

lem frames framework. We take the idea of problem progression forward by exempli

fying how progression can be carried out in practice on an example. In the next two

chapters, we will develop two classes of techniques to systematically support problem

progression.

4. A FORMAL APPROACH TO PROBLEM PROGRESSION

As introduced in the previous chapter, problem progression is a type of problem trans

formation that is carried out in a solution-preserving way. It is captured and represented

by a series of related transformed problem diagrams. Given this conceptual basis, our

aim is to find practical ways to interpret it so that constructive techniques can be applied

to its implementation. The next two chapters will give two complementary approaches

to problem progression and show how constructive techniques can systematically help

solve problems.

Our first formal approach adopts CSP descriptions and operators. We show how

CSP can be used as a description language for problem diagrams, and then derive a

CSP-based semantics for them. This allows certain constructive CSP operators from the

literature to be used to progress problems. We then apply the technique we develop to

an example problem to show how our formal approach to progression works.

We begin the chapter by formulating the example problem which will be used for

illustration throughout, and conclude the chapter with a discussion of the limitations

of the use of formally based techniques in problem progression, arguing the need for

further and less formal approaches.

4. A Formal Approach to Problem Progression 50

4.1 An Example

The example is that of a supermarket point-of-sale (POS) system which allows cus

tomers to scan and pay for their shopping without any intervention from supermarket

staff1. The problem is described as follows:

A Self-Checkout POS System

A new point-of-sale (POS) system is needed to process sales for a supermarket shop

in the UK. The POS includes both the desired software and some hardware purchased

from a third party, including a barcode reader, a cash acceptor and dispenser handler,

a touch-screen display, and a receipt printer, etc. The problem is that customers should

pay for and receive a receipt fo r the correct amount on presentation o f items to the POS

system.

Table 4.1 shows the identified domains and their informal descriptions for this prob

lem.

N am e Description

CUST A person who wants to buy an item from the
shop.

POS

The system which includes the desired
software and the hardware purchased from a
third party, such as a barcode reader, a cash
acceptor and dispenser handler, a touch
screen display, and a receipt printer, etc

Tab. 4.1: Dom ains and their descriptions

1 This type of POS has recently appeared in many UK supermarkets.

4. A Formal Approach to Problem Progression 51

A problem diagram for the self-service POS system is given in Figure 4.1.

CU!a
POlb

CUSTPOS

a: {present(item), present(payment)}
b: {present(notice)}, {presentfchange)}, {present(receipt)}

Fig. 4.1: Point-of-sale: problem diagram

Table 4.2 shows the shared phenomena between domains in Figure 4.1 and explains

their designations in natural language.

Name Designation

present(item)

The event in which the customer presents an item of product
s(he) wants to buy to the POS system. This event is initiated
and controlled by the customer OUST domain, thus
represented by CU! that proceeds it.

present(payment)

The event in which the customer presents the payment for the
purchased item to the POS system. This event is initiated and
controlled by the customer CUST domain, thus represented
by CU! that proceeds it.

present(notice)
The event in which the POS system presents a notice to the
customer. This event is initiated and controlled by the POS
domain, thus represented by PO! that proceeds it.

present(change)
The event in which the POS system presents the change due
to the customer. This event is initiated and controlled by the
POS domain, thus represented by PO! that proceeds it.

present(receipt)
The event in which the POS system presents a receipt to the
customer. This event is initiated and controlled by the POS
domain, thus represented by PO! that proceeds it.

Tab. 4.2: Shared phenom ena and their designations

The requirement statement represented by REQ is: “customers should pay for and

receive a receipt for the correct amount on presentation o f items to the POS system.”

4. A Formal Approach to Problem Progression 52

4.2 Semantics of Problem Diagrams

Hall et al. [63] provide a denotational semantics of problem diagrams defined as fol

lows. Let us consider the problem diagram in Figure 4.2.

S/c

K! o
K

Fig. 4.2: A generic problem diagram, K may be arbitrarily complex

The semantics assumes descriptions of the diagram are expressed in a language,

called the Domain and Requirement Description Language (DRDL). The only require

ment which is made of this language by the semantics is that it has a notion of satisfac

tion. The meaning of a problem diagram is that of a “challenge” to find a specification

S that satisfies R in the context of K , and is denoted by the set:

c, o : [K, R] = {*9 : Specification \ S controls c A S observes o A K , S \~drdl R}

In the set definition, “observes” and “controls” have the usual PF meaning, and

\~drdl indicates satisfaction as defined in the chosen DRDL.

Formally, the above formula denotes the set of all possible solutions to a generic

problem diagram. A limitation of the above semantics is that the formula is not con

structive: we do not know how to calculate an element of the set. For example, the

semantics does not tell us how to solve our example problem in section 4.1.

To solve the problem formally, we need to find techniques within a formal frame

work that allow us to calculate and construct a precise solution specification based on

the semantics. The techniques should give more technical insights and guidance to pop

4. A Formal Approach to Problem Progression 53

ulate the solution set. Also we need to be able to address more complex problems than

that of Figure 4.2, with problem diagrams containing an arbitrary number of interact

ing domains. To be able to progress these problems formally, we need a technique that

captures this complexity and supports a process of reducing it by formal transformation.

To summarise, in this section we have chosen a formal interpretation of a generic

problem diagram and its solution specification as a set, based on Hall et al.’s semantics.

In the remainder of this chapter we will define a constructive approach to calculate an

element of the set semantics, that is, a formal solution specification for a problem like

that in section 4.1. In the next section, we will choose a restricted form of CSP as

a DRDL. We will formalise various artefacts in a problem diagram into various CSP

descriptions, and then find constructive operators for progressing problems based on

such descriptions.

4.3 Formalising a Problem Diagram Using CSP as a DRDL

In the following, we will give a brief introduction to the relevant CSP concepts we are

going to use to consider CSP as a DRDL, so that we can use it as the basis for problem

progression. Note that CSP is a very rich language and we will only use a subset of it

for our purpose.

4.3.1 The CSP language

Hoare’s Communicating Sequential Processes (CSP) [68] is a formal description lan

guage used in software engineering. Although its original purpose was to describe

concurrency in programming [67], it has evolved and been applied to other areas of

software engineering: for example, modelling and analysis of security protocols [141],

4. A Formal Approach to Problem Progression 54

specifying software architecture connections [4], describing system level interactions

between software and hardware [135], and software verification [72, 70]. It also influ

enced the development of the Occam programming language [78]. Recently, since its

event-based notations can map to real-world events, a small subset of CSP-like notations

have been used to model the interactions between the computer system and its environ

ment to satisfy human-computer interaction requirements [65]. In software engineering

practice, the CSP tools FDR (Failures-Divergence Refinement) and ProBE developed

by Formal Systems (Europe) Ltd. [77] have been applied to industrial-scale projects,

such as security systems [58], hybrid systems [119] and model-checking [37].

The theory of CSP has undergone many revisions and extensions, whose milestones

are represented by several classical books: the early work is outlined in Hoare’s book

Communicating Sequential Processes [68], which introduces the basic concepts of the

CSP language. Later Roscoe extended Hoare’s work on CSP foundations, semantics,

and tool applications in his book The Theory and Practice o f Concurrency [137]2. A

more recent book, Concurrent and Real-time Systems: The CSP Approach [146], by

Schneider introduces the main aspects of modem CSP, adding more CSP models and

introducing timed CSP. It uses an operational semantics to explain CSP operators and

adopts real-world examples and exercises to make it more suitable and accessible for

education to a wider audience.

In this chapter we choose CSP as a DRDL in the formalisation of problem diagrams

and their semantics, based on which some CSP operators are chosen for the formal

construction of the solution guided by problem progression.

2 The CSP used in Hoare’s book [68] is considered as the first version, and the one used in Roscoe’s
book is regarded as the second version [137].

4. A Formal Approach to Problem Progression 55

Basic Concepts, Definitions and Notations

CSP provide notations suitable for describing and analysing real-world systems which

consist of interacting components. As summarised in [146], the view taken by CSP for

analysing the world is that of regarding each of these interacting components as a pro

cess, that is, an independent and self-contained entity with particular interfaces through

which it interacts with its environment. If two processes are combined to form a bigger

system, then their combination becomes a self-contained entity with a particular inter

face, i.e., a bigger process. This highlights the fundamental view of this framework that

processes are compositional in nature, for example, Kramer observes that CSP supports

compositional analysis [97].

The following definitions and conventions are adopted for the meaning and basic

syntax of events, processes and alphabets [68 , 146]:

• An event is an atomic action that can be performed or suffered by an entity (or

object) in the world. An event is denoted by a single lower-case letter, e.g., a,

b, c or a lower-case word, e.g., coin - a coin is inserted in the slot of the vend

ing machine, choc - a chocolate is extracted from the dispenser of the vending

machine;

• A process is an independent and self-contained entity (Hoare called such entities

“objects in the world around us” [68]) with a particular set of events, through

which it interacts with its environment. A process is denoted by an upper-case

word or acronym, e.g., VMS - simple vending machine, USR - user, or a single

upper-case letter P ,Q ,R \

• An alphabet is the set of events that are relevant for a particular description of

4. A Formal Approach to Problem Progression 56

an entity. An alphabet is denoted by adding a before a process name, e.g.,

a VMS = {coin, choc} - the simple vending machine has in its alphabet two

different classes of events3, coin and choc. Note this choice of alphabet ignores

some other possible classes of events, e.g., the maintenance of the vending ma

chine could require that loadchoc and emptycoin events. Choosing what should

be included in the alphabet of a process depends on the assumptions made about

its context and may have a significant impact on the analysis.

Basic CSP Syntax

The following describes some basic CSP syntax that we will use (adapted selectively

from [68, 146, 137]):

• STOP a is a special process which does nothing and never engages in an event

in its alphabet A (A can often be omitted if it’s clear from context what events A

contains).

• CHAOS a is a process which can always choose to engage in or reject any events

in A. It is regarded as the least predictable and the least controllable process.

• Event Prefix: If P is a process and an event a is in P ’s alphabet, then the new

process a —» P can be constructed. It is a process that is initially able to perform

only a, then afterwards it behaves as P. For example, a partial behaviour of a

simple vending machine that consumes one coin and serves one chocolate can be

described as coin —> choc —> STOP.

• Communication: When a is an event between the process P and its environ

ment, it is usually denoted in the c.v format, where c represents a communi-

3 There may be many occurrences of events belonging to these two classes.

4. A Formal Approach to Problem Progression 57

cation channel and v represents the value being sent or received by P via c.

For a process that engages in a communication, the process either accepts an

input variable x on channel c, denoted c?x, or outputs the value e on chan

nel c , denoted cle. For example, in the above simple vending machine, coin

is regarded as an “input” event and choc is an “output” event, and the “values”

can be a 1 pound coin and a 200# chocolate bar, respectively, so we can write

co m ? 1 pound —> chocl 200# —> STOP.

• Event Prefix Choice is a process that is initially prepared to perform any of the

prefix events of more than one possible process choices prefixed by different

events. The actual behaviour of this process depends on which prefix event

actually occurs, then it behaves as the corresponding process after the chosen

prefix event. The prefix choice is denoted in a format like a —> P \ b —> Q

which separates all the candidate choices. For example, a vending machine that

serves either one chocolate or one toffee before it breaks can be described as

choc -> STOP | toffee -► STOP.

• Process internal choice: P n Q denotes a process that behaves either like P

or Q, where the selection between them is arbitrary, uninfluenced by the external

environment. It is also named the nondeterministic choice. For example, in a

money-changing machine (MCM) which always gives the right change in one of

two combinations MCM = in? lpound —> ((outl 50p —> outl 50p —> MCM) n

(out\ 20p —» outl 20p —> outl 20p —> outl 20p —» outl 20p —► M CM)), its

external user has no influence over which combination she or he gets.

• Indexed internal choice IHiGj *s a Process which can behave as any one of the

Pi, where J is a non-empty set of indices and process Pi is defined for each i £ J.

4. A Formal Approach to Problem Progression 58

Examples will be given in the case study.

• Process external choice: P □ Q denotes a process that behaves either like P or

Q, where the selection between them is chosen by the environment. The choice

is resolved by the performance of the very first event of either P or Q, in favour

of the process that performs it. For example, if the initial event of P is a, and the

initial event of Q is b, and a is different from 6, that is, if P — a —» P' and Q =

b —> Q' and a ^ b, then the external choice operator □ is the same as the event

prefix choice operator: P □ Q = (a —> P') □ (b —> Qr) = (a —> P') | (b —> Q').

• Parallel Composition: when two processes P and Q are executed concurrently,

each process may execute independently according to its prescribed patterns of

behaviour. If P and Q share a synchronised event, then the range of possible

behaviour of P or Q will be influenced by the synchronisation. We describe the

combined behaviour of P and Q as parallel composition, denoted P || Q.

• Event Hiding: the event hiding operator \ applied to P denoted P \ c is a process

which behaves like P but with all communications on channel c concealed; its

alphabet is a P \ { c } .

• Process Recursion: if F is a continuous function from processes to processes,

then p X : A .F (X) is the process X with alphabet A satisfying X = F (X). For

example, a simple vending machine which serves as many chocolates as required

VMS = (coin —» (choc —> VMS)) can be equivalently described by a recursive

equation VMS = p X : {coin, choc}.(coin —► (choc —> X)).

4. A Formal Approach to Problem Progression 59

4.3.2 Modelling a Domain as a CSP Process

Having introduced the basic elements of the CSP, we can now find similarities (in fact,

a close match) between Jackson’s notion of a domain in PF and the notion of a pro

cess in CSP: they are both self-contained entities that interact with other domains (pro

cesses) through shared phenomena (alphabet). At this point, the formalisation is quite

straightforward: a domain D in PF is a process D, with its set of shared phenomena as

the alphabet aD. Individually, a single shared phenomenon (including an instance of

shared event, state or role) of domain D is formalised as a single external event ev of

process D. Note this does not prevent D having “internal” phenomena, only that such

phenomena should be hidden from its environment through event hiding.

4.3.3 The (Stable) Failures Model in CSP

CSP is a very rich language, for which many theories and models have been developed,

such as the traces model, the failures model, the failures/divergences/infinite traces

model, etc [137,146]. For the purpose of formalising problem diagrams and interpreting

problem progression, we need to choose a suitable CSP model that has the closest match.

Justification for Choosing the (Stable) Failures Model

Our motivation behind formalising a problem diagram is to reason about transform

ing requirements and domain descriptions in a rigourous manner. In PF, Jackson gives

two important aspects of a domain property and requirement that must be captured and

addressed in the reasoning: safety is “a domain property or requirement that some spec

ified event or state change will definitely not happen”; liveness is “a domain property

or requirement that some specified event or state change will definitely happen” [83].

4. A Formal Approach to Problem Progression 60

Therefore, a formal description of a problem (diagram) should include both safety prop

erties and liveness properties.

The stable failures model in CSP is widely regarded as being able to model both

safety properties and liveness properties, while the traces model only captures the safety

properties [146].

Although the failures/divergences/infinite traces model takes into account a more

complex situation where a process may have a divergent behaviour (the process per

forms internal transitions forever, never reaching a stable state nor performing any

event), nothing can be guaranteed of the behaviour of such a process [146]. After com

paring and reviewing many CSP models, Schneider [146] concludes that “the stable

failures model for CSP [137] is a relatively recent development [...], the insight behind

the stable failures model is that divergence can often usefully be ignored” (on page 259).

We do not choose a model that contains divergent behaviours in our formal approach

to problem progression because in PF divergent behaviours of a domain raise standard

problem concerns that are analysed and addressed informally. For our purpose of pro

gression, formal reasoning has to make the assumption that these divergent behaviours

have been addressed. We claim that our formal approach to problem progression ad

dresses the main part of the problem rather than formalises every aspect of the informal

world. Based on the above reasons, we do not choose the failures/divergences/infinite

traces model.

Traces - Basic Concepts, Definitions and Notations

Since the (stable) failures model involves both traces and refusals, let us have a brief

look at traces first:

A basic way of describing a process is through the description of its traces. A trace

4. A Formal Approach to Problem Progression 61

of a process is a finite sequence of symbols recording the events in which the process

has engaged up to some moment in time. The relative order of the occurrences of

these events is also recorded. For example, a trace is denoted as a sequence of symbols,

separated by commas and enclosed in angle brackets: (ai, ..., an) is the trace consisting

of an ordered sequence of event symbols a i,..., an. The trace that has no event involved

is called an empty trace, denoted (). The empty trace is the shortest possible trace of

every process.

The complete set of all possible traces of a process P is a function of P denoted as

traces(P) [68].

The following are some basic operations on finite traces that we will use later in this

chapter (adapted from [68] and [146]):

• Catenation is an operation that constructs a trace by putting two traces s and t

together by writing s first and then connecting the beginning of t to the end of s. It

is denoted as s ^ t , e.g., (coin, choc)"'(coin, toffee) = (coin, choc, coin, toffee);

• Restriction is an operation that constructs a trace from a given trace t by omit

ting all symbols outside a given set A. It is denoted as t [A, for example,

(coin, choc, coin, toffee, coin, choc) \ {choc, toffee} = (choc, toffee, choc);

• Head is an operation that allows to get the first symbol of a non-empty trace, de

noted as head(tr). Tail is an operation that allows us to construct a trace by getting

the result of removing the head of a non-empty trace, denoted as tail(tr). For ex

ample, head((coin, choc, coin)) = coin, tail((coin, choc, coin)) = (choc, coin);

these operations on an empty trace are undefined;

• Length is the number of symbols in a trace. It is denoted \tr\ for a trace tr, for

4. A Formal Approach to Problem Progression 62

example, |(a, 6, a)| = 3;

• Prefix: ur < tr means ur is a prefix of tr , for example, (a, b) < (a, b, c); a

more general form of trace prefix can be written as ur <n tr which means ur is

a prefix of tr at most n symbols shorter, that is, ur < tr A \tr\ — \ur\ < n, for

example, {a, b) < 2 (a, b, c, d), and («, b) < 2 (a, b, c).

Stable Failures - Basic Concepts and Definitions

A process P is guaranteed to respond to an offer of an event ev if that event can be

performed from P, provided that there are no internal transitions from P that keep P

fully occupied, thus preventing P from engaging in event ev. In other words, a process

P which can make no internal progress is said to be stable, denoted as P i . Guarantees

are concerned with stable states. A stable process P can always respond in some way

to the offer of a set of events X by its environment if there is at least one event a e X

that P can engage in. If there is no such event a € X , then P refuses the entire offer set

X [146].

The CSP approach to the semantics of a refusal is to associate a process with its

traces, and then to use this information to understand the behaviour of the process as a

whole. Suppose that we carry out an experiment on the process P in an environment

that offers the set X of events, and we wait as long as necessary to see if any events in

X are performed. If no events are performed, then set X is considered a stable refusal

of process P [146].

According to [146], at some point during an execution of process P, an offer set X

of events will be refused by P. This refusal will be recorded with the finite traces of

events tr which were performed during the execution leading up to the refusal of X .

4. A Formal Approach to Problem Progression 63

The pair (tr , X) (usually written as (tr, ref)) is said to be a stable failure of P.

A Predicative Semantics o f the (Stable) Failures Model

In this thesis, we adopt Lai and Sanders’ “predicative” semantics [101] of CSP syntax.

Their work, which originates in [100] (it has become part of the unifying theory of

programming [70]), gives a predicative version of CSP’s failures model, which defines

some basic concepts and their components in the model using predicates on traces tr

and refusals ref:

In the predicative failures model, a specification is a predicate with free variables tr

(traces) and ref (refusals).

In the predicative failures models, a process is a specification that satisfies the fol

lowing four conditions:

p i . p (< > , { »

P2. P (tr" u r , {}) =4* P (tr, {})

P3. Y C I A P (tr, X) =* P(tr, Y)

P4. P (tr , X) A - G v : val(c) • P (tr^ (c .v), {}) =4> P (tr , X U { c })

Recall that a CSP process has been informally defined as an “independent and self-

contained” entity or object with a particular set of events, through which it interacts

with its environment [67, 146]. We observe that the above four conditions give a formal

meaning to the “independent and self-contained” properties that a valid process must

have.

PI defines that a process can refuse nothing before it starts to execute;

4. A Formal Approach to Problem Progression 64

P2 defines the trace integrity of a process: if a sequence of events has happened or

has been recorded, e.g., tr ^ u r , then some early part of the sequence of events, e.g., tr

must have happened. P2 is called prefix closure',

P3 defines the failure integrity of a process: if a process P can refuse a set of events

X after engaging a sequence of events tr, then it can certainly refuse a subset Y C X

events after the same trace. P3 is called subset closure',

P4 defines the relationship between refusals and events that are not possible: if no

event from the value set of channel c can follow the trace tr, then the value set can be

added to the refusal set. Events are either possible or can be refused [146].

The following defines a predicative failures semantics of various components of an

arbitrary process P in terms of trace tr and refusal ref (adapted selectively from [101]):

• Process STO P a with alphabet A refuses to engage in any communication in A,

that is, the simplest process

STOPA(tr ,re f) & (tr = (» A (ref C A).

• Process CHAOS a is modelled by arbitrary behaviour, that is, the weakest process

CHAOSA(tr, ref) = true.

• c\e —* P is a process whose alphabet equals that of P, which contains c; it outputs

a value e on channel c and then behaves like process P

(c !e —► P)(tr, ref) = (c £ ref) < tr = () > (head(tr) = (c.e))

A P[tail{tr)/ tr\.

The above defines that the very first event that process (c !e —> P) engages in has

to be its output event cle (when it starts, i.e., tr = (), it cannot refuse communi-

4. A Formal Approach to Problem Progression 65

cation on channel c) , then afterwards, i.e., when tr ^ (), the head of its trace is

(c .e) and the tail of its trace is exactly like that of process P.

• c lx —* P is a process whose alphabet equals that of P, which contains c; it inputs

a value on channel c , stores it as variable x, and then behaves like process P

{clx —> P){tr,ref) = (c £ ref) < tr = () > 3 v : val(c) •

(head(tr) = (c.v) A P[tail{tr)/tr,v/x]).

The above defines that the very first event that process (clx —> P) engages in has

to be its input event clx (when it starts, i.e., tr = (), it cannot refuse communi

cation on channel c) , then afterwards, i.e., when tr ^ (), there exists a value v on

channel c such that the head of its trace is {c.v) and the tail of its trace is exactly

like that of process P by replacing x with v.

• The nondeterministic choice P n Q between P and Q is a process that behaves

like either P or Q, but the choice is internal, uninfluenced by the environment

{P n Q)(tr, ref) = P(t r , ref) V Q(tr, ref).

In our work, a process that is composed using the internal choice operator is

usually implemented/programmed using conditional instructions (e.g., “i f ... then

... else”) in a programming language, see the FDR script in our case study.

• The deterministic choice P □ Q between P and Q is a process that behaves

like either P or Q, but the choice is determined by the environment on the first

interaction

(P □ Q)(tr, ref) = (P{tr , ref)AQ(tr, ref)) < tr = () > (P(t r , r e /) V

Q(tr, ref)).

4. A Formal Approach to Problem Progression 66

• For processes P and Q, their communication interface is defined to be a(P) fl

a(Q). The parallel composition P || Q of P and Q is a process whose alphabet

is the union of those of P and Q\ it behaves like P and Q evolving in parallel,

with all communications on their communication interface synchronised

(P || Q)(tr, ref) = 3 X C aP, Y C aQ • [(ref = X U Y)

A P(tr \ aP, X) A Q(tr \ aQ, F)]4.

The above defines that if P is able to refuse some events X in its interface aP,

then so is the combination; if Q is able to refuse some events Y in its interface

aQ, then so is the combination; if synchronisation is required for the performance

of events, then either component is independently capable of blocking them [146].

• P \ c is a process that behaves like P but with all communications on channel

c concealed; its alphabet equals a P \ {c}. The failure semantics of P \ c has a

more complex definition [101], which is not used in this thesis, thus omitted.

• recursion: if F is a continuous function from processes to processes, then p X :

A.F(X) is the process X with alphabet A satisfying X = F(X) . The failure

semantics of p X : A.F(X) given by Lai and Sanders [101] is not used in this

thesis, thus omitted.

There are other process combinators, some of which can be found in [67,18]. Since

they are not used in this thesis, we omit them for reasons of conciseness. The behaviour

of an arbitrary process P is one of the combinations of the above components [101]:

4 Note that in order to avoid confusion with other brackets like “(” and we use “[” and “]” to
indicate the scope of the existential quantifiers.

4. A Formal Approach to Problem Progression 67

P(tr, ref) ::=

{STOPA | CHAOSa | (c'.e -> P) | (c lx -> P) \ {P n Q) \ {P □ Q) \ {P || Q)

\ { P \ c) \ / i X :A.F{X)){ tr , re f)

4.3.4 Modelling a Requirement and b drdl in the Predicative Failures Model

In PF, a requirement is defined to be some constraint on or reference to some phys

ical phenomena in the problem context. Unlike a domain which is defined to be an

independent and self-contained entity modelled by a process, a requirement is generally

described by a predicate that can be either satisfied when it evaluates true, or not sat

isfied when it evaluates false. By modelling a requirement in PF as a specification in

the predicative failures model, we can find a close match between the truth value of a

predicate and the satisfaction or dissatisfaction of a requirement.

Recall that in the predicative failures model, a CSP specification is defined to be a

predicate with free variables tr (traces) and ref (refusals). The set of all specifications

is denoted Spec. The set Spec is defined to be an ordered set (an ordered set is a set

that contains a binary relation for expressing the order that is reflexive, anti-symmetric

and transitive, for details and examples refer to [147]). Within the ordered set Spec of

specifications, there is the following equivalence relationship between the meaning of

satisfaction (usually denoted sat) and logical implication between predicates [101]:

Under Lai and Sanders’ predicative failures model, a specification Sp is said to sat

isfy specification Sq, i.e., Sp sat Sq if and only if Sp =>• Sq [101]. If we regard the

solution set in Hall et al.’s semantics as a subset of the ordered set Spec, then the en-

tailment \~drdl relation can be interpreted as satisfaction sat in the predicative failures

model.

There is a single complication; more details will be given in a later section.

4. A Formal Approach to Problem Progression 68

4.3.5 Modelling the Sharing o f Phenomena as Parallel Composition

The notion of parallel composition in CSP was introduced to investigate the behaviour

of a complete system composed of subsystems that act and interact with each other as

they evolve concurrently. For example, when we analyse the combined behaviour of

two processes put together, their interactions (if they exist) can be regarded as events

that require simultaneous participation of both processes involved. Hoare [68] argues

that we can assume that the alphabets of the two processes are the same when analysing

their overall behaviour. He uses the notation P || Q to denote the process that behaves

like the composition of processes P and Q interacting in lock-step synchronisation. He

gives an example where a chocolate can be extracted from a vending machine VM only

when its customer CUST wants it and only when the vending machine is ready to serve.

When thinking about this particular interaction, we can describe the combined process

as VM || CUST.

Although some other styles of parallel composition operators have been introduced

since Hoare’s work, such as alphabetised parallel, interleaving, generalised parallel,

Roscoe [137] points out that the main difference between Hoare’s text on parallel com

position and others is the treatment of alphabet. Hoare’s treatment makes the operator

more elegant while other versions have explicit alphabets thus more complex. He con

cludes that the choice of one version over the other is a matter of taste, and this differ

ence is not regarded as an important issue since everything done in one version can be

done in the other with trivial changes.

In PF, the interactions between two connecting domains have similar characterisa

tions: the phenomenon they share is considered instantaneous, and both domains are

simultaneously engaged in the same phenomenon [83]. From the CSP point of view,

4. A Formal Approach to Problem Progression 69

parallel composition is equivalent to conjunction (i.e., logical “and”) when we use CSP

as a specification language (rather than an implementation language) [137]. The view of

this thesis that parallel composition is essentially conjunction with channel phenomena

shared is in agreement with Zave and Jackson’s observation - “Conjunction as Compo

sition” [170].

More details of the modelling will be given in a later section.

43 .6 Distinguishing “Control” and “Observe” in CSP Descriptions

In PF, the notion of “control” and “observe” plays an important part in problem de

scriptions. From a domain’s description, we should be able to distinguish those visible

phenomena that are controlled by the domain from those that are observed by it; this

amounts to the property [169] that only a domain that controls a phenomenon should

be able to change it. As Zave and Jackson [169] point out, full CSP [68] does not have

the syntax to explicitly distinguish between control of a shared communication and ob

servation of it, so we must impose it. We need to restrict domain models to those CSP

processes for which “control” and “observe” make sense:

For any CSP process P with alphabet o l P , we define

(a). P! = {d | (d!t> € otP) V (P = CHAOSaP A d\v 6 aP)}, i.e., those

channels controlled by P;

(b). P? = {d | (d?x € a P) V (P = CHAOSap A d lx e aP)}, i.e., those

channels observed by P.

To be able to distinguish “control” from “observe”, we must consider only processes

such that P ! f lP ? = {} holds. Appendix A contains a characterisation of processes for

which this condition holds.

4. A Formal Approach to Problem Progression 70

4.3.7 Achieving a Complete Interpretation o f Hall et al. ’s PF Semantics in CSP

Let us revisit Figure 4.2 (recalled here as Figure 4.3):

S /c

K!o

Fig. 4.3: Interpreting problem frame semantics using CSP

Recall that a domain’s behaviour in PF can be formalised as a CSP process: the

machine domain S in Figure 4.3 can be formalised as a process S, and the context K

can be formalised as a process K (we can model n number of application domains

D1: D2, D n as a single combined process K = Di || D2 || ... || Dn) with their sharing

of phenomena as parallel composition (S || K). Since the requirement R is a con

straint on or reference to domain K ’s property or phenomenon, we can formalise it as a

predicate on the context K, i.e., a CSP specification R. Also recall that the entailment

relation \~drdl in Hall et a l.’s semantics can be interpreted as sat. We note that in the

POS example, the requirement does not mention present (notice), present(payment)

or present (change). This presents us with a problem in our CSP modelling (the com

plication referred to earlier) as these events must be mapped to the silent action or else

be captured by the REQ statement. To this end we must alter the semantics slightly so

that

(K \ \ S) \ [(o U c) \ (d U e) \ sat R.

The control-and-observe relationships about domain S can be formalised as the fol

lowing two equations based on the definitions given in the previous section:

• S\ = c, meaning “domain S controls its shared phenomena c”;

4. A Formal Approach to Problem Progression 71

• 5 ? = o, meaning “domain S observes its shared phenomena o”.

Now we can interpret Hall et aU s semantic challenge

c, o : [K, R] = {S : Specification | S controls c A S observes o A K , S 1~drdl R}

as a challenge in CSP

c, o : [K, R] = {S : Specification \ SI — c A S? = o A (K \ \ 5)\[(c U o)\(d U e)] sat R}.

When K = Di\ \ D2 \\ D3, ... \\ Dn for CSP processes £>i, D2, Dn,

c, o : [£>i || D2 || ... || Dn,R]

= {/S' : Specification \ S\ = c A S'? = o A {D\ || £>2 || ••• || Dn || S)

\[(c U 0) \ (d U e)] sat R}.

Note the parallel composition operator in the above formula is valid for all com

plex topologies/structures of connecting domains, though details of the operator and the

calculated result may be more complex.

4.4 Solving the Challenge Using Lai’s Quotient

We consider the case where d U e = c U 0 first, so that (K 11 S) \ [(c U o) \ (d U e)] =

K || S. In order to meet the challenge of finding an S such that K 11 S sat R, we need a

new operator that can perform the opposite calculation of parallel composition. Let us

look at what is available in CSP literature:

According to Chen and Sanders [28], the concept of “weakest calculation” in com

4. A Formal Approach to Problem Progression 72

puting owes its origins to Dijkstra’s weakest preconditions [42]. Later, Hoare and He

[69] define the weakest prespecification and postspecification to provide a “weak in

verse” for sequential composition. The meaning of a weak inverse operator can be

explained in the following simple example:

In algebra the operator ” is called the inverse of the “+ ” operator, because if

X + A = B, then we can calculate unknown value of integer X from given values of

integers A and B, that is X = B — A\ we can apply operator ” to any known integers,

and the result is always an integer.

However, as Chen and Sanders [28] point out, not every operation of a given type

has an inverse. For example, integer multiplication does not have an inverse: for an

unknown integer X and given integers A and B, if X x A = B, then X can be calculated

by X = B 4- A\ however, we cannot always get an integer if we apply operator “-r”

to any two integers (sometimes we get decimal fractions). Therefore, for the given type

of integer calculation, operator “-r” is called a weak inverse of the operator “ x ” rather

than an exact inverse of “ x ” [28].

Lai and Sanders [101] extend Hoare and He’s notion of “weak inverse” of sequen

tial composition to parallel composition and they have given the weakest environment

calculus to provide the weakest process X that placed in parallel with an established

subcomponent P satisfies their overall specification R :

X 11 P sat R ^ X sat P \ R

P \ R is called the weakest environment of a process. Lai and Sanders [101] provide

a closed predicate definition for the weakest environment: given specifications P, R and

a chosen set A C aP , the weakest environment of P in R, denoted P \ R with alphabet

4. A Formal Approach to Problem Progression 73

aR \ a P U A as the specification:

P \ R (t r , ref) = Vur : traces(R) V rep C aP

• [tr = ur f a (P \ R)

A P(ur \ aP, rep)

=> R(ur, rep U ref)]

Figure 4.4 illustrates the role of Lai’s quotient in problem progression.

x P(ur\aP, rep) J * \ R(ur, repuref)")

P\\R(tr, ref)

/ prc
^ a t f

th o

problem progression
ach ieved by applying
th e quotient operato r

Fig. 4.4: A generic problem diagram, (adapted from [84]) illustrating L ai’s quotient)

An informal explanation of the above formula is: in a CSP failures model, given

that a composed system must satisfy R (a process expressed by a predicate on variables

ur and rep U ref), if one of the subsystem can be expressed as a given process P, then

the weakest environment of P - the remaining subsystem to be specified P \ R can be

calculated constructively by the following two predicates: P \ R ’s trace is tr and its

refusal is ref; for all the traces of R - ur and for all the refusals of P - rep, such that

P \ R ’s trace is the overall system’s trace restricted to the remaining subsystem P \ R ’s

alphabet, and if the predicate P(ur \ a P , rep) on process P ’s trace and refusals holds,

then the predicate R(ur , rep U ref) on the overall system’s traces and refusals must hold.

For us, the importance of Lai’s quotient is that it provides a (in some sense) canon

ical solution to a challenge, at least when domains are described in the CSP family

4. A Formal Approach to Problem Progression 74

of notations. Now Hall et al.’s semantic challenge (at least in the simple case when

c U o = d U e) becomes:

c, o : [K, R] = {5 : Specification \ S\ = c A S? = o A S sat K \ R}.

4.4.1 Interpreting Problem Progression as Stepwise Applications o f Lai’s Quotient

From Figure 4.4 we can see that by applying the quotient operator we achieve the effect

of removing domain P and re-expressing requirements R into a new statement P \ R

which specifies domain X ’s behaviour. Therefore, if we can formalise a problem dia

gram using CSP, then one problem progression step can be interpreted as one step of

applying the quotient operator.

/ 1st step of
progression by
 applying Lai’s \\

- \ ' d a w r a ')

2nd step of
progression by
applying Lai’s \\

DB W {DA W RA)- /

3rd step of
progression by
applying Lai’s \\

DC \\ {DB W {DA WRA))
4th step of

progression by
applying Lai’s \\

DD \\ (DC \\ (DB \\ {DA \\ RA)))

D C

D C

D C DB

DB

DD

DD

DA

D D

D D

Fig. 4.5: A progression o f problems (adapted from [84]), interpreting problem progression as
stepw ise applications o f L ai’s quotient.

For a complex problem diagram which may have many domains, problem pro

gression can be regarded as stepwise applications of the quotient operator until the

4. A Formal Approach to Problem Progression 75

re-expressed requirement constrains or refers to only the machine’s behaviour, as il

lustrated in Figure 4.5.

Note that when we apply the first step of progression using Lai’s quotient, we regard

the combined process M || DD || DC || DB as the unknown process to be found (like

X in Figure 4.4). This is in agreement with the view in PF that the solution domain is

treated in the same way as an application domain [83]. We can apply similar techniques

until only the machine domain M is left, which indicates that the problem progression

is completed.

4.5 Case Study - Solving the POS Example Problem

Based on our techniques in providing the general solution, we are now ready to solve

the example POS problem that we have introduced in the beginning of this chapter.

4.5.1 Formalising the Domain and Requirement

Note that when applying our formal techniques to the example problem, we need to

describe it using both predicate expressions and process expressions in CSP. We need

predicates to be able to apply the definition of Lai’s quotient operator to construct the

solution specification; we need process expressions to communicate intuitions about

relative orderings of occurrences of events and associated values communicated, and for

validating the derived specification against requirements using FDR, which has direct

support for process expressions in CSP.

The following are the informal domain and requirement descriptions and their for

malisation (with justifications):

The Customer Domain CUST:

4. A Formal Approach to Problem Progression 76

Informally, a customer is a person who wants to buy an item from the shop. First of

all, he presents the item he wants (whose price is i pence, with i a number between 1

and 100) to the self-checkout POS system (e.g., through the bar code scanner). Then, af

ter receiving a notice n from the system (e.g., via a screen display showing the payment

needed), he presents, perhaps, part payment in cash p pence, a coin of value lp, 2p, 5p

or lOp to the system (e.g., through a cash acceptor). If the presented payment is suffi

cient, i.e., i < p, then the customer will be given the change c (e.g., via the dispenser

handler), followed by a receipt for r = i as a proof of purchase (e.g., a printout from the

receipt printer); if the presented payment is insufficient, i.e., p < i, then further notices

displaying the remaining amount of payment are issued to the customer until sufficient

payment is presented, after which the customer will be given the change and a receipt.

Note that i , n ,p , c , r are assumed to be in natural numbers, i.e., i , n , p , c , r E N. In this

example, we assume that the above payment method is in cash for a single item, and

tha ti , n ,p , c , r are expressed in pence in British money.

In this example, for brevity of presentation, we use item, notice, pay, change, and

receipt as a short form of events present (item), present (notice), present (payment),

present (change), and present (receipt) in Figure 4.1, respectively.

From the descriptions above, we model the behaviour of a customer using the fol

lowing formula:

CUST = n,-e { W oo} —* notice?i —> PAY, where

p a y = n ^ i A 5,10} Pay*P (change?c —> receipt?i —> STOPacusT

□ notice? n —» PAY).

In the above formula, item , notice, pay, change, receipt denote the names of com

munication channels of process CUST, all of which are synchronised with its envi-

4. A Formal Approach to Problem Progression 77

ronment process POS. Within this context, i, n , p, c, r denote the values being passed

through these channels. The symbol! means the value is output by process CUST onto

its communication channel, and ? means a certain value is received by process CUST

from its communication channel. For brevity, we sometimes refer to an event by its

channel name only, when unambigous.

Eventually process CUST ends with STOPacusT> where

aC U ST = {item, notice, pay, change, receipt},

which indicates that his engagement in the above events is terminated.

The justifications for the above formalisation are:

• The customer is a biddable domain in PF, whose behaviour is modelled through

the indexed internal choice operator5 riie{i 100} ’ where the value of the item i is

assumed to range from 1 to 100 pence. The value of the item is determined by the

customer’s choice. Similarly, PA Y is also modelled through the indexed choice

operator n pe{i,2,5,io}’ where the amount of payment p is assumed to be any of 1,

2, 5 or 10 pence, whose choice is determined by the customer.

• Only sensible behaviours of the customer shared with POS should be formalised.

This is consistent with PF that non-sensible commands or events are often ig

nored [83]. For instance, some random behaviours of the CUST, such as present

ing a payment without any item, should be ignored/refused by POS. Therefore,

CUST should start with event itemli, which means any other events such as

pay\p, notice?n, change?c or receipt?r should be in CUST’s refusal set;

• In this particular example, the value communicated in the first notice event is i;

while the values communicated in other notice events keep changing, thus repre-

5 In this thesis, biddable behaviour is modelled by internal choice.

4. A Formal Approach to Problem Progression 78

sented by variable n; similarly, the values communicated in the pay event and the

change event keep changing, thus represented by variables p and c, respectively;

the value communicated in the receipt event is always i - a constant;

• After presenting the item itemli, and receiving a notice about it notice?i, the

customer engages in the P A Y process;

• Whether to pay more or leave the shop with the change and receipt is not the

decision of the customer CUST, but of the POS. Therefore, after presenting the

payment pay\p, CUST’s behaviour could be either:

- receiving the due change change?c, followed by the receipt receipt?i. Then

the customer’s involvement with POS stops, resulting in the customer leav

ing the shop with the purchased items and receipt (this is the situation when

i < p)\ °r

- receiving a notice notice?n about further payment is needed, which prompts

the customer back to the beginning of the PA Y process (this is the situation

when p < i).

In process PAY, external choice operator □ is used between the two processes

after event pay\p because the above choice is determined externally by POS.

The Requirement REQ:

The requirement could be informally described as: “customers should pay for and

receive a receipt for the correct amount on presentation o f items to the POS system”.

From the above statement, the requirement REQ only constrains two events: when

ever event item.i happens, eventually event receipt.r should happen, and the value of r

should be equal to that of i, i.e., r = i. Therefore,

4. A Formal Approach to Problem Progression 79

REQ — | | ^em .i > receipt.i ► STOP[item,receipt}-

Note we use item .i and receipt.i to represent that both CUST and POS participate

in this event. In other words, from CUST’s perspective, the event should be denoted

as itemli, and from PO S’s perspective, the same event should be denoted as item li,

therefore expression receipt.i includes both perspectives of CUST and POS. This gives

us the intuition that if an item .i and item li are given/exist, we are sure that itemli can

be derived/must exist.

The above process expression is not detailed enough for us to construct POS be

cause it does not prescribe all of the interaction behaviours between CUST and POS,

i. e., events notice, pay and change do not appear in RE Q ’s alphabet. For instance, ac

cording to the CSP semantics of a problem diagram introduced previously, for problem

diagram in Figure 4.1 we need to find a process POS such that

(POS || CUST) \[{item , notice, pay, change, receipt}\{item, receipt}] sat REQ,

and the solution set for the problem diagram is:

{notice, change, receipt}, {item, pay} : [CUST, REQ]

= {POS : Specification\POSl = {notice, change, receipt} A POS1 = {item ,pay}

A (POS || CUST) \ {notice, pay, change} sat REQ}.

Notice that the problem is to find a POS to satify the above formula. However, Lai’s

quotient can not directly allow us to calculate POS. As do Lai and Sanders [101], we

therefore introduce the above missing events into a more detailed requirement statement

which we call REQC.

We construct REQC in a way that relates to CUST’s behaviour, meanwhile still

satisfying REQ after hiding events notice, pay and change, as follows:

4. A Formal Approach to Problem Progression 80

REQC relates to CUST in the following way:

• REQC corresponds to CUST: REQ C’s item.i maps to CUST’s itemli', REQC’s

notice.i maps to CUST’s notice?i\ REQC’s component REQCPAY maps to

CUST’s component PAY', both of them share the same event sequence and bind

ing on value i;

• REQCPAY corresponds to PAY: REQ CPAY’s pay.p maps to P A Y ’s paylp',

REQ CPAY’s internal choice operator n corresponds to CUST’s external choice

operator □ - the difference is because the choice on whether to perform change or

notice is made by the POS, which is external to PA Y but internal to REQ CPA Y ;

REQ CPAY’s change.c maps to P A Y ’s change?c; REQ CPAY’s receipt.i maps

to P A Y ’s receipt?i; REQ CPAY’s STOPaREQc maps to P A Y ’s STOPacusT\

REQ CPAY’s notice.n maps to P A Y ’s notice?n\ both of them share the same

event sequence and binding on value p.

Based on the above correspondence, we begin by constructing an abstract REQC a ,

from which REQC will be derived, as follows:

REQC a = n ie{i 100} ^ em-i notice.i —> REQCPAYa , where

REQCPAYa = rU { i,2, 5 io}PaV]-P {change?c —> receipt?i —> STOPacusT

n notice? remain —> REQCPAYa)-
To determine the value of remain, and to resolve the internal choice, we will intro

duce conditional expression “i f ... then... else”, to give the concrete REQC. This means

we must define a concrete REQ CPA Y as a function with two parameters REQ CPA Y (i ,i)

in the following way:

Assume that the pay events lead to n coins of values Pi,P2 ,P3 , ---,Pn being ex-

4. A Formal Approach to Problem Progression 81

changed.
n

i = 1

is then the total amount exchanged after n payment events.

• The first parameter i is a constant used for passing the item cost i to the receipt

event;

• The second parameter i is a variable whose initial value is the same as the item

cost i, after which its value is substituted by

which will change as x increases from 1 to n — 1 (n is the subscript/index for

the last payment, after which no further payment is needed), which is used for

passing values to the notice event, which keeps displaying updated information

on the remaining payment needed;

• Once the payment is sufficient, a value of

X = 1

will be passed to the change event, after which receipt.i will be issued to the

customer.

Notice that, by combining the above, we get

n —1

remain =

n

n—1 n

4. A Formal Approach to Problem Progression 82

From abstract process REQC a , we may now construct a concrete version:

REQC = riie{i 100} ~* notice.i —> REQ CPAY(i, i), where

REQ CPAY(i, remain) =

ripe{i,2,5,io} PaV'P ~ *

i f p < remain

then (notice.(remain — p) —> REQ CPAY(i, remain — p))

else (change.(p — remain)

— > receipt.i —> S T O P aREQc)

Applying the hiding operator \ to REQC, we get

REQC \ {notice, pay, change}

= (n <e{i >)10o} item .i —*■ notice.i —> REQCPAY(i, i)) \ {notice, pay, change}

= flte{i 100} ttem-i (R E Q C P A Y (i,i) \ {notice, pay, change})

= nie{i,...,ioo} item.i ̂ receipt.i ̂PTCP îtem^receipt}

sat REQ.

(The validity of the above formula can also be checked by the FDR tool, which we

do in a later section.)

Thus, if POS is such that

(PO S\\ CUST) sat REQC,

then

(POS || CU ST)\{notice,pay, change} sat REQC\{notice, pay, change} sat REQ.

From the properties of Lai’s quotient, any POS sat CUST \ REQC will solve the

problem, though in general Lai’s quotient may not always lead to a process [101].

4. A Formal Approach to Problem Progression 83

4.5.2 Solving the Problem Using Lai’s Quotient

In this particular problem, CUST and POS synchronise on all their communication

channels, namely, item, notice, pay, change, receipt. Recall that in Lai’s definition of

the quotient, set A is the alphabet of chosen communication channels between the two

sub-processes X and P . In a general case, X and P may have other communication

channels that are not shared (i.e., in parallel composition X || P , X only needs to

synchronise with P via their shared communications, while X ’s other communications

can be performed independently), thus in this particular example, CUST \ REQ C ’s

alphabet should be calculated as (aREQC \ aCU ST) U A.

We choose the entire alphabet of CUST as the set A because it is assumed that all

of CUST’s alphabet are synchronised communications with POS, and is constrained

or referred to by REQC. In our model, we ignore any other irrelevant behaviours of

CUST in this formal analysis. Therefore, in this example,

A = {item, notice, pay, change, receipt}

aREQ C = {item, notice, pay, change, receipt},

aC U ST = {item, notice, pay, change, receipt},

a(C U ST \ REQC) = (aREQC \ aCU ST) U A

= {item, notice, pay, change, receipt}.

We will solve the problem by constructing:

POS = (C U S T \R E Q C).

The predicate expressions for CUST and REQC, as needed in Lai’s quotient, are

derived according to the predicative semantics introduced earlier. For ease of presenta

tion, we express their predicate expressions in the tabular form, as shown below.

4. A Formal Approach to Problem Progression 84

Predicates on CUST’s tr and accept (its meaning is given below) expressed in a tabular
form:

trace length I 0 1 2 3 4 ... 2 n 1 27i *f* 2 2n + 3
Ith element of tr 0 i . i n . i p .p x n . (i - p i) ... p .p n c .(S£= lP l - i) r . i

accept {i} W {?} {<=.«} {?} {c, n} {r} {}

Predicates on REQ C ’s tr and accept expressed in a tabular form:

trace length I 0 1 2 3 4 ... 2n + l 2n + 2 2 n + 3
I**1 element of tr

accept
0

{ 0
i . i n .i

W {?}
P-Pl

{n},{c}
n . (i - p i) ... P.Pn c-(££=1Px “ *)

{p} W .{ c } M
r . i
{}

In the above tables, in which, for brevity, we have abbreviated events to their first

letters, we show all possible behaviours of CUST and REQC that are associated with

an item that costs i. An item of cost i will lead to a trace of no longer than 2i + 3 events:

each time the customer pays, it must be with a coin of value greater than 1 pence, so

that the amount remaining is at most one less. As i is finite, this ensures all traces of the

system are finite.

The first row of the table shows a trace of length Z (0 < Z < 2n + 3). In the second

row of the table we give the events of the trace; in the third row, we indicate the refusal

set after that trace. We name this set accept to represent those entries that the process

cannot refuse. For example, in the first table, the entry for Z = 3 is p.pi, (c, n}, indicat

ing that the failure is {{i.i, n.i, p.pi), aCU ST \ {c, n}) (We use accept to stand for the

intuitive meaning of acceptance, rather than a strictly formal meaning of acceptance, as

in [137].).

We can check that the representation of the table interpreted in this way provide the

predicative semantics for the represented terms. For example, in CUST’s table, from

CUST — n*e{i 100} ~ > notice?i —> PAY, where

PA Y = [“^ { 1,2,5,10} P a y]-P {change?c -+ receipt?i -> STOPaCusT

□ notice? n —» PAY).

4. A Formal Approach to Problem Progression 85

we give the following explanations of two representative entries in the table:

• When the trace length is 0, which means tr = (), then according to the semantics

of event prefix in section 4.3.3, item.i can not be refused, item.i £ ref 4$- ref C

aC U ST \ {item .i}, that is, accept = {«}; also according to the semantics, the

next event in tr must be the head of CUST which is item.i whose shorthand is

i.i in the table;

• CUST’s refusal set after the trace (i.i, n.i, p.pi) is derived according to the se

mantics of external choice in section 4.3.3, as follows:

before (change?c —> receiptli —> STOPacusr O notice! n —► PAY) is exe

cuted, that is, its trace is empty, its behaviour is defined to be

(change?c —> receipt?i —> STOPacusT)(tr, ref) A (notice? n —> P A Y)(tr, ref),

again, according to the semantics of event prefix, change, c ^ ref Anotice.n f ref

holds, which means ref C aC U ST \ {change, notice}, which explains the entry

accept = {c, n} (notice the shorthand) in CUST’s table.

The rest of the entry can be similarly derived according to the predicative semantics

in section 4.3.3.

We also give an explanation for a representative entry in REQ C ’s table:

Different from CUST, the choice is internal after the trace (i.i, n.i, p.pi), i.e.,

(change?c —* receipt?i —> STOPaREQc n notice? n —> REQ CPAY)

REQ C’s refusal set after the trace (i.i, n.i, p.pi) is derived according to the seman

tics of internal choice in section 4.3.3, as follows:

the above internal choice’s behaviour is defined to be

(change?c —> receipt?i —> STOPaREQc)(tr, ref) V(notice? n —► REQ CPAY)(tr, ref)

4. A Formal Approach to Problem Progression 86

according to the semantics of event prefix, change.c £ ref V notice.n £ ref holds,

which means ref C aC U ST \ {change}, {notice}, which explains the entry accept =

{c}, {n} in RE Q C ’s table. Note that we use to represent “exclusive or”, which

means that REQC can refuse either c or n, but not both.

Deriving/Constructing P O S’s Table Entries Using Lai’s Quotient

Lai’s quotient is defined as:

CUST \R E Q C {tr , ref) =

Vur : traces {REQC) V rep C aCU ST • [tr = ur \ a {CUST \ REQC)

A CUST{ur \ aC U ST, rep) =5 REQC{ur, rep U ref)]

{since aREQ C = aCU ST = a {C U S T \R E Q C), thus tr = ur)

45 V rep C aC U ST • [CUST{tr, rep) =5 REQC{tr, rep U ref)]

From the above step of derivation based on Lai’s quotient definition, we know that

tr = ur, which means POS = C U S T \R E Q C ’s trace tr is always equal to that

of REQC, due to the fact that aREQC = aCU ST = a {C U S T \R E Q C) holds.

Therefore, all the entries of trace events in PO S’s table is exactly the same as those in

CUST’s table.

Next, let us look at the accept entries in PO S’s tables. We derive some representa

tive accept entries in PO S’s table from the given entries in CUST and REQ C ’s tables.

In the first trace event, given that CUST{{), {n ,p , c, r}) and REQC{ (), {n ,p , c, r})

are true (it is a fact, as shown in the tables),

CUST \ REQC {{), ref)

= Vrep C {«, n ,p , c, r} • [CUST{{), rep) => REQ C{{), rep U ref)]

4. A Formal Approach to Problem Progression 87

That rep = {z} contradicts with the fact CUST({), {n, p, c, r}) holds. When rep C

{ n ,p ,c ,r } , we know for a fact that the antecedent is always true, and in order to make

the consequent true so that the entire predicate holds, {n , p, c, r} U ref = {n, p, c, r}

must hold, therefore we can derive that ref C {n, p, c, r}, which means ref C aPO S \

{z}, which allows us to derive the accept entry in PO S’s table as {z}.

As another example, in the fourth trace event, given that CU ST({i.i, n .i , p.pf), {«, p,

is true, and that REQC ({i.i, n .i,p .p f), { i,p , c, r} V {i, n ,p , r}) is true (it is a fact, as

shown in the tables),

C U S T \R E Q C ((i.i , n .i,p .p f), ref) =

<=*> 'irep C {z, n ,p , c, r} • [CUST((i.i, n .i,p .p f), rep)

=£> R EQ C ((i.i, n .i,p .p f), rep U ref)]

That rep = {c ,n } contradicts with the fact C U ST((i.i, n.i, p.pf), {i, p, r}) is true.

When rep C {z, p, r}, we know for a fact that the antecedent is always true, and in

order to make the consequent true so that the entire predicate holds, either {i, p, r} U

ref = {z, n, p, r} or {z, p, r] U ref = {z, c, p, r} must hold (but not both), therefore

we can derive that ref C {z, n, p, r} or ref C {z, c, p, r} (but not both), which means

ref C aPO S \ {c} or ref C a POS \ {n} (but not both), which allows us to derive the

accept entry in PO S’s table as {c}, {n}.

The derivations of the other entries in PO S’s table are similar.

The constructed table shows PO S’s behaviour in terms of tr and accept:

trace length I 0 1 2 3 4 ... 2n + 1 2n + 2 2n + 3
l t>l element of tr 0 i . i n . i P-Pl n .(i - P i) ... p.p„ C-(E£=1 Px - *) r .i

accept {i} W M {n},{c} M { n } > M {r-} {}

Note that entries in PO S’s table correspond to REQ C ’s entries, which leads us to

4. A Formal Approach to Problem Progression 88

derive PO S’s expression in a process form based on the correspondence, as follows:

POS = [~"li€{i 100} noticeU —» P O SP A Y (i,i), where

PO SP A Y(i, remain) =

ripG{i 2 510} m l p tf P < remain then (notice](remain — p)

—» PO SPAY(i, remain — p)) else (change\(p — remain)

—> receiptli —> STOPapos)
Note that POSPA Y involves the communication of at least two values, value i for

the first receipt event, and a variable value remain for later notice event representing

the remaining amount of payment needed; the choice is chosen by a conditional: if

the payment remain < p, then a change and a receipt will be given out by POS', if

p < remain then a notice for the need of further payment will be given by POS. These

elaborated details can be implemented quite easily in a programming language as a

function with two parameters, which will be shown in our FDR script later.

With this derivation of POS , we have solved the problem constructively.

4.5.3 Using SKIP instead o f STOP

In the original theory of CSP [67], Hoare points out that “the process STO P is defined

as one that never engages in any action. It is not a useful process, and probably results

from a deadlock or other design error, rather than a deliberate choice of the designer”.

He suggests that in order to describe a process that terminates successfully, i.e., a pro

cess that accomplishes everything that it was designed to do and it should do nothing

more, a different notation SKIP should be used. He proposes to represent a successful

termination as a special event, denoted by the symbol 1/ .

According to [67], the first and only action of the process SKIP is successful ter

mination, so it has only two traces traces (SKIP) = {(), (\/)}- Lai and Sanders [101]

4. A Formal Approach to Problem Progression 89

have not given the predicative semantics to SKIP. However, we can give the following

predicative semantics to SK IP :

SKIPA(tr, ref) 4 (tr = ()) A (ref C A \ W }) .

In computer programming, the explicit distinction between STO P and SKIP is

fully justified when they are used in describing the behaviour of computer programs,

and proving freedom from deadlock is usually an important task and good practice in

program design. Therefore, if we want to construct a machine that is deadlock-free, then

we could have made the specification stronger by replacing STOPapos with SKIPapos»

like the following:

POSgtronger = n*e{i,...,ioo} ~ * rioticeU —> PO SP A Y(i, i), where

POSPAY (i , remain) =

npG{i,2,5,io} P ^ P tf P < remain then (notice!(remain — p)

—> PO SPAY(i, remain — p)) else (change\(p — remain)

receiptli -> SKIPaPosstronger)
However, in this thesis, we regard the above replacement as a decision of the pro

grammer, rather than an obligation of our derivation. Indeed, our derivation based on

Lai’s quotient only leads to the weakest specification, i.e., POSstronger is stronger than

POS.

4.5.4 Validating the Derived Specification Using FDR

We have adapted the process expressions of OUST, REQ, REQC and POS to FDR

scripts, as shown in Figure 4.6 (next page).

In the FDR script, we have allowed the value of the items i to range from 1 to

100, and the allowable payment to be any one of 1, 2, 5, and 10. FDR check confirms

the calculated machine specification POS in parallel with OUST does refine the orig-

4. A Formal Approach to Problem Progression 90

- The self-help POS problem
- Using FDR to check that the solution machine POS is correct
-- (to satisfy the requirement REQ) when placed in parallel with the
-- customer domain OUST

- First, the set of values to be communicated, of Money type
- i, p, c and r are in Sterling (pence)

-- Channel declarations, specifying that the values communicated over them are of Money or Display type
channel item, pay, receipt, change, notice, leave : {0..100}

- Describing the customer domain as a process OUST
CUST= l~l i : {1.. 100} @ itemli -> notice?i -> PAY

- Describing the payment process as PAY so that OUST can be defined easily
PAY=I~I p : {11, 2, 5 ,101) @ paylp -> (change?c -> receipt?i -> STOP[]notice?n -> PAY)

- Describing the requirement REQ
-- REQ only specifies what is required, that is, a su ccess scenario "r=i", so "pay", "change" and "notice"
-- are hidden; other scenarios should be ignored, or a warning display should be issued.
REQ= l~l i: {1..100} @ item.i -> receipt.! -> STOP

-- The derived solution POS (should be the sam e as that calculated using Lai's quotient)
-- Note first i in POSPAY(i,i) does not change; while second i keeps changing to reflect the remaining
- payment needed
POS=l~l i : {1..100} @ item?i -> noticeli -> POSPAY(i,i)

-- Since it's a card payment, "r==p" is the condition under which the machine issu es a receipt; otherwise a
-- warning display should be issued to the customer
POSPAY(i,remain) =l~l p : {11, 2, 5,101} @ pay?p -> if p<remain then (noticel(remain-p)
-> POSPAY(i,remain-p)) e lse (changel(p-remain) -> receiptli -> STOP)

-- REQ by concealing {notice, pay, change}
REQC=I~I i: {1..100} @ item.i -> notice.i -> REQCPAY(i,i)
REQCPAY(i,remain) = M p : {11, 2, 5,101} @ pay.p -> if pcremain then (notice.(remain-p)
-> REQCPAY(i,remain-p)) e lse (change.(p-remain) -> receipt.i -> STOP)

- checking if OUST II POS refines/satisfies REQC
IMPL1=CUST[l{litem, pay, notice, change, receiptl}l]POS

- checking if OUST II POS refines/satisfies REQ
IMPL2=(CUST[l{litem, pay, notice, change, receiptl}l]POS)\(lpay, change, noticel}

Fig. 4.6: Model-checking the derived machine specification for the POS problem, using FDR
developed by Formal Systems Europe Ltd.

4. A Formal Approach to Problem Progression 91

inal requirement REQ C , that is IMPL1 = CUST\\POS refines REQC, as shown in

Figure 4.7. Likewise, POS in parallel with OUST (by hiding events present(pay),

present [change] and present (notice)) does refine the original requirement REQ, as

shown in Figure 4.8.

File A sse rt P ro c e s s O ptions Inti

R efinem ent^ D eadlock | Livelock | Determinism

IMPL1

v ' REQC [F= IMPL1

FDR2 session: /Users/DB/Desktop/PhD .Thesis/FDR.Scripts/POSresultl .csp

Fig. 4.7: Model-checking the derived machine specification for POS problem, checking if
IMPLl refines/satisfies REQC

4. A Formal Approach to Problem Progression 92

jQIlf: x FDR 2-82
File A sse rt P ro c e s s O ptions

| Refinement | D eadlock 1 Livelock | Determinism I Ev;

Refinement:
Specification
r^lpEQ

Model

l l Failures -

C heck Add j

> / REQ [F= IMPL2
|

2

: /
| I

PM * ***

>R2 session: IUsers/DB/Desktop/PhD.Thesis/FDR.Scripts/POSresult2.csp I /A

Fig. 4.8: Model-checking the derived machine specification for POS problem, checking if
IMPL2 refines/satisfies REQ

4 .6 D iscussion on our Formal A pproach to Problem Progression

4.6.1 Complexity

We have shown the derivation of a solution to a problem, using a formal approach to

problem progression. Even though the problem was simple, its formal solution required

a complex process of formalisation and associated manipulations. For any problem of

realistic complexity, it is unlikely that the approach will be tractable, even with tool

support. Moreover, requirements engineering involves activities and communication

amongst many non-technical stakeholders, and we can not assume that practitioners

have knowledge of CSP and the predicate calculus. Therefore, other ways of making

our techniques transparent to a general audience are needed. Although slightly disap

pointing, it is by no means unexpected. Many sources relate the difficulties of applying

4. A Formal Approach to Problem Progression 93

formalism in the real world [157].

4.6.2 Weakening Problem Descriptions

As shown previously, in the same specification space Spec, logical implication => (in

formally interpreted as “stronger than”) is equivalent to satisfaction sat in terms of a set

of traces tr and refusals ref (in other words, under the stable failures model in CSP).

This is the context where the notion of weaker or stronger is defined. It is concerned

with the implication or satisfaction ordering on predicates [101]. The terms stronger

and weaker provide a way to express the relative relationships between specifications

in the Spec space or between processes in the Proc space. The formal semantics of “A

is stronger than B” can be interpreted formally as A sat B, or A => B if A and B are

specifications.

Based on the notion of implication ordering, deriving the weakest sub-component

process from the whole process and the other sub-component process using Lai’s quo

tient operator may provide a useful theoretical tool to reason in the Spec space about

CSP descriptions: for example, in the PF semantics formula, let S stands for the ma

chine specification, K for the whole domain description, and R for the overall require

ment. Since S 11 K sat R holds, we know that the solution K \ R is the weakest solu

tion - in the Spec space, anything stronger than it is a solution to the problem; anything

weaker is not, in other words, if the actual designed machine specification Sdesigned is

stronger than K \ R , then we have the grounds to argue that it is a solution; otherwise,

it is not a solution.

As shown in the previous section, for many non-trivial software development prob

lems, a fully formal description of domains and requirements can not be easily obtained.

This concerns the difference between modelling and reality - most of the time, the in

4. A Formal Approach to Problem Progression 94

formal domain and requirement descriptions are not strong enough for making useful

formal argument. Therefore, in order to address a wider variety of problems, we need

less formal approaches to deal with informal descriptions.

4.7 Summary

In this chapter we have proposed a formal technique for problem progression based on

CSP and in the context of the denotational semantics of problem diagrams defined by

Hall et al. [63]. The technique was applied to an example, and formal descriptions were

verified through the FDR tool.

There are many technical issues we have not discussed: for instance, we have not

modelled divergent behaviours. If a process P performs internal transitions forever,

never reaching a stable state nor performing any external event, then it is said to be

divergent, denoted as P] [146].

From an outside observer of a process P, we can only reason about its guaranteed

external behaviour when it is stable. As Schneider [146] points out, the stable failures

model completely ignores any divergent behaviour that a process might have (page 221).

This is the assumption of the failures model in CSP - its primary focus is on guaran

teed behaviour rather than divergent behaviour, and from the PF perspective, this is a

limitation that might be treated informally, e.g., the standard concerns (e.g., reliability

concerns) in problem frames [83] take into account possible divergent behaviours of a

domain (process), and the state-machine diagram in PF can semi-formally express an

unknown/broken state of a domain by using a box that contains a question mark [83].

Whereas we expect technical solutions to these issues to exist, it is unlikely that

addressing them will move us any closer to a practical approach to problem progression.

4. A Formal Approach to Problem Progression 95

Thus they remain unexplored. In the next chapter we look to define more practical

approaches.

5. A SEMI-FORMAL APPROACH TO PROBLEM PROGRESSION

This chapter introduces a less-formal approach to problem progression than the previous

one. It takes causality as its foundation. By relaxing some of the restrictions imposed

by the CSP language, we demonstrate that causality can give us more widely-applicable

techniques for problem progression without resorting to a fully formal description lan

guage.

The chapter gives a working definition of causality and demonstrates how some

derived notations and techniques can help underpin problem progression in a systematic

way. The main contribution of this chapter is a set of rules for the practical achievement

of problem progression. They will be applied in a number of case studies in the next

chapter.

In order to illustrate causality and associated concepts and techniques for problem

progression, we will use the following two examples. The first example is the heating

control problem of Chapter 3 whose problem diagram we recall here for convenience

(Figure 3.1 in Chapter 3 recalled here as Figure 5.1).

is-on and is-off states
of Heating devices

/

Heating HC! {on, off} Heating
controller devices

{is-on, is-off} / Heating
regime

Fig. 5.1: A sim ple heating control problem, with added annotations for internal phenomena

5. A Semi-Formal Approach to Problem Progression 97

The second example is a variant of the POS problem of Chapter 4, which represents

a more traditional POS system. The problem diagram is given in Figure 5.2. We will

return to this problem in Chapter 6, where we will provide further details.

cunCA!jPOSIk

CA!nPOSImCO!l
CashierController CustomerPOS Purchase

i: {present(item), present(payment)}

j: {enter(item.info), enter(payment.info)}

k: {transfer(item.info), transfer(paymentinfo)}

I: {generate(receiptinfo)}

m: {print(receipt.info)}

n: {present(receipt)}

Fig. 5.2: The POS problem diagram

5.1 Causality

According to the Oxford English Dictionary, the word “causality” generally refers to

“the relationship between cause and effect”. This general meaning of causality is ubiq

uitous in our everyday life, and it is shared among various branches of social and natural

sciences, such as philosophy, logic, physics, and psychology, etc. For example, Hopkins

[74] points out that the notion of causality was first studied and researched in philos

ophy by Aristotle. Then in the 17th century, Francis Bacon (1561-1626) introduced

causality into science by establishing that causality could be open to empirical investi

gation. In the 18th century, David Hume (1711-1776) shifted the study of causality from

logic to psychology and established his defining characteristics of causality. However,

Hume’s theoretical characterisation was challenged by John Stuart Mill (1806-1873)

with his notion of multiple causation in contrast to the simple, linear causality adopted

by Hume. As summarised by Hopkins, Mill’s notion of causation “was something that

5. A Semi-Formal Approach to Problem Progression 98

occurred through the grace of multiple intersections of interweaving causal lines and

none of which on their own brought about an effect” [74].

Moffett et al. [I l l] observe that causal reasoning is a useful tool for describing

mechanisms, problems and solutions. They propose a formal causal language for re

quirements specification to fill the gap between natural language and formal reasoning

in RE.

For the purpose of this thesis (e.g., underpinning problem progression) and in line

with the work of Moffett et al. [I ll] , we define causality (or causation) as the rela

tionship between cause and effect, which we formalise as a relation between pairs of

events. By focusing on events, we have a working definition capable of describing the

behaviour of problem domains.

5.1.1 Basic Notation

From Moffett et aV s work [111], we adopt the following basic concepts and notations

to be used for problem progression:

• we distinguish between an event and an occurrence of an event; for instance, the

single event occurrence “bell rings” can typically occur many times in the lifetime

of the bell.

• we regard cause as a relationship between events which induces a relationship

between occurrences of those events. Notationally, we use:

- ^ to indicate direct cause: given two events ev\ and ev2, ev\ ev2 indi

cates that an occurrence of ev\ is the immediate cause of an occurrence of

e^2; and

5. A Semi-Formal Approach to Problem Progression 99

- to indicate the transitive closure of -w: given two events ev i and ev2,

e v i ^>+ ev2 indicates that an occurrence of ev i eventually leads to an occur

rence of ev2, possibly through a chain of other event occurrences.

The causal relationship “button pressed” -w “signal sent” is an example of the first

form; “button pressed” -w+ “bell rings” is an example of the second form, where

“button pressed” ^ “signal sent” and “signal sent” ^ “bell rings”. In this way,

causality is an irreflexive transitive relation between events.

Of course, the distinction between the two forms of causality depends on the level

of granularity in the analysis: if we abstract away the “signal sent” event, then

“button pressed” ^ “bell rings”.

• Like Moffet et al. [111], we make a clear distinction between sufficient and nec

essary cause. The difference between sufficient cause and necessary cause is that

the former is expressed in a positive statement while the latter is expressed in a

double negative statement: if ev \ is a sufficient cause for ev2, then the occurrence

of evi is inevitably followed by the occurrence of et^ (this is a positive state

ment); if e v i is a necessary cause for ev2, then given the presence of its enabling

conditions, if e v \ does not occur then ev2 will not occur (this is a double negative

statement). Moffet et al. observe that it is easiest to think in terms of sufficient

cause when working with practical examples, instead of double negations of ne

cessity. Throughout this thesis, the word “cause” refers to sufficient cause.

To represent state changing events, the following notation is used: given a state st

of a domain D, the event corresponding to D entering the state st is denoted by '[st.

In this thesis, behaviours that involve sequences of event occurrences are repre

sented as traces. For convenience, we label an event occurrence with the name of the

5. A Semi-Formal Approach to Problem Progression 100

event. For example, we use the following notations to describe a simple heating device’s

behaviours:

(switch-on, f working)

(switch_ o ff, | stopped).

5.1.2 Types o f Causality

In order to adapt causality to a variety of problems, we distinguish between the follow

ing types of causality (see how they are used in later examples):

Simple causality: An occurrence of one event is the cause of an occurrence of an

other event. For example, “pressing button i in the lift will make the lift cabin arrive

on floor /” expresses a simple causality. Formally, we can express this simple causal

ity as pressButton(i) cabinArrivesOnFloor(i). In RE practice, simple causality

is useful for communicating intuitive knowledge about causal aspects of events among

stakeholders.

Conditional causality: An occurrence of one event ev\ is the cause of another event

ev2 , guarded by some condition g. In other words, the causal relation holds only when

some condition is true. We use the following notation to express conditional causality:

(g) : evi ev2 , where g is a Boolean condition (g will be omitted when it is always

true). For example, at a lower level of abstraction, the event “pressing button i in the lift”

causes the event “the lift cabin arrives on floor i” only when some Boolean condition

such as “proper mechanical operations o f cables, motors and correct electrical signal

transmission” is true. The causal relation can be described precisely as follows (A is

logical conjunction):

(button(ok) A electricalSignal(ok) A controller (ok) A motor(ok) A cable(ok)) :

pressButton(i) -w cabin.ArrivesOnFloor(i).

5. A Semi-Formal Approach to Problem Progression 101

Please note that when the guard is trivially true, conditional causality is reduced to

simple causality, in which case the guard g is omitted.

Timed causality: An occurrence of one event ev\ is the cause of another event ev2 ,

separated by a time duration A T . We use the following notation to express timed
ATcausality: ev\ ev2 - Timed causality is useful in the analysis of real-time systems

where timing issues are critical. For instance, whenever a lift user presses the emergency

button, the lift cabin must be stopped within a very short time (for example 0.5 second).

This causal relation can be described precisely as:

pressButton(emergency) liftCabin(stopped).

Please note that when time can be ignored, timed causality is reduced to simple

causality, in which case the time duration A T is omitted.

Biddable causality: Biddable causality is a relationship we introduce to describe and

reason about the behaviour of people. Biddable causality is not true causality in that

there is no physical law that allows us to establish the relationship between cause and

effect, however it is a relationship between cause and effect that can be expected, e.g.,

by training: although a human being may have free will or exhibit random behaviour,

we can still manage to constrain their behaviour to a certain extent by training. We use
biddenthe following notation to express biddable causality: ev\ -w e^ . In the POS example

(see Figure 5.2), we have good reasons to expect the Cashier domain to behave like a

causal domain because he or she has received training in processing customer’s items

and payment. Therefore, we can expect that whenever a cashier is presented an item of

product, he or she should faithfully enter the item’s information into the POS domain.

In other words, we can expect the following causal relation:

present(item) blHfn enter (item.info).

5. A Semi-Formal Approach to Problem Progression 102

5.2 Causality in Problem Description

In this section, we apply the notion of causality to two important aspects in problem

description - describing causal behaviours of different types of domains and associating

causality with control of phenomena. Furthermore, we introduce the notion of a causal

chain that allows us to reason through chains of behaviour in a problem description.

In the next section we will argue that enhancing problem descriptions with causality

provides a basis for problem progression.

5.2.1 Using Causality to Describe Domain Behaviour

Describing the causal aspects of a domain plays an important part in reasoning about its

properties and behaviours, which is one of the crucial activities in problem progression.

For this purpose, we need to consider the nature of a domain. Jackson [83] distinguishes

the following two types:

A causal domain is one whose properties include predictable causal relationships

among its phenomena. For instance, in the POS example, the POS domain is considered

as a causal domain: whenever the item’s information is entered, the POS domain will

transfer the item’s information to the Controller domain, that is, enter (item.info)

transfer (item.info). (Of course, it is assumed that the POS domain operates reliably.)

A biddable domain usually consists of people, who lack predictable internal causal

ity. As argued in the previous section, a biddable domain can be bidden, but not forced

to do something. So generally speaking, causality cannot be claimed for a biddable do

main; still there is a possibility that some causal relationship between its events can be

assumed with reasonable justifications (e.g., through training).

For completeness, Jackson [83] also introduces lexical domains which are physical

5. A Semi-Formal Approach to Problem Progression 103

representations of data. Since causal properties allow the data to be read and written,

we can always treat lexical domains as causal in problem progression.

5.2.2 Realtionship between Control and Causality o f Phenomena

In the PF framework, domains interact with each other through shared phenomena. The

sharing of phenomena is something that all sharing participants are part of simultane

ously, as Jackson states in [83]:

“The participation in a shared event is like a hammer hitting a nail: there’s

only one event, and the hammer and the nail both take part in it simultane

ously”.

Sharing is not always limited to two participant domains (an example can be found

on page 52 in [83]). For a shared phenomenon, all sharing participants have access to it.

We can see in Figure 5.2 how shared phenomena are represented in a problem diagram

as annotated arcs linking domains.

Phenomena which are not shared are private (thus hidden inside boxes). For in

stance, in Figure 5.2 we can imagine there are scan(item.info) (the item’s barcode is

scanned into an optical signal information) and convert(item.info) (the item’s optical

information is transferred to electrical information) events private to the POS domain.

All private phenomena of a domain are, by default, controlled by that domain.

For a shared phenomenon, only one sharing domain has control. The notion of

control has slightly different interpretations depending on the type of phenomenon. For

example, if the phenomenon is an event ev, “domain D controls ev” means that D

initiates an occurrence of event ev and that if ev is shared between domains D and D',

only D can initiate its occurrence; if the phenomenon is a state st of domain D shared

5. A Semi-Formal Approach to Problem Progression 104

with domain D', then “D controls st” means that only D can change the state, although

the change is visible to D'.

Although the notions of control and causality are related, their focus is different:

identifying shared phenomena and which domain controls them allows us to reason

about interactions among domains; while identifying causal relations within a domain

allows us to reason through the behaviour of the domain. We argue that by exploiting the

two notions together, we can reason about chains of behaviour in a problem description

so that a systematic way of problem progression can be achieved.

Let us look at Figure 5.2. As we will see later on (next chapter), to achieve problem

progression, in addition to relying on control annotations in the diagram we also need

causal notations to elaborate and reason about domain properties.

Here is an example of the chain of causal events in domain POS along which the

item’s information is read by a barcode reader and the optical signal is converted into

electrical signal, and finally the electrical signal is transferred into the Controller do

main:

• firstly whenever the cashier enters the item’s information, the barcode reader

scans the information on the item, so enter (item.info) scan(item.info);

• then whenever the item’s information is correctly scanned, the optical-to-electrical

unit converts the optical signal into electrical signal, so scan(item.info)

convert (item, info);

• finally whenever the signal is converted, it is then allowed to be transferred onto

the computer, so convert (item, info) transfer (item.info).

By combing the above three causal relations, we obtain:

enter (item.info) ^ scan(item.info) convert (item, info) ^ transfer (item. info).

5. A Semi-Formal Approach to Problem Progression 105

At a higher level of abstraction, we can simplify and represent the above set of causal

relations as:

enter (item, info) ^>+ transfer (item.info)

From above, we can see that the same causal relation can be folded into a single

notation or unfolded into a long chain of causal relations connected by the ^ notation.

We name this unfolded expression of causality as a causal chain.

5.3 Progressing Problems Based on Graph Grammar

This section introduces a semi-formal technique for achieving problem progression.

It is based on a set of rules adapted from a general framework of problem orienta

tion by Hall et al. [64]. Hall et al. [64] have given a formal conceptual framework

for problem-oriented software engineering, where problem progression is one of many

problem transformation classes. In that framework, problem progression consists of

two steps - removing shared phenomena and removing domains from a problem context.

The notion of a problem in that framework is represented as a sequent in a Gentzen-style

calculus [95]. The sequent is cast in the general form of W , S b R, where W represents

the problem world (given domain description), S represents the solution (specification

statement), and R represents the requirement (statement).

Departing from Hall et a V s work in [64], we provide an interpretation of those

rules in the context of problem frames. The results are three classes of constructive

rules for problem progression based on the notion of causality. To this end this thesis

makes use of an algebraic approach to graph representation and transformation using

graph grammars [11, 48]. This is motivated by our observation that the manipulation

of problem diagrams in problem progression can be regarded as graph transformation

5. A Semi-Formal Approach to Problem Progression 106

following some constraining graph grammar rules.

This section gives an introduction to the relevant concepts and definitions of graph

grammars, which are used in our rule-based approach to problem progression. We then

define three classes of rules in the next section and show that they are applicable to

progressing a variety of problems.

5.3.1 Graph Grammars

Graph grammars provide a formal foundation for the manipulation of graph structures.

They have been used widely in computing [33], for example, the algebraic approach of

graph grammars [46,48] has lead to useful results in parallelism analysis [98, 99], eval

uation of functional expressions and logic programs [117, 34], synchronisation mecha

nisms [15], distributed systems [47, 145], and object-oriented systems [96].

Basic Concept and Definition

A graph consists of a set of vertices V (sometimes called nodes or points) and a set of

edges E (sometimes called arcs or lines), and each edge e in E has a source vertex s(e)

in V and a target vertex t(e) in V [11]. A directed graph is a graph in which every

edge has a distinguished start vertex (its source) and end vertex (its target) [48].

In an algebraic style [48], a graph can be represented as G = (V, E, s , t), where

V is a (finite) set of vertices and E is a (finite) set of edges such that V fl E = 0;

s , t ' .E —> V are the source and target functions, respectively (see below). A subgraph

of a graph G is a graph whose vertex and edge sets are subsets of those of G.

E z = t V
t

5. A Semi-Formal Approach to Problem Progression 107

For example, an algebraic representation of Figure 5.3 is G = (V ,E , s , t), where

V = { u ,v ,x ,y } is the vertex set, E = {a, 6} is the edge set, with source function s :

E —> V : s(a) = u, s(6) = w, and target function t : E ^ V : t(a) = v, t(b) = v.

U • • V

G

x •

Fig. 5.3: A graph example, adapted from [48]

Graph morphism: Given graphs Gi, G2 with Gi = (Vi, Ei, Si,ti) for i = 1,2, a

graph morphism / : G± —> G2, f = (/V,/e) consists of two functions f v ' Vi —* V2

and fs : Ei —► E2 which preserve the source and target functions, that is, f v ° s i = s2ofE

and fv o t\ = f E [48] (the symbol o is the function composition operator), as shown

in the commutative diagram below (adapted from [48]):

5. A Semi-Formal Approach to Problem Progression 108

For example, Figure 5.4 shows a graph morphism between two graphs G\ and G2,

where:

*.V

G,
'jc • •y.

g 2

Fig. 5.4: A graph morphism exam ple, adapted from [48]

Gi = ({u, v , x, y}, {a, b}, su t±),

with si(a) = u, si(b) = u; ti(a) = v, ti(b) = v ; and

G2 = (f e t f M c } , s2 , h) ,

with s2(c) = p, h{c) = <1-

The graph morphism is / : G\ —> G2 = {JvJe),

with f y : Vi -> V2 : f v (u) = p j v { x) = P, fv(v) = q j v (y) = q, and

fE : E1 -^ E2 : fE(a) = c, fE{b) = c.

A graph morphism / is injective if both f y and fE functions are injective - in discrete

mathematics [121], the function (mapping) / : A —> B is injective, if f (xi) = f (x2)

only when x\ = #2, where xi,X2 G A and f (x 1) ,/(a^) G B. The sets A and B are

known as the domain of / and the codomain o f f , respectively.

5. A Semi-Formal Approach to Problem Progression 109

For example, Figure 5.5 shows an injective graph morphism from G\ to G2, where

every edge in G± maps to one distinct edge in G2 . Also every vertex in G\ maps to one

distinct vertex in G2 .

w • c
b '^ Y ;

• t •
1 # •

1

* 1
1 ♦

▼ : f t— £ — <7

X •

Fig. 5.5: An injective graph morphism example adapted from [48]

Formally:

G i = ({ u , v } , { a , b } , * i), and

w ith S i(a) = u , s i (b) = u \ t i (a) = v , t i (b) = v , and

G2 = ({p, g, x, y}, { e ,/} , 52, fe),

w ith s2(e) = p , s2 (f) = p ; f e (e) = q, h{f) = q-

T h e graph m o rp h ism / : G i —> G 2 = { I v J e) is in jec tiv e , b e ca u se

f v : V\ —> V2 : f v (u) = p j v (v) = q is in je c tiv e (th e fa c t that v er tice s x and y in

V2 h ave n o p re-im a g e in V\ d o e s n o t prevent f y from b e in g in je ctiv e), and f s : E \ —■>

E 2 : f s { a) = e , f E (b) = f is in jective .

A labelled graph (also known as a coloured graph [32]) G = (V , E , s , t , l y , Ie)

consists of an underlying graph G° = (V , E , s , t) together with two label functions

l y : V —> L y and Ie : E —> Le, where L y and Le are alphabet sets of vertex labels

and edge labels, respectively [48].

5. A Semi-Formal Approach to Problem Progression 110

l e J ^ - e = = z v - ! ^ * L v
t

F or ex a m p le , F ig u re 5 .6 sh o w s a la b e lled graph G , w h ic h is ob ta in ed b y adding

la b e ls to a ll th e v er tices and ed g e s in F igu re 5 .3 .

G

Fig. 5.6: A labelled graph example

We follow the conventions in [32] to use to separate the vertex/edge name from

its label. Although sometimes we omit these labels to avoid making the diagram over

crowded, we always express these labels in an algebraic style, that is:

G = ({u, v , x, y}, {a, &}, s, t , ly, lE), where

s(u) = u, s(b) = u, t(a) = v, t(b) = v ;

l y (u) — lu, ly{v) — lVf l y (&) Ivi.l/') ly’

Ie (cl) = la’ lE{b) = h-

A labelled graph morphism f : G\ —► G2 is a graph morphism / : Gf —> G$

between the underlying graphs which is compatible with the label functions, that is,

l̂ v o f v = 11V and 1aiE ° Ie = k , E [48], as shown in Figure 5.7 (next page).

In graph theory, a labelled graph morphism is defined to preserve the following three

kinds of mapping relationships between two labelled graphs:

1. m ap p in g re la tion sh ip s b e tw e en vertices are p reserved , b y f y : V\ —> VV*

5. A Semi-Formal Approach to Problem Progression 111

1, E

L

2, E

fy
V

% 2 ,V

Fig. 5.7: A labelled graph morphism, taken from [48]

2 . mapping relationships between edges are preserved, by f s : E\ —► E2 ,

3. mapping relationships between labels are preserved, by k, v 0 fv = h, v

and 1q,e 0 Ie = k,E-

I TA graph production (also known as a rule) p = (L <— K —> R) consists of graphs

L, K , and R, called the left-hand side, the gluing graph or interface, and the right-hand

side, respectively, and two injective graph morphisms I : K —> L and r : K —> R [48].

Because of the injective morphisms, the interface graph K remains the common

structure shared between L and R. In other words, graph K represents the subgraph

which is common to both L and R under the graph production rule, while other graph

structures (those represented by the sets L \K and R \K - “left-over” structures due to

the injective functions - the codomain of an injective function may have extra elements

that are not mapped by the function) represent those structures which are different.

Production rules are the basis for the definition of graph transformation. Suppose
I Tthat we have a graph G and a production rule p = (L K —> R)\ transforming G by

using p means the following:

• identifying a subgraph in G which matches the structure of L. Formally we do

this through a graph morphism m : L G called “match”; and

5. A Semi-Formal Approach to Problem Progression 112

• transforming m(L) according to p. This has the effect of replacing the subgraph

m(L) in G with a subgraph whose structure is defined through p, which leads to

a new graph H.

Such a transformation is represented by G ==> H l.

Here is an example (for brevity in this thesis we adopt the following convention in

representing a graph transformation: we use the same names for elements which remain

invariant through the transformation, for instance, v\, v2, in Figure 5.8).

P = L I K R

t v4\l

m

e]\l

G H

Fig. 5.8: An exam ple o f graph transformation G =>■ H based on a production rule p and an
injective match m

Figure 5.8 illustrates a graph transformation from G to H based on a production rule

1 For our purposes, this is all we need to know about graph transformation. For a more detailed and
fully formal treatment, please see [48].

5. A Semi-Formal Approach to Problem Progression 113

p = (L K A R) (the darkened straight arrow represents injective graph morphism;

while the bent darkened arrow represents graph transformation), where:

I : K > L : l (y i) = tfy, = 772, Z(t73) = ^3? Z(ZU1) = Z(Z^) =

^(^3) ^ 3̂5 Z(Cl) = ^1’ ^(^2) 2̂? Z(Zei) Zei, Z(Ze2) Ze2»

and

r : K ^ R : r(v 1) = 77i, r (^) = 772, ^(^3) = v3, r(/vi) = ZVl, r(/U2) = Ẑ ,

K O ZV3, T’(ei) e ĵ 7*(e2) e2, f ' i je - i) Zei, 7” (Z e 2) Ze2,

and

m : L G : 777(77 1) = v{, 777(772) = 777(773) = 773, 777(774) = 774,

^ (Zi»i) = Zw/ , 7 7 7 (Z ^) = Zv ^ , 7 7 7 (ZV 3) = Zv ' , 7 7 7 (ZV 4) — Zv ' , 7 7 7 (e j) = e ^ ,

m(e2) = e£, ^ (e 3) = eg, 777(Zei) = Ze/, 777(Ze2) = Ze/, 777(Ze3) = Ze>.

The production rule p specifies that the “left-overs” elements in L, i.e., e3, 774, Ze3,

and ZV4, are deleted, and that the “left-overs” elements in R, i.e., e4 and Ze4, are added.

According to rule p, we need to delete e3 , 774, Ze/, and Zv/ from (?, and add e'A and Ze/,

to derive H, which is shown in the bottom right comer of Figure 5.8.

In this thesis, we want to restrict the way we can manipulate a problem diagram

in problem progression - some elements of a graph are allowed to be changed under

some conditions and some remain unchanged. A graph transformation through graph

production rules matches this purpose nicely.

A graph grammar is defined to be a pair GG = (G0 ,P), where Go represents the

starting graph, and P represents a set of graph productions rules [48]. In our work, we

essentially define graph transformation by using production rules. A graph grammar

5. A Semi-Formal Approach to Problem Progression 114

gives us a system in which we have an initial graph and a set of production rules that

allow us to implement graph transformations.

5.3.2 Interpreting Problem Diagrams as Directed Labelled Graphs

Given the characteristics of a problem diagram and the definition of a graph, we propose

to relate them in the following way.

We can regard problem diagrams as labelled graphs: boxes representing domains are

vertices; dashed ovals representing requirements are also vertices; arcs linking domains

are edges; dashed arcs linking domains and requirements are edges as well. The descrip

tions of domains, requirements and phenomena are labels. Since PF do not prescribe

which language to use to describe the problem, these labels can be in either natural

language or some formal language.

More precisely, we represent a problem diagram as a labelled graph (examples will

follow immediately afterwards) as follows:

1. Domains and requirements as vertices: if n > 1 is the total number of domains

plus the requirement, then we represent them as vertices (v i , vn}\

2. Phenomena sets as directed edges (or directed arcs): if m > 1 is the total number

of phenomena sets (including shared phenomena between domains, requirement

phenomena, or relevant internal phenomena of domains - part of the domain prop

erties), then we represent them as edges { e i,..., em}. The direction of the edges

is represented through the source and target functions, based on the following:

(a) Controlling domain or constraining requirement as source o f an edge: if

a domain or a requirement represented by vertex w* controls or constrains

5. A Semi-Formal Approach to Problem Progression 115

phenomena set ej, then w* is the source of the directed arc (the end without

the arrowhead);

(b) Observing domain or referencing requirement as target o f an edge: if a

domain or requirement represented by vertex V{ observes or refers to phe

nomenon ej, then u* is the target of the directed arc (the end with the arrow

head);

Note that with this convention, problem diagrams can be represented as directed

graphs so that each individual phenomenon and associated control-and-observe

information is captured as a directed arc in the graph.

3. Domain and requirement descriptions through the vertex label function ly as

the mapping ly : V —> Types x Names x Descriptions, where: Types =

{Machine, Designed, Given, Requirement}’, Names is a set of names for do

mains and requirement; Descriptions is a set of descriptions, for domains and

requirement, in any formal, semi-formal or informal description language;

4. Phenomena descriptions through the edge label function Ie as the mapping Ie :

E —> P {phenomena), where P (phenomena) is the power set of all phenomena

in the problem diagram.

Let us revisit the simple heating control example of Chapter 3 whose problem dia

gram is re-drawn as Figure 5.1 (the dog-eared box indicates the internal phenomena of

Heating devices). The problem diagram can be interpreted as the graph in Figure 5.9,

encoding our formalisation (internal phenomena are represented as a reflexive arc e3),

5. A Semi-Formal Approach to Problem Progression 116

Fig. 5.9: Heat control problem diagram in Figure 3.4 represented as a directed graph - labels are
omitted

where:

l) = (Machine, Heating controller, uthe solution to be found”)

lv(v2) = (Given, Heating devices, “devices that can be in either the is-on state

or the is-off state. Pulse events on and off can effect state changing events in the

devices, thus this domain is a causal domain. The heating devices have a mechanism

to maintain the temperature”)

W(vs) = (Requirement, Heating regime, athe heating devices should be switched

on at 8 : 45 am and switched off at 4 : 45 pm every day”)

k(e i) = {on, off}

Ie M = - on, is - off}

Ie (&z) = {*« - on, is - off}.

As further illustration, let us look at another example of the mapping between prob

lem diagrams and labelled graphs. The following occasional sluice gate control prob

lem is taken from [83].

“A small sluice, with a rising and falling gate, is used in a simple irrigation

system. A computer system is needed to raise and lower the sluice gate in

response to the commands of an operator.

The gate is opened and closed by rotating vertical screws. The screws are

5. A Semi-Formal Approach to Problem Progression 117

driven by a small motor, which can be controlled by clockwise, anticlock

wise, on and off pulses. There are sensors at the top and bottom of the

gate travel; at the top it’s fully open, at the bottom it’s fully shut. The con

nection to the computer consists of four pulse lines for motor control, two

status lines for the gate sensors, and a status line for each class of operator

command.”

Figure 5.10 shows the problem diagram based on that given by Jackson in [83].

Raise &
lower gate

Sluice
operator

Gate &
motor

Sluice
controller

Open, Shut, Rising^ n t h
Falling states of the

gate and motor

a : SC! {Clockw, Anti, On, Off} b : {Open, Shut, Rising, Falling}

GM! {Top, Bottom} c : {Raise, Lower, Stop}

Fig. 5.10: Occasional sluice gate: problem diagram, adapted from [83]

The diagram can be interpreted as the graph in Figure 5.11, where:

Fig. 5.11: Occasional sluice gate problem diagram in Figure 5.10 represented as a directed graph

5. A Semi-Formal Approach to Problem Progression 118

lv(vi) = (Machine, Sluice controller, “the solution to be found”)

lv{v2) — (Given, Gate &; motor, “T/ie gate is opened and closed by rotating

vertical screws. T/ie screws are driven by a small motor, which can be controlled by

clockwise, anticlockwise, on and off pulses. There are sensors at the top and bottom

of the gate travel, at the top it's fully open, at the bottom it's fully shut. The

connection to the computer consists of four pulse lines for motor control, two status

lines for the gate sensors”)

W{vf) = {Given, Sluice operator, “A person who sends out operating commands.

Its connection to the computer consists of a status line for each class of operator

command”)

W(v&) = (Requirement, Raise Sz lower gate, 11A computer system is needed to

raise and lower the sluice gate in response to the commands of an operator.”)

Ie {c 1) = {Clockw, Anti, On, Off}

Ie (c2) = {Top, Bottom}

W e3) — {Open, Shut, Rising, Falling}

Ie {z4) = {Open, Shut, Rising, Falling}

Ie {z§) = {Raise, Lower, Stop}

Ie {^q) = {Raise, Lower, Stop}.

From the above two examples, we can see that representing a problem diagram as a

labelled graph allows us to describe systematically the problem diagram as a mathemat

ical object, which includes all relevant elements of the problem, that is, the topology of

domain and shared phenomena plus all their descriptions.

To summarise, the motivation for regarding problem diagrams as directed labelled

graphs is that we can apply production rules for their manipulations. Problem progres

sion can then be regarded as a form of graph transformation, in which some graph arte-

5. A Semi-Formal Approach to Problem Progression 119

facts such as vertices, edges or labels are removed or added under some defined graph

production rules. For the purpose of representing progression rules and the application

of such rules to a particular problem diagram, the pictorial style of graph representation

gives us the intuition for matching the rules to a part of the problem diagram; while the

algebraic style of graph representation provides the vehicle for rigourous manipulation

during problem progression.

5.3.3 Interpreting Problem Progression as Rule-Based Graph Transformation

Having represented problem diagrams as directed labelled graphs, we aim at capturing

problem progression through graph transformations.

Let us look at an example - the automatic heating control problem of Chapter 3 and

its problem progression (Figure 3.8 is re-drawn here as Figure 5.12).

HC! {on, off}

JlT™ ’--'-0? - / H e a t i n g
\ regim e

Heating
controller

Heating
controller

Heating
dev ices

is-on an d is- o fT
s ta te s of H eating

d ev ices
i l - nJ?!P--/ Controller

\ com m and y

Fig. 5.12: Heating control problem progression diagram

The problem diagram progression of Figure 5.12 can be expressed as the graph

transformation of Figure 5.13 under our interpretation of problem diagrams as directed

labelled graphs.

In the figure, for graph G\\

Wi{vi) = (Machine, Heating controller, uthe solution to be found”)

= {Given, Heating devices, 11 devices that can be in either the is-on state

5. A Semi-Formal Approach to Problem Progression 120

V ;
• -

Vi v^
-+

e l v 2 e 2

Fig. 5.13: Heating control problem progression diagram in Figure 5 .12 as graph transformation
- labels are omitted

or the is-off state. Pulse events on and off can effect state changing events in the

devices, thus this domain is a causal domain. The heating devices have a mechanism

to maintain the temperature”)

lvx{v$) = {Requirement, Heating regime, “the heating devices should be

switched on at 8 : 45 am and switched off at A: 45 pm every day”)

fe(ci) = {on, off}

k i(e2) = { ^ “ on>is ~ 0f f }

tei(e3) = { is ~ oni is ~ °ffY ’

For graph

ly2(^1) = {Machine, Heating controller, “the solution to be found”)

W2 {va) — {Requirement, Controller command, “the heating controller should

issue the on command at 8 : 45 am and the off command at 4 : 45 pm every day”)

f e (e4) = {on, off}.

In order to transform graph G\ into graph G2 , we need to define a set of basic

production rules. We will demonstrate that the above transformation can be achieved

through a particular combination of these rules. In the next section we will define a set

of basic rules for problem progression, which are based on the notion of causality.

5. A Semi-Formal Approach to Problem Progression 121

5.4 Causality-Based Rules for Problem Progression

In this section, we will define three separate classes of basic production rules which we

use for progressing problems. They are:

1. the Reducing through Cause and Effect rule class: rules in this class generate a

new requirement statement by replacing effects with causes, or causes with ef

fects, based on the causal relations identified among events in domain descrip

tions. This rule class allows us to reason through the properties (behaviours) of a

domain, thus allowing the requirement constraint or reference to be restated based

on causal chains within domain descriptions.

2. the Changing Viewpoint rule class: rules in this class generate a new require

ment statement based on the differing perspectives of domains sharing an event:

switching from the perspective of a domain controlling the event to that of a do

main observing the event, and vice versa. This rule class allows us to reason

through the shared phenomena among domains.

3. the Removing Domain rule class: rules in this class are used to simplify problem

diagrams, allowing us to remove a domain from consideration in the analysis, as

long as corresponding assumptions are explicitly stated in the rewritten require

ment. This rule class allows us to remove a domain and its shared phenomena in

order to simplify further analysis.

As we will show, we can progress problems through a combination of the above

rules. For instance, we can regard the transformation in Figure 5.12 as the result of

applying the above rules in three steps:

5. A Semi-Formal Approach to Problem Progression 122

1. applying the Reducing through Cause and Effect rule: from the effects, i.e., events

|is — on and |is — off, the original requirement statement is re-expressed as

Command received'. “the heating devices should receive the following commands

from the heating controller: the on pulse command at 8:45 am and the off pulse

command at 4:45 pm everyday”, which is described in terms of their causes, i.e.,

events on and off.

Heating
controller

Internal events f/'s-on andf/s-off^
are caused by on and off

com m ands received, respectively.

H C !{on , off}

Heating
controller

Internal events f /s -o n and'| is-off
are caused by on and off

com m ands received, respectively.

H C !{on , o f f } , ' '

Heating '{is-on, is-off) j'H e a tin g " \ Heating
devices \ j e g i m e f f devices

{on,_off} / ' Command \
received

Fig. 5.14: S tep l - applying the Reducing through Cause an d Effect rule

This rule can be applied because domain Heating devices’ properties contain a

causal relationship: “Internal events j is — on and j is — off are caused by on

and off commands received, respectively”, which is represented in a dog-eared

box in Figure 5.14.

2. applying the Changing Viewpoint rule: switching the viewpoint on the shared

events on and off from the observer domain Heating devices to the controller

domain Heating controller, the requirement is re-expressed in the heating con

troller’s perspective (in Figure 5.15), i.e., Controller command: “the heating

controller should issue the on command at 8:45 am and the off command at 4:45

pm every day”.

5. A Semi-Formal Approach to Problem Progression 123

Internal events f/s -on andf/s-off
a re caused by on and off

com m ands received, respectively.
{on, off} controller

\ command

HC! {on, off}HC! {on, off}
Internal events
ps-off are caused by on

and off com m ands
received, respectively.

 t ' Command
{on"off} received ̂

Heating
controller

Heating
controller

Heating
devices

Heating
devices

Fig. 5.15: Step 2 - applying the Changing Viewpoint rule

3. applying the Removing Domain rule: assuming the Heating devices’ domain

properties (that is, assuming that on and off commands will cause f is — on and

t is — off respectively), the domain Heating devices and its shared phenomena are

removed from the diagram (in Figure 5.16), resulting in the transformed problem

diagram in Figure 5.12. The re-expressed requirement Controller command' be

comes: “assuming that the Heating devices ’ domain properties hold, the heating

controller should issue the on command at 8:45 am and the off command at 4:45

pm every day”.

{on, off} s ' controller
\ command

{on, off} s ' Controller
\ com mand'

HC!{on, off}
Internal events f kt is-on am
Vs-off a re caused by on

and off com m ands
received, respectively.

Heating
controller

Heating
controller

Heating
devices

Fig. 5.16: Step 3 - applying the Removing Domain rule

The above is only a simple exercise to show that any controller that satisfies the spec

ification Controller command' will satisfy the original requirement Heating regime.

5. A Semi-Formal Approach to Problem Progression 124

The next section will present these basic progression rules in more detail.

5.4.1 The Reducing through Cause and Effect Rule Class

We call the first progression rule class Reducing through Cause and Effect. Rules in

this class generate a new requirement statement by replacing effects with causes, or

causes with effects, based on the causal relations identified among events in domain

descriptions. We specialise this rule class into two sub-classes, namely the effect-to-

cause (ETC) class and the cause-to-effect (CTE) class.

5.4.1.1 The Effect-to-Cause (ETC) Rule Class

Let us look at the effect-to-cause rule class first. The basis for this class of progression

rules is that a causal relationship exists in a domain D ’s description, i.e., (g) : c e,

where c and e are events of D, g is a Boolean condition that is part of the domain

properties of D (g will be omitted when trivially true). To capture patterns of causality

in natural language descriptions, we denote by “ev occurs” any part of a requirement

statement that implies an occurrence of event ev, and by “g holds” the fact that g is

true at that occurrence. Under this rule class, the requirement is rewritten so that any

occurrence of an effect, say event “... e occurs ...”, is replaced by an occurrence of its

guarded cause, say “... c occurs and g holds ...”.

Analysing Different Cases o f Problem Topology

Because e and c can be internal to D, shared and controlled, or shared and observed by

D, there are nine different cases in which the ETC rule class may apply. Each of these

cases is characterised by a unique combination of topological relationships among e, c

and D (including control and causal relationships), as shown in Table 5.1.

5. A Semi-Formal Approach to Problem Progression 125

C a s e
A d m iss ib le
(y e s / no)

D escrip tio n / E x p lan a tio n

(D
D yes Both effect e and ca u se c are internal to D.

(2)
D!{c) {®>

yes Effect e is internal to D, cau se c is shared and controlled by D.

(3)
not D!{c) (®>

yes
Effect e is internal to D, c a u s e c is sh a re d an d o b se rv ed by D (c is controlled b y an o th e r
dom ain).

(4) {c> D /{ e } yes Effect e is shared and controlled by D, ca u se c is internal to D.

(5)
<c> n o tD /{ e >

Effect e is shared and observed by D (e is controlled by another domain), and cause c is
internal to D. This ca se is not admissible because e can only be controlled by one domain, and
c is internal to D, so c cannot cau se e which contradicts tha t (g) : c e is a domain property
of D.

(6)
D /{c> D!{e) yes Both effect e and cau se c are shared and controlled by D.

(7)
not D /{c> D /{e> yes

Effect e is shared and controlled by D, and cau se c is shared and observed by D (c is
controlled by another domain).

(8)

D!{c} n o tD!{e)

Effect e is shared and observed by D (e is controlled by another domain), and ca u se c is
shared and controlled by D. This ca se is not adm issible because:
a. if D sh a res e and c with different domains, then this is not possible (similar argum ent to (5));
b. if D sh ares e and c with the sam e domain, then the c a se is similar to (7), except that e and c
sw ap p laces with each other.

O)
not D /{c> | not D.'{e>

Both effect e and cause c are shared and observed (e and c are controlled by other domain(s)).
This c a se is not admissible because if D only observes e and c, then (g) : c e is not a
domain property of D.

Tab. 5.1: Analysis of all possible cases for the ETC rule class

In the table, the case column represents all possible topological relationships among

e, c, and D in a problem diagram. However, not all cases are compatible with the fact

that (g) : c ^ e must be a property of D, which is indicated under the admissible col

umn. The description / explanation column gives a brief description of the relationships,

with some explanation for those incompatible cases, i.e., (5), (8) and (9).

To summarise Table 5.1, all the cases that are admissible have the following in com

mon: e is either internal to D or shared and controlled by D. This is a condition for

application of this rule class.

5. A Semi-Formal Approach to Problem Progression 126

Defining Rules Based on Problem Topology

We define our set of ETC rules based on the above admissible cases. Here we present

and formalise one of these rules and apply it to the simple heating control example. The

other rules can be similarly defined after necessary changes. For the complete set of

ETC rules, please refer to the Appendix B. We will apply some of those rules to the

case studies in the next chapter.

ETC(3)a

e internal
to D
c causes e
when g

e internal̂
toD
ccauses e
when g

e internal̂
to D
c causes e
when g

I r
ETC(3)a = L < ----------------- K >- R

Fig. 5.17: R ule ETC(3)a, derived from admissible case (3) in Table 5.1

We adopt the following convention in uniquely identifying the rules: the name con

sists of three parts; the first part is the sub-rule acronym in capital letters; the second

part is the case number of problem topology to which the rule applies; the third part is

either the letter “a”, when the requirement is a constraint, or the letter “b”, when the

requirement is a reference. For instance, the rule in Figure 5.17 is named “ETC(3)a”:

where “ETC” indicates that it is an effect-to-cause rule; “(3)” indicates that it is derived

from case (3) (in Table 5.1); and “a” indicates that the requirement is a constraint.

In Figure 5.17, rule ETC(3)a is derived from admissible case (3) because the prob

5. A Semi-Formal Approach to Problem Progression 127

lem topology of e, c and D (including control and causal relationships) exactly matches

that of case (3) in Table 5.1. Under this rule, domains D', D, shared phenomenon c

and internal phenomenon are not changed; while requirement R and the requirement

phenomenon e are replaced with requirement R' and the requirement phenomenon c.

The description in the dog-eared box remains part of the domain properties of D.

More formally, rule ETC(3)a can be represented as a graph production rule (the

bottom diagram in Figure 5.17), where the application conditions are:

1. the type of V\ and v2 is either Machine, Designed or Given;

2. the type of v3 and V4 is Requirement;

3. the description of v3 includes occurrence(s) of "... e occurs

4. the description of V4 is derived from that of v3 by replacing e occurs ...” with

“... c occurs when g holds ...”;

5. the description of e3 must contain statements of causality, e.g., there should be

a statement like “e internal to D, c causes e when g” as part of domain D 's

properties (internal phenomena as reflexive arc e3);

6 . the time elapsed between the occurrence of the cause c and that of the effect e is

short enough to be ignored (if the requirement statement R explicitly or implicitly

sets time limits for its satisfaction, e.g., real-time systems, then timed causality
A Tshould be used, i.e., in the form of c e, where A T should be within those

limits).

The justification of the above rule (which is similar to all cause and effect rules) is

as follows:

5. A Semi-Formal Approach to Problem Progression 128

• statements in R on phenomena other than event e are untouched by this rule,

and remain the same in the derived requirement R'\ thus all the constraints on

such phenomena are the same in both R and R' and are satisfied under the same

conditions;

• because (g) : c e , a statement of sufficient causality, is part of the behaviour

of D , occurrences of "... e occurs ...” are always the effect of “... c occurs when

g holds thus behaviours that satisfy R will also satisfy R', and vice versa;

• that the timing of the system is not compromised by focusing on event c instead of

e means that care has already been taken in considering the time elapsed between

the occurrence of c and that of its effect e, so that replacing R with R' does not

affect the order of event occurrence in behaviours.

Applying Rule ETC(3)a to an Example

We can now demonstrate in Figure 5.18 how the above rule, ETC(3)a, is applied in step

1 of problem progression in the heating control example:

In the top part of Figure 5.18, I and r represent two injective mapping functions

which ensure that domains D', D, shared phenomenon c (including the control infor

mation) and internal phenomena (represented by the dog-eared box with “e internal to

D, c causes e when g” remain invariant during the application of this rule.

Firstly, rule ETC(3)a can be applied to the bottom-left problem diagram in Fig

ure 5.18 because there exists an injective mapping function m such that:

• m(D') = Heating controller,

• m(D'\{c}) = HC\{on, off} (at the event level, m(c) = on and m (e) = off);

5. A Semi-Formal Approach to Problem Progression 129

ETC(3)a
e internal̂
to D
c causes e
when g

e internal̂
to D
ccauses e
when g

e internal̂
to D
c causes e
when g

Heating
controller

mm

Internal events^is-on a n d f / s -o f f" '
a r e c a u s e d b y on a n d off

c o m m a n d s r e c e iv e d , r e sp ec tiv e ly .

Heating
controller

HC!{on, off)

----------- 1-------IT—__ _
Internal events f / 's -o n a n d f /s - o f f

a r e c a u s e d b y on and off
c o m m a n d s r e c e iv e d , re sp e c t iv e ly .

HC! (on, off)

Heating '{is-on, is-off) j'H e a tin g '', Heating
devices \^ reg im ey devices

J.on, o ff)_ ,'' Command \
received y

Fig. 5.18: Applying effect-to-cause rule ETC(3)a to the heating control problem diagram

• m(D) = Heating devices',

• m({e}) = {is — on, is — off} (at the event level, m(e) = is — on and m(e) =

is - off);

• m{R) = Heating regime;

• the function m also matches the dog-eared box with “e internal to D, c causes e

when g” to the dog-eared box with “Internal events | i s — on and | i s — off are

caused by on and off commands received, respectively'.

Secondly, in addition to the match m, the application conditions of rule ETC(3)a are

met as follows:

• the type of Heating controller is Machine; the type of Heating devices is Given;

• the type of Heating regime and Command received is Requirement;

5. A Semi-Formal Approach to Problem Progression 130

• the description of Heating regime is “the heating devices should be switched on

[i.e., is — on state] at 8:45 am and switched off [i.e., is — off state] at 4:45 pm

every day”, which matches the pattern switched on [e occurs]... switched off

[e occurs]

• the description of Command received is derived from that of Heating regime

- “the heating devices should receive on pulse command [replacing its effect

is — on state] at 8:45 am and off pulse command [replacing its effect is — off

state] at 4:45 pm everyday”, which matches the pattern “... on pulse command

[c occurs when g holds] ... off pulse command [c occurs when g holds] ...”,

where g (domain property of Heating devices) is trivially true;

• part of the domain properties of Heating devices expresses causality, i.e., its in

ternal phenomenon “Internal events | is — on and {zs — off can be caused by on

[pulse] and off [pulse] commands received

• the time elapsed between the occurrence of “... receive on pulse command... and

off pulse command...”, and that of their effects “... should be switched on [i.e.,

is - on state] ... and switched off [i.e., is — off state]” is short enough to be

ignored.

Finally, the bottom-right part of Figure 5.18 (the transformed problem diagram) is

derived by following the production rule in the top part of the figure:

• since {e} is replaced by {c} in the production rule, {is — on, is — off} is replaced

by {on, off};

• since R is replaced by R' in the production rule, Heating regime is replaced by

5. A Semi-Formal Approach to Problem Progression 131

Command received whose description is derived by following the application

conditions of rule ETC(3)a;

• since other graphical elements are untouched by the production rule, other parts

of the problem diagram remain invariant.

5.4.1.2 The Cause-to-Effect (CTE) Rule Class

Let us look at the cause-to-effect rule class. Similarly, under this rule class, the require

ment is rewritten so that any occurrence of a cause, say event “...c occurs...”, is replaced

by an occurrence of its guarded effect, say “e occurs and g holds’’. These rules are de

fined based on causal behaviours of domain D at the event level, rather than phenomena

which are represented as sets of events in a problem diagram.

Analysing Different Cases o f Problem Topology

Because events c and e can be internal to D, shared and controlled, or shared and

observed by domain D, there are nine different cases in which the CTE rule class may

apply. Like our analysis of the ETC rules, we consider each of them and discard those

cases that are not admissible. Table 5.2 summaries the result of the analysis:

There are three cases that are not admissible in Table 5.2. The analysis and the

argument why they are not admissible are similar to those of the ETC rules, thus omitted.

Again as a rule of thumb, in all the cases that are admissible, e is either internal to D or

shared and controlled by D. This is a condition for application of this rule class.

5. A Semi-Formal Approach to Problem Progression 132

Case Admissible
(yes / no) Description / Explanation

(1)
{e>, {c>

yes Both effect e and cause c are internal to D.

yes Effect e is internal to D, cause c is shared and controlled
byD.

not D/{c) yes Effect e is internal to D, cause c is shared and observed
by D (c is controlled by another domain).

(4)
D!{e}

yes Effect e is shared and controlled by D, cause c is internal
to D.

not D! {e}
no

Effect e is shared and observed by D (e is controlled by
another domain), and cause c is internal to D. This case is
not admissible because e can only be controlled by one
domain, and c is internal to D, so c cannot cause e which
contradicts that (g): c e is a domain property of D.

(6)

D! {c> D/{e> yes Both effect e and cause c are shared and controlled by D.

not D! {c> yes
Effect e is shared and controlled by D, and cause c is

shared and observed by D (c is controlled by another
domain).

(8)

D!{c} not D! {e>

Effect e is shared and observed by D (e is controlled by
another domain), and cause c is shared and controlled by
D. This case is not admissible because:
a. if D shares e and c with different domains, then this is
not possible (similar argument to (5));
b. if D shares e and c with the same domain, then the case
is the same as (7), except that e and c swap places.

not D! {c> not D! {e>
Both effect e and cause c are shared and observed (e and
c are controlled by other domain(s)). This case is not
admissible because if D only observes e and c, then
(g): c e is not a domain property of D.

Tab. 5.2: Analysis of all possible cases for the CTE rule class

5. A Semi-Formal Approach to Problem Progression 133

Defining Rules Based on Problem Topology

We define our set of CTE rules based on the admissible cases in Table 5.2. The repre

sentation and justification of these rules are similar to those of ETC rules, thus omitted

here. Please refer to the Appendix B for details of these rules.

5.4.2 The Changing Viewpoint Rule Class

We call the second progression rule class Changing Viewpoint. Rules in this class gener

ate a new requirement statement based on the differing perspectives of domains sharing

an event: switching from the perspective of a domain controlling the event to that of

a domain observing the event, and vice versa. We specialise this rule class into two

sub-classes, namely the observe-to-issue (OTI) class and issue-to-observe (ITO) class.

5.4.2.1 The Observe-to-Issue (OTI) Rule Class

Let us look at the the observe-to-issue rule class first. Under this rule class, the require

ment is rewritten so that any description of a shared event, say ev, is switched from

the viewpoint of its “observer” domain, say D', to that of its “controller” domain, say

D. To capture patterns of control in natural language descriptions, we denote by “...

D issues ev ...” any part of a requirement statement that implies an occurrence of event

ev controlled by D, and by “... D' observes ev ...” any part of a requirement statement

that implies an occurrence of event ev observed by D'.

Defining Rules Based on Problem Topology

Unlike the reducing through cause and effect, this rule class focuses on two domains D

and D' and the event they share ev. So there is only one admissible case in terms of

5. A Semi-Formal Approach to Problem Progression 134

topological relationships among D, D' and ev that we need to consider. Therefore, we

omit the case number in naming them. From this admissible case, we derive two rules,

depending on whether the requirement is expressed in terms of a constraint on ev or a

reference to ev, as shown in Figure 5.19:

• event ev is constrained by the requirements, thus this rule is called OTIa;

• event ev is referred to by the requirements, thus this rule is called OTIb.

O T Ia

O T Ib

D! {ev}

Fig. 5.19: Observe-to-issue rules OTIa and OTIb

In Figure 5.19, OTIa represents the case where an event ev is shared between do

mains D and D', and controlled by D. Under this rule, domains D, D' and their shared

event ev are not changed; while the requirement R expressed from the viewpoint of the

observer D' and its constraint on ev are removed, which is compensated by the addi

tion of a new requirement R' expressed from the viewpoint of the controller D and its

constraint on ev which is attached to D.

More formally, OTIa can be represented as a graph production rule (the bottom

diagram in Figure 5.20), where the application conditions of the rule are:

1. the type of v\ and v2 is either Machine, Designed or Given',

5. A Semi-Formal Approach to Problem Progression 135

O T Ia

D/{ev> < D! {ev}

OTIa = L <r K

£2l/e2 Vjl/vj

iv7:/v, Vj’Jvj e3:le,
W - le , L

v2:/

r

2-*V2
v2:/v2

Fig. 5.20: Observe-to-issue rule OTIa represented as a graph production rule

2. the type of v$ and is Requirement',

3. the description of v3 includes occurrence(s) of D' observes ev ...”, which is

expressed from the viewpoint of v2;

4. the description of V4 is derived from that of V3 by replacing each D' observes

ev ...” with “... D issues ev ...”, which is expressed from the viewpoint of v±.

The justification of the above rule (which is similar to all changing viewpoint rules)

is as follows:

• statements in R on phenomena other than event ev are untouched by this rule, and

remain the same in the derived requirement; thus all constraints on such phenom

ena remain the same in both R and R', and are satisfied under the same conditions;

• because ev is shared between D and D', the occurrence of ev that D' observes

is exactly the same as that D issues (controls); thus behaviours satisfying R also

satisfy R', and vice versa.

5. A Semi-Formal Approach to Problem Progression 136

Applying Rule OTIa to an Example

We can now demonstrate in Figure 5.21 how the above rule, OTIa, is applied in step 2

of problem progression in the heating example:

OTIa

D! {ev}

m

' Controller
\ command

p s-o ff are caused by on
and off commands

received, respectively.

Internal events^ is-on am
ps-o ff are caused by on

and off commands
received, respectively.

" / ' Command
(on, received^

\ rivaling
I controller

Heating
devices

Heating
controller

Heating
devices

Fig. 5.21: Applying the observe-to-issue rule OTIa to the heating control problem diagram

In the top part of Figure 5.21, I and r represent two injective mapping functions

which ensure that domains D ' ,D , shared phenomenon ev (including the control infor

mation) remain invariant during the application of this rule.

Firstly, rule OTIa can be applied to the bottom-left problem diagram in Figure 5.21

because there exists an injective mapping function m such that:

• m(D') = Heating devices;

• m(D\{ev}) — HC\{on, off} (at the event level, m(ev) = on and m(ev) = off)\

• m(D) = Heating controller’,

• m({ev}) = {on, off} (at the event level, m(ev) = on and m(ev) = off)’,

• m(R) = Command received.

5. A Semi-Formal Approach to Problem Progression 137

Note that in Figure 5.21, the darkened area on the left of the bent arrow indicates

those parts that match the left-hand side of the rule - the images of the match m function;

the darkened area on the right of the bent arrow indicates those parts that have been

derived by following the rule above, which imitates the right-hand side of the rule.

Throughout this thesis, we follow this convention when presenting an application of a

rule.

Secondly, in addition to the match m, the application conditions of rule OTIa are

met as follows:

• the type of Heating controller is Machine; the type of Heating devices is Given',

• the type of Command received and Controller command is Requirement',

• the description of Command received includes statement: “the heating devices

should receive on pulse command at 8:45 am and off pulse command at 4:45 pm

everyday”, which is expressed from the viewpoint of the Heating devices - the

observer domain of on and off, which matches the pattern “... heating devices

should receive on ... and off ... [D' observes ev] ...”;

• the description of Controller command is derived from that of Command received'.

“the heating controller should issue the on command at 8:45 am and the off

command at 4:45 pm every day”, which is expressed from the viewpoint of the

Heating controller - the controller domain of on and off, which matches the pat

tern “... heating controller should issue the on ... and the off ... [D issues ev]
99

Finally, the bottom-right part of Figure 5.21 (the transformed problem diagram) is

derived by following the production rule in the top part of the figure:

5. A Semi-Formal Approach to Problem Progression 138

• since requirement R and its constraint on phenomenon ev are removed from do

main D' in the production rule, requirement Command received and its constraint

on phenomena {on, off} are removed from Heating devices in the problem dia

gram;

• since R f and its constraint on phenomenon ev are added to domain D in the pro

duction rule, Controller command and its constraint on phenomena {on, off}

are added to domain Heating controller in the problem diagram. The description

of Controller command is derived by following the application conditions of rule

OTIa (shown previously);

• since other graphical elements are untouched by the production rule, other parts

of the problem diagram remain invariant.

5.4.2.2 The Issue-to-Observe (ITO) Rule Class

Let us look at the issue-to-observe rule class. Similarly, under this rule class, the re

quirement is rewritten so that any description of a shared event is switched from the

viewpoint of the “controller” domain to that of the “observer” domain. In other words,

for domains D, D' and event ev shared by them and controlled by D', a requirement

statement like “... D ' issues ev ...” is replaced by “... D observes ev ...”.

Defining Rules Based on Problem Topology

Like the observe-to-issue rule class, there is only one admissible case in terms of topo

logical relationships among D, D' and ev to be considered. Again we omit the case

number in naming them. We derive two working rules, depending on whether the re

quirement is expressed in terms of a constraint on ev or a reference to ev, as shown in

5. A Semi-Formal Approach to Problem Progression 139

Figure 5.22:

ITOa

ITOb
{ev}

Fig. 5.22: Issue-to-observe rule ITOa and ITOb

• event ev is constrained by the requirements, thus this rule is called ITOa;

• event ev is referred to by the requirements, thus this rule is called ITOb.

The justification of this rule class is similar to that of observe-to-issue rule class,

thus omitted. Examples of applying this rule class can be found in the next chapter.

5.4.3 The Removing Domain Rule Class

We call the third progression rule class Removing Domain. Rules in this class are used to

simplify problem diagrams, allowing us to remove a domain, say domain D', from con

sideration in the analysis, as long as corresponding assumptions are explicitly stated in

the rewritten requirement, that is, expressed by the following pattern in natural language

description: “... assuming D' ...”, which is a shorthand for "... under the assumption

that necessary causal relationships exist as part o f the domain properties o fD ' ...”.

5. A Semi-Formal Approach to Problem Progression 140

Defining Rules Based on Problem Topology

This rule class focuses on two domains D and D'. Domain D is attached to the require

ment R\ while Df is the domain to be removed, as shown in Figure 5.23. Depending on

whether the requirement constrains or refers to the event they share or other events that

do not belong to D', there are six possible cases:

• event ev is constrained by the requirement R, and controlled by D, thus this rule

is called RD(l)a;

• event ev is referred to by the requirement R, and controlled by D, thus this rule

is called RD(l)b;

• event ev is constrained by the requirement R, and controlled by D', thus this rule

is called RD(2)a;

• event ev is referred to by the requirement R, and controlled by D', thus this rule

is called RD(2)a.

• event ev is constrained by the requirement R, and does not belong D', thus this

rule is called RD(3)a;

• event ev is referred to by the requirement R, and does not belong D', thus this

rule is called RD(3)b.

All of the above cases are admissible, from which six rules are derived.

In Figure 5.23, RD(l)a represents the situation where event ev is shared between

domains D and D', and controlled by D. Under this rule, domain D remain unchanged,

while domain D' and its constraint on ev are removed away from D, which is compen

sated by adding a rewritten requirement statement R' and its constraint on ev which is

5. A Semi-Formal Approach to Problem Progression 141

RD(l)a

RD(l)b

RD(2)a

RD(2)b

RD(3)a

RD(3)b

{ev},''

D! {ev}

D'

D — —i R

D'

D! {ev}

{ev},

D'

D'! {ev}

{ e v } , ' '

D'
D '/{ev}

{ e v } ,' '

D'
e v d o e s
belong to D'

{ev}/

D'
ev does m
belong to D'

r u f t r ' * ' .

{ e v } ,
D 4 R ')

T \

D W ---- R

D - i ' R

Fig. 5.23: R em oving domain rule R D (l)a , R D (l)b , R D (2)a, R D (2)b, R D (3)a and R D (3)b

attached to D. The rewritten requirement statement R' is derived from R, by adding

assumptions about the removed domain D', i.e., in the general form of “... assuming D',

[a repetition of R]”.

More formally, RD(l)a can be represented as a graph production rule (the bottom

diagram in Figure 5.24), where the application conditions of the rule are:

1. the type of vi and v2 is either Machine, Designed or Given',

2. the type of v3 and V4 is Requirement',

5. A Semi-Formal Approach to Problem Progression 142

R D (l) a

r
D! {ev} D

D'

RD(l)a = L <■
I

K
r

R

p.'ls,
r v2'.lv2 v4\lv4

Fig. 5.24: R em oving domain rule RD (a) represented as a graph production rule

3. the event that v3 constrains, i.e., ev is the same event shared between v\ and v2\

4. with the exception of ev, no more events that belong to v\ are constrained or

referred to by ^3; and with the exception of v2, no other domain is significant to

Note that we only apply this rule when R does not constrain phenomena of Df

(except D”s shared event ev with D), in other words, no more events that belong to Df

are constrained by R, therefore, we have the following justification of the rule (which is

similar to all removing domain rules):

• statements in R on phenomena other than event ev are untouched by this rule, and

remain the same in the derived requirement; since R ’s only constraint on domain

D' is ev (R may constrain or refer to some internal phenomena that belong to D

or D ’s shared phenomena with other domains), removing D ' does not touch any

phenomena in R, and since R ’s constraint on ev is still kept within the rewritten

requirement, i.e., R' repeats what is stated in R, thus all constraints or references

on such phenomena remain the same in both R and R'.

5. A Semi-Formal Approach to Problem Progression 143

Applying Rule RD(1)a to an Example

We can now demonstrate in Figure 5.25 how rule RD(l)a is applied in step 3 of problem

progression in the heating example:

R D (l)a

m

{on, off} Controller" ' \

\ command J

1 i d [on, ofr
Internal events\is-on an
ps-off are caused by on

and off commands
received, respectively.

Heating
controlle!

Heating
controller

Heating
devices

‘f f f fC O l j ' Controller
\ com mand’]

Fig. 5.25: Applying removing domain rule RD(l)a to the heating control problem diagram

In the top part of Figure 5.25, I and r represent two injective mapping functions

which ensure that domain D remain invariant during the application of this rule.

Firstly, rule RD (l)a can be applied to the bottom-left problem diagram in Figure 5.25

because there exists an injective mapping function m such that:

• m (D ') = Heating devices;

• m (D \{ev}) = H C \{on , off} (at the event level, m (ev) = on and m {ev) = off)',

• m (D) = Heating controller’,

• m ({ev}) = { on , off} (at the event level, m{ev) = on and m (ev) = off)',

• m (R) = Controller command.

5. A Semi-Formal Approach to Problem Progression 144

Secondly, in addition to the match m, the application conditions of rule RD(l)a are

met as follows:

• the type of Heating devices is Given; the type of Heating controller is Machine;

• the type of Controller command and Controller command' is Requirement;

• the events that the requirement Controller command constrains, i.e., on and off

are the same events shared between Heating devices and Heating controller',

• with the exception of on and off, no more phenomena that belong to domain

Heating devices are constrained or referred to by the Controller command', and

with the exception of domain Heating controller, no other domain is significant

to Controller command.

Finally, the bottom-right part of Figure 5.25 (the transformed problem diagram) is

derived by following the production rule in the top part of the figure:

• since requirement R and its constraint on phenomenon ev are removed from do

main D in the production rule, requirement Controller command and its con

straint on phenomena on and off are removed from Heating controller in the

problem diagram;

• since R ' and its constraint on phenomenon ev are added to domain D in the pro

duction rule, Controller command' and its constraint on phenomena on and off

are added to domain Heating controller in the problem diagram. The description

of Controller command' is derived by following the application condition of rule

RD(l)a: “... assuming the proper operation o f Heating devices, the heating con

troller should issue the on command at 8:45 am and the off command at 4:45

5. A Semi-Formal Approach to Problem Progression 145

pm every day”, which matches the pattern assuming the proper operation o f

Heating devices [assuming D ' \ ... [a repetition of Controller command]”;

• since the dog-eared box is part of Heating devices’ domain properties, thus it

should be removed when domain Heating devices is removed.

5.5 Discussion on Heuristics for Applying the Transformation Rules

In previous sections, we have defined three classes of graph production rules that aim

at transforming problem diagrams with arbitrary problem topologies. For example, the

cause-to-effect rule class and effect-to-cause rule class cover all possible cases.

ETC(3)a
e in ternal ^
to D
c c a u s e s e
w h e n g

D

e i n t e r n a l ^
to D
c c a u s e s e
w h e n g

e in ternal
to D
c c a u s e s e
w h e n g

m

Heating
controller

Internal events f/s-on andj/s-o/T^'
are caused by on and off

commands received, respectively.

HC!{on, Off}

Heating
devices

Jjs-onjs-on} / Heating"
^ reg/me /

Internal events f/s-on andjvs-off^l
are caused by on and off

commands received, respectively.
Heating
controller

HC!{on, off}

Heating
devices

^on, o f f } / 'C o m m a n d " \
received /

CTE(3)a
m

D'
e i n t e r n a l ^
t o D
c c a u s e s e
w h e n g

r D'
e i n t e r n a l ^
t o D
c c a u s e s e
w h e n g

/ D'
e i n t e r n a l ^
to D
c c a u s e s e
w h e n gD U c}

/
/ <323 D ',ic\

t
e r > DH c} //

/

Fig. 5.26: A n exam ple o f applying effect-to-cause rule ETC(3)a or cause-to-effect rule CTE(3)a
to the sam e problem diagram

Let us investigate what is needed to achieve the goal of problem progression. Let

5. A Semi-Formal Approach to Problem Progression 146

us take the problem diagram in Figure 5.18 for example, which we recall here in Fig

ure 5.26.

In Figure 5.26, we can find at least two graph production rules that match the same

problem diagram (the CTE(3)a rule has been flipped horizontally for the match). If we

apply the rules randomly, say rule CTE(3)a, we may end up with an undesired problem

diagram (which is the problem diagram on the left-hand side of the bent arrows) after

graph transformation p1. Without any heuristics, this kind of undesired transformation

can not be prevented.

There is one heuristic that can help us progress problems: problem progression is

about transforming problem diagrams in a way that only specification phenomena are

described, in other words, we should aim at “moving (the requirement) closer to the

machine ”. With this heuristic, we should chose rule ETC(3)a, and arrive at the right-

hand side of the bent arrows after graph transformation p, instead of p'. The case studies

in the next chapter will be based on this heuristic.

We have also defined that our progression rules have to be matched injectively before

they can be applied in problem progression. This is an important rule application con

dition that aims at guaranteeing the convergence of graph transformation process: the

formal works by Habel et al. [57] have proved that there are many theoretical advantages

of injective matching of production rules in graph transformation - the transformation

is more likely to terminate and different paths of graph transformation are more likely

to converge. Their results provide a formal basis for mechanising our techniques, thus

a promising direction for future work.

5. A Semi-Formal Approach to Problem Progression 147

5.6 Summary

In this chapter, we have introduced a working definition of causality that focuses on

cause-and-effect relationships between events. We have given a taxonomy of causality

that aims at dealing with more complex domain properties for the purpose of problem

progression. For example, conditional causality and timed causality allow us to deal

with more elaborate problem descriptions; likewise, biddable causality allows us to

express the expected behaviour of a biddable domain.

We have defined a set of causality-based rules for problem progression and illus

trated how they can be used for manipulating problem diagrams - problem progression

based on these rules can be formalised as graph transformation based on graph pro

duction rules. The purpose of this semi-formal approach is not to achieve a complete

formalisation of problem progression but to extend the applicability of problem progres

sion based on these rules. The reason for adopting a semi-formal approach rather than

a fully formal one is because of the informal nature of problem analysis in early RE:

customer requirements start with informal descriptions usually in natural language, so a

completely formal treatment is not feasible in the general case; descriptions of complex

domain behaviours (e.g., those involving human behaviours) are often too rich to be

usefully described by formal models for problem progression. Examples in this chapter

have shown that the matching of a rule to part of a problem diagram not only relies

on the matching of graphical structures, but also involves finding and matching a fixed

pattern of informal expressions in requirement and domain descriptions.

In this chapter, we have applied our causality-based rules for problem progression

in a very simple example - the automatic heating control problem. We have demon

strated that the derived specification of the Heating controller, i.e., description of

5. A Semi-Formal Approach to Problem Progression 148

Controller command does indeed satisfy the original requirement Heating regime be

cause our causality-based rules can guarantee that the graphical transformation is per

formed in a solution-preserving way. The simplicity of the problem allows us to have

thorough analysis and presentation of our techniques. In order to evaluate the applica

bility or scalability of our progression rules in a more realistic setting, we will apply our

techniques to more complex case studies in the next chapter.

6. CASE STUDIES

This chapter applies the rules in the previous chapter to two case studies adapted from

the literature. The first one is the problem of developing software for a point-of-sale

(POS) system to help cashiers process purchases in a retail shop environment, which

we have also used in Chapter 5. The second one is a package router problem where a

computer is required to control the routing of packages to their proper destination bins

based on their delivery addresses.

6.1 The Point-of-Sale (POS) Problem

Point-of-sale systems are a popular subject for case studies in software engineering,

such as in teaching object-orientation and the unified process [104], in industrial expe

rience reports [13], and in software testing [49].

In this case study we assume the following problem statement [128]:

“We consider the development of a point-of-sale (POS) system for a shop.

The new POS software system is to be used to process all sales within the

shop. The system is to include a controller, to be designed, and some hard

ware, purchased from a third party. The new POS hardware includes a

barcode reader, a credit card reader, a keyboard and display, and a cash

drawer.”

6. Case Studies 150

The problem is to develop software for the POS system so that cashiers can

help customers pay for items they wish to purchase before leaving the shop

with a valid receipt.

Figure 6.1 shows the problem diagram.

CA!jPOS! k CU!i

POS! mCO!l CA!n
Cashier CustomerPOSController

i: {present(item), present(payment)}

j: {enter(item.info), enter(payment.info)}

k: {transfer(item.info), transfer(paymentinfo)}

I: {generate(receiptinfo)}

m: {print(receipt.info)}

n: {present(receipt)}

Fig. 6.1: The POS problem diagram

Table 6.1 shows the identified domains and their descriptions.

N am e Description

Custom er A person who w ants to buy an item from the shop.

Cashier A sh op em ployee who is authorised to perform sa le s .

PO S
T he new PO S hardware which includes a barcode reader, a credit card
reader, a keyboard and display, and a ca sh drawer.

Controller (m achine) T he solution to be designed .

Tab. 6.1: Domains and their descriptions

Table 6.2 shows problem phenomena and their designations.

We will progress the requirement through to the specification, that is, repeatedly

transform it until the requirement is expressed only in terms of the specification phe

nomena. The requirement Ri is as follows:

6. Case Studies 151

Name Type Designation

present(item) event
The exchange of an item between the Customer and the Cashier.
This event is initiated and controlled by the Customer.

present(payment) event
The exchange of a payment between the Customer and the
Cashier. This event is initiated and controlled by the Customer.

enter(item.info) event
The action of the Cashier entering item information into the POS,
e.g., scanning the items' barcode using the barcode reader. This
event is controlled by the Cashier.

enter(payment.info) event
The action of the Cashier entering payment information into the
POS, e.g., swiping a credit card or manually keying in the amount of
cash payment into the POS. This event is controlled by the Cashier.

transfer(item. info) event The action of the POS transferring item information to the Controller.
This event is controlled by the POS.

transferfpayment. info) event The action of the POS transferring payment information to the
Controller. This event is controlled by the POS.

generate(receiptinfo) event The action of the Controller making receipt information available to
the POS. This event is controlled by the POS.

print(receipt.info) event The action of the POS printing receipt. This event is controlled by
the POS.

present(receipt) event
The exchange of a receipt (including due change if cash payment)
between the Customer and the Cashier. This event is controlled by
the Cashier.

Tab. 6.2: Phenomena and their designations

R\ = “ When the Customer issues a number o f present {item), followed

by one present {payment), if payment is fo r the correct amount, then the

Customer should observe present {receipt).”.

Note that R\ relates a number of present {item), followed by present {payment),

which are referred to by R\, and present {receipt) which is constrained by R\. This as

sociation should be achieved by the combined interactions among domains Customer,

Cashier, POS, and Controller.

6. Case Studies 152

6.1.1 First Step o f Progression

In the first step, we apply the issue-to-observe rule ITOb twice, and switch from the

Customer to the Cashier, as they shared events present (item) and present (payment).

The rule application is shown in Figure 6.2 and results in the rewritten requirement:

R2 = “When the Cashier observes a number o f present (item), followed

by one present (payment), i f payment is fo r the correct amount, then the

Customer should observe present (receipt) .

ITOb
D

D'

D'!{ev}
{ev},'

Controller

COII

POS

POS! m CAIj

Cashier

mm
cut (presenwtem))
CU! {p rese n tip a ym en t)}

D'!{ev}

D'

D
{ev}

07 {ev}

D'

R'

Controller

COII POS! k

POS

POS! m CAIj

CAM

{presentment)}

{presentipayment)} v

CU! ipresentiitemj) - ' ' n
CU: {preseptipayment)}

;

fpresert(ttem)} _------- -
C ustom er

(Fesentipaymeni)} " ' ------- 1

ITOb

07 {ev}

O ' —
{ev} /

I D

07 {ev}

D‘

{ev}

07 {ev}

0 '

Fig. 6.2: Point-of-sale problem progression step 1: applying the issue-to-observe rule ITOb

6. Case Studies 153

6.1.2 Second Step o f Progression

In the second step, we apply the observe-to-issue rule OTIa, and switch from the Customer

to the Cashier, as they share event present(receipt). The rule application is shown in

Figure 6.3 and results in the rewritten requirement:

= “When the Cashier observes a number o f present (item), followed

by one present (payment), i f payment is fo r the correct amount, then the

Cashier should issue present(receipt) ”.

OTIa
D I

D r D

D! {ev}

Controller

CO! I POS! k

POS

POS! m CA! j

m

D! {ev}

Cashier

CU■' i

{present(item)>

'{pFesehttpaymentj}
CA! {present(receipt}}

Customer

{ev}
R'

D! {ev}

D' 4e--V ' rs ✓
D' D'

Controller

COII POS! k

POS

POS! m CA! j

Cashier

CU! i

{present! item)} j

{preseniipayment)} / D
M----------------------------- \ 3

{present. receipt)} " „

CA1 {oresent(receipt)}

Customer

Fig. 6.3: Point-of-sale problem progression step 2: applying the observe-to-issue rule OTIa

6. Case Studies 154

6.1.3 Third S tep o f Progression

In the third step, Cashier is expected to have the following domain properties (causal

relations)

present(item) bl̂ f n enter (item, info), and

pres ent (payment) bl<̂ f n enter (payment, info),

which allow us to apply the cause-to-effect rule CTE(7)b to replace present(item)

and present (payment) with enter (item, info) and enter (payment, info) respectively,

as shown in Figure 6.4.

Controller Controller

COII POS! k COII POS! k

moss

POS1 m CA! {enter{itemJnfoY-
CA! {enteripaymentinfo)}

CA'n

worn

POSt.m

Cij: tj>resent{item)}
\

CO; ipreser.Upayment')}

Customer
presentijtem) causes ethm— *

(iitem.info); present{paymenf)
causes enterfpaymen! info)

> T.'
CAI {enteripaymentinfo))

{pjesenQitejn)}__ '
Cashier {presehiipaymenlft • R y ■ Cashier

Hftro n i i

CA!n

{enter{item.info)>
{enteRpaymenihio}^ ' ' Ni

OUI {presentiitem)>
COl {presentfpayment)}

Customei
present{ltem) causes

{item info); presentipayment)
causes enteripayment info)

CTE(7)b

D ’

D ! { e)

D '

D ! { e)

D " ! { c }

D "

c causes
e when g

D 7{c}

D "

c causes
e when g

D'

D ! { e)

L) £ £ L i f l / R '

D " ! { c)

D "

c causes
e when gl)

Fig. 6.4: Point-of-sale problem progression step 3: applying the cause-to-effect rule CTE(7)b

6. Case Studies 155

By applying the rule, we arrive at the rewritten requirement:

i?4 = “When the Cashier issues a number o f enter {item.info), followed by

one enter {payment, info), i f payment is fo r the correct amount, then the

Cashier should issue pres ent {receipt).”.

6.1.4 Fourth Step o f Progression

Controller

COII POS! k

mom

CA! j

pnnt(receipt info causes
presentjreceipt)

POS! {print{receipt. infojl

CU'i
CA! fyresentireceipt)}

Customer

~erJteĈ)present(item) causes
(Item.info); present(paymen(]
causes enter(payment.info)

m

Controller

COII POS! k

POS

C A Ij

“ "“t: as*,
print(receipt.info) causes

pre$ent(receipt)

1
2

1

hier -f * 4 ; S
{present(receipf,)} v .

.1hier

POS' {prini(receipt.info))„ - - '

cun

„ -------------------------- -v r5 ;
(printjreceiptinfo)} ____

CA! tyresent(receipt)}

Customer

 r-
present(item) causes enter

(item.info); presentjpaymenf)
causes enter(payment.info)

ETC(7)a D" c causes
e when g D"

D "!{c }y f 1

c causes
e when g D'

D!{e)

D'

c causes
e when gn

R'

D'{e)

D'

D!{e)

D'

Fig. 6.5: Point-of-sale problem progression step 4: applying the effect-to-cause rule ETC(7)a

In the fourth step, Cashier is expected to have the following domain property (causal

relation)

6. Case Studies 156

print (receipt, info) l<̂ n pres ent (receipt),

which allows us to apply the effec-to-cause rule ETC(7)a to replace pres ent (receipt)

with print (receipt, info), as shown in Figure 6.5.

By applying the rule, we arrive at the rewritten requirement:

= “When the Cashier issues a number o f enter (item .info), followed by

one enter (payment.info), if payment is fo r the correct amount, then the

Cashier should observe print (receipt, info).”.

6 .1.5 Fifth Step o f Progression

R D (3)b

D‘
evdoes
belong

snor'l
toD' |

Controller

COII

Controller

POS! k COII

POS

CAIj POS! m'

enterjitem.info), enflfcay
{payment.info) and print

{receipt.info) do not belong
to Customer

POS! k

POS

CAIj

cun

POS! m

{entert.item.info)) ------
Cashier [enteripayment. info)} f □ \ Cashier---------------------- iv ;

{print{receipt.info)} v-_t .

. - — - N

r6 n>

Gu&oirn.
print{receipt.info) causes 1 \ \

present(receipf) \
print{receipt.info) causes

present{receipf)
jses~~ I

"Y —̂ \
(item, info): present(paymenf)
causes enteripayment.info)

present(item) causes enter
(item.info)\ present(paymenf)
causes enteripayment.info)

R D (3)a {ev>♦ — i R i

Fig. 6.6: Point-of-sale problem progression step 5: applying the rules RD(3)a and RD(3)b

6. Case Studies 157

In the fifth step, by applying the removing domain rules RD(3)a and RD(3)b respec

tively as shown in Figure 6.6, we arrive at the rewritten requirement:

Rq = “Assuming Custom er’s behaviour, when the Cashier issues a number

o f enter (item .info), followed by one enter (payment, info), i f paym ent is

fo r the correct amount, then the Cashier should observe print (receipt, info).'”.

Application of these rules is justified by the fact that statements in R 5 do not con

strain or refer to Customer’s behaviour anymore, hence removing the Customer do

main from the diagram does not touch any phenomena in R 5.

6.1.6 Sixth Step o f Progression

ITOb
D
D 7{ev>

D' l M / r

D'! {ev}

D'

D
{ev}

{ev}D'!

D'

R'

Controller

COII POS! k

POS

POS'm

Cashier

CA! [enter,item info)}
CA1 {enteripayment.info)}

{enteri.item.info))
{enteiipayrnent info)}f

m

printireceipt.info)
present(receipt)

causes'll
ipf) {

presentiitem) causes er
{item, info)-, present{payment)
causes enteripayment.info)

Controller

COII POS! k

m m

POS1 m

{enter(item.info)}
[enleripaymentinfof x

CA! {enierijtem.info)) s '
CA1 {entenpaymenlmfo>}

Cashier

CAIn

'' m

CU lt \ print(receipt.info) cai
present(receipt)

Customer
Hurpresent{item) causes er

(item.info)] present(payment)
causes enteripayment.info)

Fig. 6.7: Point-of-sale problem progression step 6: applying the issue-to-observe rule ITOb

6. Case Studies 158

In the sixth step, we apply the issue-to-observe rule ITOb and switch from the

Cashier to the POS, as they share event enter (item, info) and enter (payment, info).

The rule application is shown in Figure 6.7 and results in the rewritten requirement:

R7 = “Assuming Custom er’s behaviour, when the PO S observes a number

o f enter (item, info), followed by one enter (payment.info), i f payment is

fo r the correct amount, then the Cashier should observe prin t (receipt, info).”.

6.1.7 Seven th S tep o f Progression

OTIa

D! {ev}

s n j & s ' r D'

D! {ev}

{ev}

D! {ev}

D'

R'

Controller

C O II PO S! k

m m

CAIj
PO S! {pnnti receipt in fo)}_ - ^

Cashier

print(receipt.info) cai
present(receipf)

presentjitem) causes enter—
(item.info)', present[payment)
causes enteripayment.info)

Controller

C O II PO S! k

POS

C A Ij

m
iprintjreceipt.info)>

POS! {print(receipt info)}

Cashier

print{receipt.info) cai
present(receipt)

present(item) causes eftei' >
(item.info)-, presentjpaymenf)
causes enteripayment.info)

Fig. 6.8: Point-of-sale problem progression step 7: applying the observe-to-issue rule OTIa

In the seventh step, we apply the observe-to-issue rule OTIa and switch from the

Cashier to the PO S, as they share event print (receipt, info). The rule application is

6. Case Studies 159

shown in Figure 6.8 and results in the rewritten requirement:

Rs = “Assuming Custom er’s behaviour, when the PO S observes a number

o f enter (item .info), followed by one enter (payment.info), i f payment is

fo r the correct amount, then the PO S should issue print (receipt, info).'”.

6.1.8 Eighth Step o f Progression

CTE(7)b

D !{e)D/{e>D/{e>

D"! {c}D"! {c}

m

c causes
e when g

c causes
e when g

c causes
e when g

Controller Controller

con POSI {transfepitem.info)>
POS! {transfenpayment.infoi} con

POS

PO S'm

ienienjiem.info}}!

m ' ' ' ---- -

POS! {transferiitem.info)>
POS! {transfer(payment.info)>

POS

Cashier

Ck'{enter{item,info))
CA)^enteripayment.mfo)}

enter(item.info) causes trf r s f e r ^

POSlm

{item.infoy, enteripaymentinfo)
causes transferipaymentinfo)

print{receipt.info) cai
presentjreceipt)

us55~*,j

present(item)causes enter—
(iitem.info); present(payment)
causes enteripayment.info)

{fransfer{item.info)} / '
ŝnjfehpaymentjnfoy's x

m -

Cashier

Ckl {enteriltem.info)}
CAf •{enteripayment.info)}

enter{item.info) causes transfer*)
(item.infoy, enteripayment.info)
causes transferipaymentinfo)

, print{receipt.info) cai
present(receipt)

usu5~~j

present(item) causes e/^fer^
{item.info)] present{payment)
causes enteripayment.info)

Fig. 6.9: Point-of-sale problem progression step 8: applying the cause-to-effect rule CTE(7)b

In the eighth step, PO S has the following domain properties (causal relations)

enter (item, info) ^ transfer (item, info), and

6. Case Studies 160

enter (pay merit, info) ^ transfer (payment, info),

which allow us to apply the cause-to-effect rule CTE(7)b to replace enter (item, info)

and enter (payment, info) with transfer (item, info) and transfer (payment, info) re

spectively, as shown in Figure 6.9.

By applying the rule, we arrive at the rewritten requirement:

Rq = “Assuming C ustom er’s behaviour, when the PO S issues a number o f

transfer (item, info), followed by one transfer (payment, info), i f payment

is fo r the correct amount, then the POS should issue print (receipt, info). ”.

6.1.9 Nin th Step o f Progression

ETC(7)a

D/{e>D !{e} D '{e)

m

e whenewhen e when

Controller
causes printjreceipt info)ietpt.irfo)

CO!{ge nerateireeeipt info)}
POS'k

POS

POS' prtntireceipt.mfo)}
CA'j ' """"

-------------- ; p9

<printjreceipt info»

CasOier enterjitem.info) causes trdnsfSr^
[item.info); enteripayment.info)
causes transferipaymentinfo)

printjreceipt.info) caJse? -
presentjreceipt)

presentjitem) causes enter—
[item.infoy, presentjpayment)
causes enteripayment.info)

Controller
causes printjreceipt.info)info) [

CO! {gt nmteirpceipUrtfp))
POS1 k

POS
igeneratejreceipt

POS’ipnhtjreceipt info)}
C A ’j

1. Rl° ,
mfoil...........'

Cashier enterjitem.info) causes fraVfs^?5̂
[item.info); enteripayment.info)
causes transferipayment info)

printjreceipt.info) caiisesr-
presentjreceipt)

presentjitem) causes enter—
[item.info)] presentjpayment)
causes enteripayment.info)

Fig. 6.10: Point-of-sale problem progression step 9: applying the effect-to-cause rule ETC(7)a

6. Case Studies 161

In the ninth step, PO S has the following domain property (causal relation)

g enerate (receipt .info) print (receipt, info),

which allows us to apply the effec-to-cause rule ETC(7)a to replace print (receipt, info)

with generate(receipt.info), as shown in Figure 6.10.

By applying the rule, we arrive at the rewritten requirement:

R 10 = “Assuming C ustom er’s behaviour, when the PO S issues a number o f

transfer (item .info), followed by one transfer (payment, info), i f payment

is fo r the correct amount, then the PO S should observe print (receipt, info).”.

6.1.10 Tenth Step o f Progression

RD(3)b D -

\

D‘

{ev},''

e v does n o f
belong to D'

generate(receipt.in,
ca u ses print(receipt.info)

POS! {trar sferiitem.infoj)
POS! {trar sferipaynjeht.info))
CO’ \gene ateireaiipt info).

{ tr a n s fe r f ite m .in fo)) /
mg t

aletmoeipfJnfo)}

info) |

Posm

Cashier

POS! {tr wsfer(item.infb)}
POS! {tr msfer{payment.info)}
CO! {gei eratei/e'ceipt.info)}

generate(receipt. in,
ca u ses print[receipt.info)info) j

POS
(transferiftem.mfo))

fn'sfeKpaymehtlr.royP^
enerate(recetpt.info)) ~ ------

CA ll transferi.ifem.info), transft
(payment.info) and generate

:(receipt.info) do not belong to Casi

enteifitem.info) causes fral
(item.infoy, enteripayment.infoJ
ca u ses transferipayment.info)

print(receipt.info) cai
presentfreceipt)

enter(item.info) cau ses fra!
(item.info), enteripayment.info)
cau ses transferipaymentinfo)

present(item) ca u ses enter
(item.infoy, present(payment)
cau ses enteripayment.info)

RD(3)a

ev does n<
belong to /

{ev}
♦ ---{ R‘

Fig. 6.11: Point-of-sale problem progression step 10: applying the rules RD(3)a and RD(3)b

6. Case Studies 162

In the tenth step, by applying the removing domain rules RD(3)a and RD(3)b re

spectively as shown in Figure 6.11, we arrive at the rewritten requirement:

R n = Assuming Customer’s and Cashier’s behaviour, when the POS is

sues a number o f transfer (item.info), followed by one transfer (payment, info),

if payment is fo r the correct amount, then the POS should observe

generate (receipt, info).”.

Application of these rules is justified by the fact that statements in jR10 do not con

strain or refer to Cashier’s behaviour anymore, hence removing the Cashier domain

from the diagram does not touch any phenomena in R iq. The dog-eared box indicating

that events transfer (item.info), transfer (payment.info) and generate(receipt.info)

do not belong to Cashier is also removed. All dog-eared boxes that are attached to

Cashier describe its domain properties, hence they are removed together with the do

main.

6.1.11 Eleventh Step o f Progression

In the eleventh step, we apply the issue-to-observe rule ITOb and switch from the POS

to the Controller, as they share event transfer (item.info) and transfer (payment.info).

The rule application is shown in Figure 6.12 and results in the rewritten requirement:

R 12 = Assuming Customer’s and Cashier’s behaviour, when the Controller

observes a number o f transfer (item.info), followed by one

transfer (payment.info), if payment is for the correct amount, then the

POS should observe

print (receipt, info).”.

6. Case Studies 163

ITOb

D'!{ev}

D'

{ev}

D'!{ev}

D'

R'

Controller Controller
(transfer(item.info)}
{transferipayment info})' ̂ 11

con PO S! (transfertitem info))
FOS: (transferipayment infoi)

PO S1 {translenitem .m fo\j, - '
PO S1 {tranaferipaymernt info))

. /P C ’S-
transfei\item info)} ^

'̂ nĵ fĵ ymentlnfy)} '̂-^ ̂ 11 y l j j
POS

> > 1 •- : ||f

V , generate(receipt.info) l
c a u se s print(receipt.info)

\ enter{item.info) c a u se s fransfe^"',
(item.info)] enter(payment.info)
ca u se s transfer(payment.info)

generate(receipt.in\
ca u se s print(receipt.info)info)

enter(item.info) ca u ses
(item.info)] enteripayment.info)
c a u se s transfertpayment.info)

Fig. 6.12: Point-of-sale problem progression step 11: applying the issue-to-observe rule ITOb

6.1.12 Twelfth Step o f Progression

OTIa

P O S 'k

D!{ev}

t r o tte r

CO.' (generate!,receiptmfo))

(MU

I H i !
' *7geaeraie{m ceipt.ir ifo)>

generate(receipt.im
causes print(receipt.info)info) |

enter(item.info) ca u ses fra]
(item.info)] enteripayment.info)
ca u ses transfertpayment.info)

t.info)
.info) |

{ev}

D!{ev)

D'

D! {ev}

D’

POs: k
{generate(receipt.info}} ‘

C O t{ge

R'

generate(receipt.in,
causes print(receipt.info)info) |

enter(item.info) cau ses fral
(item.info)] enter(payment.info)
ca u ses transfer(payment.info)

Fig. 6.13: Point-of-sale problem progression step 12: applying the observe-to-issue rule OTIa

In the twelfth step, we apply the observe-to-issue rule OTIa and switch from the

POS to the Controller, as they share event generate (receipt, info). The rule application

is shown in Figure 6.13 and results in the rewritten requirement:

6. Case Studies 164

R tf = “Assuming C ustom er’s and Cashier’s behaviour, when the Controller

observes a number o f transfer {item.info), followed by one

transfer {payment, info), if payment is fo r the correct amount, then the

Controller should issue print {receipt, info).'”.

RD(2)b

6.1.13 Thirteenth Step o f Progression

* l r _{ e v } /

D'! {ev}
{ev} /

R'

D'

m rv
{transfer\i!em info)}

*
 {generate(receipt. info)} ' ' '
POS! {transfer{item info), transferipayment info)}
CO1 igenerate{receipt, info))

Controller
{transfeiiitem.info}} / "

ifransk^yment. [nfojg v R}4 /
{generate(receiptinfo)} ~~-----------

POS

{generate(receipt.inh
causes {print[receipt.info)}t.info)} |

{enter{item.info)} causes
(item.info)}; {enteripayment.info)}
causes {transfertpayment.info)}

m
RD(l)a

{ev}
R'

Fig. 6.14: Point-of-sale problem progression step 13: applying the removing domain rules
RD(2)b and RD(l)a respectively

In the thirteenth step, by applying the removing domain rule RD(2)b and RD(l)a

respectively as shown in Figure 6.14, we arrive at the rewritten requirement:

= “Assuming C ustom er’s, Cashier’s and POS behaviour, when the

6. Case Studies 165

Controller observes a number o f transfer (item.info), followed by one

transfer (payment, info), if payment is fo r the correct amount, then the

Controller should issue print (receipt, inf ’o). ”.

Notice the following:

• All the dog-eared boxes are part of the domain PO S , hence they are removed

together with the domain.

• The R u expresses a conditional causality (we regard the combination of sev

eral transfer (item.info) events and one transfer (payment.info) event as a single

event, which we name receive(info) by abstraction):

(payment is correct amount) : receive(info) ^ generate(receipt.info).

This conditional is usually achieved by Controller comparing the total value of

items via event transfer (item.info) with the total value of payment via event

transfer (payment, info), and if the latter is greater than or equal to the former,

then generate(receipt.info) event should happen.

That completes all the steps of problem progression as the requirement statement

R u is expressed only in terms of specification phenomena - the Controller domain’s

behaviour. Figure 6.15 shows the final problem diagram after the problem progression.

{ transfer{item.info)>

Controller {transfertpayment.info)} (
^ --------------------------------

{generate(receipt.info)>

Fig. 6.15: Point-of-sale problem: final problem diagram after problem progression

Table 6.3 summarises the development of the requirement statements throughout the

entire process of problem progression (next page).

6. Case Studies 166

N am e D escrip tion

R i
W h e n th e C ustom er i s s u e s a n u m b e r of presenVjtem), fo llow ed b y o n e presenttpaym enf), if
paym en t is fo r th e co rre c t a m o u n t, th e n th e C ustom er sh o u ld o b s e rv e present(receipf).

r 2
(by ru le ITOb)

W h e n th e C ash ier o b s e rv e s a n u m b e r of present(item), fo llow ed by o n e present(paym ent), if
pay m e n t is fo r th e co rre c t a m o u n t, th e n th e C ustom er sh o u ld o b s e rv e present{receipt).

* 3
(by ru le O TIa)

W h e n th e C ash ier o b s e rv e s a n u m b e r o f present(item), fo llow ed b y o n e presenttpaym enf), if
p aym en t is fo r th e co rre c t a m o u n t, th e n th e C ash ier sh o u ld is s u e present(receipf}.

R a
(by ru le C T E (7)b)

W hen th e C ash ier i s s u e s a n u m b e r o f enterijtem .info), fo llow ed b y o n e enter[paym ent.info), if
paym en t is fo r th e co rre c t am o u n t, th e n th e C ashier sh o u ld is s u e present(receipt).

Rs
(by ru le ET C (7)a)

W h e n th e C ash ier is s u e s a n u m b e r of enterijtem .info), fo llow ed by o n e enteripaym entin fo), if
pay m e n t is fo r th e c o rrec t am o u n t, th e n th e C ashier sh o u ld o b s e rv e prin tireceiptin fo).

Re
(by ru le s R D (3)a & b)

A ssu m in g Customer's b ehav iour, w h en th e Cashier is s u e s a n u m b e r o f enter[item .info),
fo llow ed by o n e enter(paym ent.info), if paym ent is fo r th e c o rre c t am o u n t, th e n th e Cashier
sh o u ld o b s e rv e printireceiptinfo).

R r
(by ru le ITOb)

A ssu m in g Custom er’s b ehav iour, w h en th e P O S o b s e rv e s a n u m b e r of enterijtem .info),
fo llow ed by o n e enter{paym ent.info), if paym ent is fo r th e c o rre c t am o u n t, th e n th e Cashier
sh o u ld o b s e rv e printireceiptinfo).

Re
(by ru le O TIa)

A ssu m in g C ustom er’s b ehav iour, w h en th e P O S o b s e rv e s a n u m b e r of entertjtem .info),
fo llow ed b y o n e entertpaym ent.info), if paym ent is fo r th e c o rre c t am o u n t, th e n th e P O S sh o u ld
is s u e print{receipt.info).

R e
(by ru le C T E (7)b)

A ssu m in g Custom er's b ehav iour, w h en th e P O S i s s u e s a n u m b e r of transferiitem.info),
fo llow ed by o n e transferipaym ent.info), if p aym en t is fo r th e c o rre c t am o u n t, th e n th e P O S
sh o u ld is s u e printireceiptinfo).

Rio
(by ru le E T C (7)a)

A ssu m in g Custom er's b ehav iou r, w h en th e P O S i s s u e s a n u m b e r of transfer[item.info),
fo llow ed by o n e transferipaym ent.info), if paym ent is fo r th e c o rre c t am o u n t, th e n th e P O S
sh o u ld o b s e rv e print{receipt.info).

R u
(by ru le s R D (3)a & b)

A ssu m in g Custom er’s a n d Cashier's b ehav iou r, w h en th e P O S i s s u e s a n u m b e r of transfer
(item.info), fo llow ed by o n e transfertpaym ent.info), if paym ent is fo r th e c o rre c t am o u n t, th e n
th e P O S sh o u ld o b s e rv e generate{receipt.info).

R
(by ru le ITOb)

A ssu m in g Customer's a n d Cashier's b ehav iour, w h e n th e Controller o b s e rv e s a n u m b e r of
transferiitem .info), follow ed by o n e transfertpaym ent.info), if pay m e n t is fo r th e correct am o u n t,
th e n th e P O S sh o u ld o b s e rv e printireceiptinfo).

R n
(by ru le O TIa)

A ssu m in g C ustom er’s a n d Cashier's behav iou r, w h e n th e Controller o b s e rv e s a n u m b e r of
transferiitem .info), follow ed by o n e transfertpaym entinfo), if paym en t is fo r th e co rre c t am o u n t,
th e n th e Controller sh o u ld is s u e printireceiptinfo).

Rl4
(by ru le s R D (2)b & (1)a)

A ssu m in g Customer's, Cashier's a n d P O S b ehav iou r, w h e n th e Controller o b s e rv e s a n u m b e r
of transferiitem .info), follow ed by o n e transfertpaym entinfo), if p aym en t is fo r th e co rre c t
am o u n t, th e n th e Controller sho u ld is s u e printireceiptinfo).

Tab. 6.3: Requirements transformations in the point-of-sale problem progression

6. Case Studies 167

6.2 The Package Router Problem

The second case study is a package router problem. It has been used as an example

problem in [156, 10, 80, 83, 125], and originates from [73]. The problem statement is

as follows [125]:

“A package router is a large machine used by delivery companies to sort

packages into bins according to bar-coded destination labels affixed to the

packages. Each bin corresponds to a regional area. Packages slide by grav

ity through a tree of pipes and binary switches. The bins are at the leaves of

this tree.

The problem is to control the operation of the package router so that pack

ages are routed to their appropriate bins, obeying the operator’s commands

to start and stop the conveyor, and reporting any misrouted packages.”

Figure 6.16 is a schematic of the package router, and Figure 6.17 shows details of

the pipes and switches.

misrouting
display

conveyor
motor \

operator

\

conveyor
on /o ff

buttons

control
com puter

(which
w e m ust

build) l_J

com puter is
connected
to display,
buttons,
m otor,
reading
station,
sensors &
sw itches

Fig. 6.16: Schematic of the package router problem taken from [125] (based on [83]), unmodi
fied

6. Case Studies 168

□ n 4""-
c o n v e y o r
la b el rea d in g s ta t io n

p a c k a g e s e n s o r s

p ip e (fo r s lid in g d o w n)

bin (c o rr esp o n d in g to o n e
or m o r e d e s t in a t io n s)

sw itch (n o t to b e flip p ed
u n le s s e m p ty)

Fig. 6.17: Pipes and switches taken from [125] (based on [83]), unmodified

The analysis in [83] shows that this problem can be decomposed into the following

subproblems:

Pi = “The problem is to control the operation of the package router so that

packages are routed to their appropriate bins.”

P2 = “The problem is to let the operation obey the operator’s commands to

start and stop the conveyor.”

P3 = “The problem is to report any misrouted packages.”

Although each of them could be addressed through problem progression, for brevity

we will focus on Pi, which is the most complex of the three subproblems.

The problem statement does not tell us how many switches and bins are in the prob

lem. For simplicity, we consider only two bins in our analysis which represent the

situation in which a switch has two outgoing pipes releasing the package into two bins

(increasing the number of switches does not affect our treatment of progression).

Let us look at the subproblem in more detail. There are five given domains in this

subproblem: the Reading station, the Switch, the Package, the Binl, and the Bin2. There

6. Case Studies 169

is also the Controller machine, which is the solution domain yet to be built. Table 6.4

shows the identified domains and their descriptions.

N am e Description

Package

T he physical object (e.g., a mail or parcel) to b e so rted to th e correct bins for delivery. All p ack ag es
carry bar-coded labels, which contain its id and destination pkgDst. In th is simplified problem,
pkgDst is e ither left o r right, in a problem with m ore than two bins, pkgDst is th e destination bin
number. T hey go through the reading station, after which they s lide down through p ipes and
sw itches by gravity, and finally s top and arrive a t their destination bins.

Bin1, Bin2
T he container th a t th e p ackage is finally re leased . Each bin is ded ica ted to a group of ad jacen t
a re a s (ad d resses) for delivery.

Reading station The p lace through which th e package is fed from th e conveyor and its id and destination a re read .

Switch
A tw o-position device th a t joins 3 p ipes - one incoming pipe, o n e left pipe and one right pipe. It can
be flipped to the left or to the right so tha t a package can only slide down one of th e connected
pipes (either left p ipe or right pipe). The flipping is controlled by the controller to be built.

Controller
T he solution m achine to be designed . Its wired connection with th e reading station allow s it to
indirectly a c c e s s p ackage ids and destinations; its wired connection with th e switch allow s it to
control th e flipping of sw itches.

Tab. 6.4: Domains and their descriptions

Figure 6.18 shows the problem diagram and Table 6.5 details its phenomena.

Bin1

Reading
station

Package

Switch

Controller

Bin2

a : RS! { send(pkgDst) } b : CO! {set[pkgDst) > c : PA! { share{pkgDst), f inRS >

d :P A !{\in S W >
SW! {f swState{pkgDsf) >

e : PA! { f inBinl} f : PA! { \inBin2 } g : { pkgDst,\inRS >
{\inBin1,\inBin2 >

Fig. 6.18: Problem diagram

6. Case Studies 170

Name Type Designation

{send(pkgDst)} shared
event

The reading station sends the package destination pkgDst to
the controller. The destination pkgDst can be left or right.

{set(pkgDst)} shared
event

The controller machine sets the switch to left, or right
according to the package destination pkgDst

{share(pkgDst),\inRS} shared
event

Once the package arrives at the reading station, \.e.,\inRS
event occurs, the package's barcode label is shared with the
reading station, i.e., share(pkgDst) event occurs.

(t inSW) shared
event

Once the package is inside the switch, eventf/nSW occurs,
which is shared with the Switch domain, e.g., via optical
sensors.

{ \swState(pkgDst)} shared
event

Depending on the package's destination (pkgDst = left or
right), the switch is set accordingly, so event \swState(pkgDst)
is shared with the Package domain, which decides whether
the package goes to Bin1 or Bin2.

{\inBinl} shared
event When the package enters Bin1, event t inBinl occurs.

{ \inBin2> shared
event When the package enters Bin2, event t inBin2 occurs.

{pkgDst,iinRS)

internal
state/

shared
event

The package's destination pkgDst namely left or right in this
simplified problem diagram, is encoded in the package's label
(barcode). Event f inRS occurs when the package enters the
reading station.

{\inBin1,\inBin2} shared
event

Once the package enters Bin1 or Bin2, the event t inBinl or
\inBin2 occurs.

Tab. 6.5: Phenomena and their designations

The Package domain is a causal domain with complex behaviours which can be

partially expressed by a state machine diagram [116] (assuming it does not break) in

Figure 6.19 (next page). The timed transitions capture the time duration a package

needs to slide from one part of the routing device to the next.

The following causal relations can be derived from Figure 6.19:

x+y
• f inRS t inSW means that the package entering the Reading station will

cause it to enter the Switch after x + y seconds.

6. Case Studies 171

after (x seconds) /

after (y seconds) /

after (z seconds) /
[swSfa/e(/eff)]

after (z seconds) /
[stvSfafe(n'gr/7f)]

after (w seconds) / after w seconds) /

RStoSW

inRS

inSW

SWtoBinl

inBinl

SWtoBin2

inBin2

Fig. 6.19: Package behaviour described as a state machine adapted from [127], modified

z + w

• (swState(left)) : | inSW ~->+ j inB inl means that if the Switch is set to the left,

then the package entering the the Switch will cause it to enter Binl after z + w

seconds.

z + w

• (swState(right)) : |in S W '[inBin2 means that if the Switch is set to the

right, then the package entering the the Switch will cause it to enter Bin2 after

z + w seconds.

However, the following phenomena (including shared and internal ones) are not

explicitly described in Figure 6.19:

• the internal phenomena that every package has a unique id (may be useful for

other subproblems, e.g., tracking/displaying/reporting misrouted package) and

destination pkgDst, which, for this simplified problem, is a state with two val

6. Case Studies 172

ues: either pkgDst = left or pkgDst = right (for problems with more than two

bins, pkgDst should be the target bin number);

• the package shares phenomenon shared(pkgDst) with the Reading station, where

pkgDst represents package destination: either pkgDst = left or pkgDst = right.

It is controlled by the Package domain. There are the following causal relations:

(pkgDst = left) : |in R S ^ share(left), and

(pkgDst = right) : |in R S ^ share (right);

• the Switch’s state swState(left) or swState(right) is shared between the Switch

domain and the Package domain, and it is controlled by the former. These shared

phenomena determine whether the package goes to the left bin B in l or the right

bin Bin2 (as captured by the causal relations in the package description earlier

on).

Bin 1 and Bin2 are simple causal domains with sensors at their entrances. Their

shared phenomena with the Package domain, namely } inB inl and | inBin2 will allow

the package into them.

The Reading station domain is causal, with the following causal relation:

shared(pkgDst) **+ send(pkgDst), where pkgDst G {left, right},

which means that the bar-code for the package’s destination pkgDst, namely left or

right, is shared with (or scanned by) the reading station, which will cause the reading

station to send the package’s destination information to the Controller domain.

The Switch domain is causal, with the following causal relation:

set(pkgDst) ^ } swState(pkgDst), where pkgDst £ {left, right},

which means that the Controller issuing set (left) will cause the switch’s state swState to

6. Case Studies 173

become left, and the Controller issuing set (right) will cause the switch’s state swState

to become right.

The requirement, R\ can be stated as follows:

Ri =“I f the package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the package enters the reading station (i.e.,]inRS occurs), then

the package should enter the appropriate bin (i.e., either | inB inl or | inB inl

occurs) after x + y + z + w seconds.”.

Notice that we have expressed the requirement in terms of the identified problem

phenomena. This will allow us to progress it through to specification by repeately trans

forming it until the requirement is expressed only in terms of the specification phenom

ena.

The above requirement statement R\ relates two separate sets of phenomena, namely

those that Ri refers to, i.e.,{pkgDst, f inRS}, and those that Ri constrains, i.e .,{ |inB inl,

]inBin2 }. As causality is timed in this problem, a time constraint is also expressed by

Ri on the total travelling time of the package through the router. This relation should be

achieved by the entire routing device including the Reading station and the Switch do

mains, which are directly connected to the Package domain, and the Controller domain,

which is indirectly connected to Package.

6.2.1 First Step o f Progression

Let us look at pkgDst, which is internal to Package, and] inRS, which is shared between

Package and Reading station. Recall that the following causal relations exist:

(pkgDst = left) : TinRS ^ share(left), and

6. Case Studies 174

C T E (6)b c causes e
when g

| c causes e |
I I R i when g I

{C> > - ------- '

c causes
when g R '

{e> >

D!{c)
D D!{e) D'

D/{c>

~d!W □ 0!{c}
D D/{e> O'

f-nFS causes shareipkgDs:-)
When pkgDst=teft t

welpf-gDc-) 1
} or phg-r,ght

' ' P A H i n R S) jRS/ {send(pkgDst)}

fynRS causes {share(pkgDsi) |
vhen pkgOstslatt or pkg-u.ght

Reading
stationPA'ishareipngDst)

PA u in Controller
PAIQInSWt

SW! $swState(pkgDsf)
CO! {set(pkgDsf)}

Switch

tn B m >

PA!(TinBin2

r 2

Package
* ' PAH f.nRS)

’/I ' (sharelpkgDsi)}

/ PA'dfonSŴv.
SW? &swState{pkgDs(f}\,

P S ' {send(pkgDst}}

COHset(pkgDsl))

Fig. 6.20: Appropriate package routing progression step 1: applying the cause-to-effect rule
CET(6)b

(pkgDst = right) : |in R S share(right),

which allow us to apply the cause-to-effect rule CTE(6)b to replace event f inRS with

event share(pkgDst), as shown in Figure 6.20.

By applying the rule, we arrive at the following requirement statement:

R2 =“I f the package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the package shares pkgDst with the reading station (i.e., share(pkgDst)

occurs), then the package should enter the appropriate bin (i.e., either

|in B in l or | inBin2 occurs) after x + y + z + w seconds.”.

6.2.2 Second Step o f Progression

In the second step, we apply the issue-to-observe rule ITOb, and switch from the Package

to the Reading station, as they share event share (pkgDst), as shown in Figure 6.21.

6. Case Studies 175

ITOb
{ e v } --------

D ’{ R } I D’ r D'

D'!{ev} D'! { e v }

1/nRS causes share(pkgDst)
when pkgDst=lett or pkg=rightJ h t

PA! d ir

1 2 J

\ r s ..

Package
A ’ " PA' {f.nRS) Reading
aA! {share{pkg0sfy s.a on

R S ' (sendipkgDst)}

D'!{ev)

<ev>

R'

fyjfiS causes share(pkgDst) 1
when pkgDst=left or pkg=right

'3
/ { t - n f l / n \ j ^ y ' 1' ' f

►' PA '{f.rRS) '
Package

PA' (sha'tlckgDs!)}

Bin2
SW! ftsw State(pkgD sifr^

Bin2
SW! &swState{pkgDstfr^,

Switch
CO! {set(pkgDst)}

Switch

jre(p!gDs!i)

P S !{send(pkgDst))

CO! {seUpkgDst)}

Fig. 6.21: Appropriate package routing progression step 2: applying the issue-to-observe rule
ITOb

By applying the rule, we arrive at the following requirement statement:

i?3 = ltI f the package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the reading station reads pkgDst (i.e., share (pkgDst) occurs),

then the package should enter the appropriate bin (i.e., either j inB in l or

| inBin2 occurs) after x + y + z + w seconds.”.

6.2.3 Third Step o f Progression

In the third step, Reading station has the following domain properties (causal relations):

shared (pkgDst) ^ send(pkgDst), where pkgDst E {left, right},

which allow us to apply the cause-to-effect rule CTE(7)b to replace share(pkgDst) with

send(pkgDst), as shown in Figure 6.22.

By applying the rule, we arrive at the following requirement statement:

6. Case Studies 176

CTE(7)b

wheng wheng when

D"

D"!{c)

D/{e> D/{e>

D"

I .nRS causes sharetpkgDst)
when pkgDskleft or pkg=

<gDst) 1 sharetpkgDs!) causes |
=nght I serdipkgDst) I

f .nRS causes share(pkgDst)
when pkgDst=left or pkg=

 ''
j yisnsrelpkgD st))

PA!{\inB,n7y

l '~ 'P A ’{\nR S}

PA< {share. (pkgOstj)
Reading
station

igDst) '] share(pkgDs') causes 1
=nght send(pkgDsi)

.......
l V f . 1 - " " / y'Uer,d(p*gD% t))

FiS' {ssndij>kgDsi)} Package

PA’dinBinZij

k - ''P A n jm R S)

PA i {sharc{pkgDs!)}

P A 'finSV

Resd,rg
station

RS){send(pkgDst}}

SW! (\swState{pkgD st)f^ SW! (lsviStale(pkgDst)f^~

Bin2 Switch
CO!{set(pkgDst)}

Bin2 Switch
COI (settpkgDst)}

Fig. 6.22: Appropriate package routing progression step 3: applying the cause-to-effect rule
CTE(7)b

i?4 =“I f the package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the reading station sends pkgDst to the controller (i.e., send(pkgDst)

occurs), then the package should enter the appropriate bin (i.e., either

|in B in l or | inBin2 occurs) after x + y + z + w seconds.”.

6.2.4 Fourth Step o f Progression

In the fourth step, we apply the issue-to-observe rule ITOb, and switch from the Reading

station to the Controller, as they share send(pkgDst), as shown in Figure 6.23.

By applying the rule, we arrive at the following requirement statement:

i?5 =“I f the package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the controller receives pkgDst (i.e.,send(pkgDst) occurs), then

6. Case Studies 177

ITOb

D'!{ev}D'! {ev}

{inRS causes shara{pkgDst)
when pkgDst=left or pkg=right

cgDst) 1 share(pkgDsQ causes |
send(pkgDst)

D'

D'! {ev}

{ev >

 -(R')

f/nRS causes share{pkgDsl)
wnen pkgDst=left or pkg=right

(gDst) | share{pkgDst) causes j
bright send(pkgDst)

PA! {{inBin2y

Package
* '' 'P A ! { { in R S) Reading RS ’ {sendipkgDst))

A '- 'P A ! {{inRS) Read'ng

PA! {sharetpkgDst); station PA! {share(pkgDst)) sty.cn

PAt&nSW)

SW! ftsw$tate(pkgDsf)
CO!{set[pkgDst)}

Switch

Rs

R S ' {senafpkgDs'))

PAtfonS'

CO! {set(pkgDst))

Fig. 6.23: Appropriate package routing progression step 4: applying the issue-to-observe rule
ITOb

the package should enter the appropriate bin (i.e., either | inB inl or | inBin2

occurs) after x + y + z + w seconds.”.

From progression step 1 through to step 4, we have partially progressed the original

requirement statement R± to i?5, by rewriting the first half of the statement each time.

Next we will progress the second half of the statement.

6.2.5 Fifth Step o f Progression

In the fifth step, Package has the following domain properties (causal relations):
z + w

(swState(left)) : f inSW +]inB inl, and
z + w

(swState(right)) : f inSW ***+ | inBin2 ,

which allow us to apply the effect-to-cause rule ETC(7)a twice to replace | inB inl and

^inBin2 with '[inSW and swState(pkgDst) holds, as shown in Figure 6.24. Note state

6. Case Studies 178

swState(pkgDst) is shared with the Package domain and controlled by Switch domain,

as shown in Figure 6.24. In the figure, for brevity we use event] swState(pkgDst) as a

short form of ^swState (left) or ^swState(right).

E T C (7)a

when g wheng

D7{c)D"

JinRS causes share(pkgDst)
ien pkgDst=Ieft or pkg=right

>sQ j share{pkgDst) causes |
ght send{pkgDst) I

^nRS causes sharefpkgDsf)
when pkgDst=left or pkg=right

sf) 1 share(pkgDst) causes]
ght send(pkgDst)

cause* w SSjk
fmBfo 1;JswStata{right^ |
causes %Bin2____________ j Rs

hy>Std'e .e<T) caj&es

causes ynBir *

^

PAlfimfrnh^ | / (Miwiip^ns^ PAI&nBinh^ j isentKpkgDst))\

Read igRS1 {send(pkgDsf}) RSI{send[pkgD$t)}Package
PA! (share tpkgQst)) staton f d r e p g D]

PA'frnSController Controller

CO!{$et(pkgDsf}} CC'isetipkgDst)}
>switch

E T C (7)a I c causes
when g

ccauses
wheng

c causes
wheng

Fig. 6.24: Appropriate package routing progression step 5: applying the rule ETC(7)a

By applying the rule twice, we arrive at the following requirement statement:

Rq =“I f the package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the controller receives pkgDst (i.e.,send{pkgDst) occurs), then

the package should enter the switch (i.e .^inSW occurs) with the switch

state appropriately set (i.e., either swState(left) or swState(right)), de

pending on the value o f pkgDst after x + y seconds.”.

6. Case Studies 179

Note that the time z + w of transit of the package from the switch to the bin has been

taken into account in the rewritten Rq.

6.2.6 Sixth Step o f Progression

RD (3)a
{ev}

e v does not
belong to O'

{ev}

0 + - — 1 R '

^InRS c au se s share(pkgDst)
w hen pkgDst=left or pkg=right

gDst) ^1 share(pkgDst) c au se s j
f=right send(pkgD sf)

fcw State(left) c auses
jinB in 1j^SwState(right)
cau se s \inB m 2 + / + "

W i "

PA! {shara{pkgDaf)) s,alion

PA! <fInBmT,/ j p /u fo ,

R S! {send{pkgDst))

sw State(pkgD st) ieRd^s
send(pkgD st <to not
belong Bin 1 or Bin2

RD(3)a {ev> I
R

e v does not
belong to D'

^inRS c au se s share(pkgDst)
when pkgDst=left or pkg=right

gDst) ' ‘j share{pkgDst) c a u se s j
r=right send(pkgD st)

4swState(left) cau se s
jinB in 1;AswState(right)
c au se s yinBin2

+ ^ e S W .3 * ? - " < {sa*<XpkgD#))\

A'-'PAUfcnRS}
PA! {share(pkgOst))

R S ! {send(pkgD st))

PA! $nS\

{ev}

Fig. 6.25: Appropriate package routing progression step 6: applying the rule RD(3)a twice

In the sixth step, we apply the removing domain rule RD(3)a twice to remove B in l

and Bin2 as shown in Figure 6.25, and we arrive at the rewritten requirement:

R? = “.Assuming the behaviour o f B in l and Bin2, i f the package’s destina

tion is pkgDst, with pkgDst = left or pkgDst = right, and the controller

receives pkgDst (i.e.,send(pkgDst) occurs), then the package should enter

the switch (i.e .^ in S W occurs) with the switch state appropriately set (i.e.,

6. Case Studies 180

either swState(left) or sw State (right)) depending on the value o f pkgDst

after x + y seconds.”.

Application of these rules is justified by the fact that R6 does not constrain or refer

to 5 m l ’s or B in2’s phenomena anymore, hence they can be removed from the diagram.

6.2.7 Seventh Step o f Progression

ITOa

p n f tS cau ses share(pkgDst) |
when pkgDst=left or pkg=right \

wState(left) causdo v
jinB in l'AswState(right)
c au ses pnB in2 |

a s s * *

/
{send(pkgDst)}

........... f.....izm
+ '- 'P A ! { f jn R S } Reading

PM {share(pkgD st)} station
R S ! {send(pkgDst

PAI&nSV

SW f^mStale(pkgOst)]
U seUpkgDsI)}

T/nRS c au ses share(pkgDsl)
when pkgDst=left or pkg=

<gDsl) 1 share(pkgDsf) c a u se s |
\=right send(pkgD sf)

f swS(a(e(/eft) caus&P=»N /
\in B in 1Asw Slate(right) j
c a u se s* n 8 /n 2 _________ | •

s * * / J & S {sen^(pkgD$R}

Package
PA'{f«)RS> Reading 1

PA! {shara(pkgOst)) station
{send{pkgDst)}

Fig. 6.26: Appropriate package routing progression step 7: applying the issue-to-observe rule
ITOa

In the seventh step, we apply the issue-to-observe rule ITOa twice, and switch from

the Package to the Switch, as they share event | inSW , and]sw S t ate (pkgDst), as

shown in Figure 6.26.

By applying the rule, we arrive at the following requirement statement:

Rs = “Assuming the behaviour o f B in l and Bin2, if the package’s destina

tion is pkgDst, with pkgDst = left or pkgDst = right, and the controller

6. Case Studies 181

receives pkgDst (i.e.,send(pkgDst) occurs), then the switch observes the

package entering (i.e.,}inSW occurs), with the switch state appropriately

set (i.e., either swState(left) or suuState(right)), depending on the value o f

pkgDst after x + y seconds.”.

6.2.8 Eighth Step o f Progression

ETC(7)a

D!{e} D!{e)

D" D"

m

Reading

\in R S c au ses share(pkgDst)
when pkgD st-le ft or pkg=right

P A !{ \in R S) Reading

Switch

Fig. 6.27: Appropriate package routing progression step 8: applying the effect-to-cause rule
ETC(7)a

In the eighth step, Switch has the following domain properties (causal relations):

set (pkgDst) ^ | swState(pkgDst), where pkgDst £ {left, right},

which allow us to apply the effect-to-cause rule ETC(7)a to replace swState(pkgDst)

with set(pkgDst), as shown in Figure 6.27.

By applying the rule, we arrive at the following requirement statement:

6. Case Studies 182

R q = 'Assuming the behaviour o f B in l and Bin2, i f the package’s destina

tion is pkgDst, with pkgDst = left or pkgDst = right, and the controller

receives pkgDst (i.e.,send(pkgDst) occurs), then the switch should receive

commands from the controller to set its state appropriately set (i.e., either

set (left) or set (right) occurs), depending on the value o f pkgDst after x+ y

seconds.”.

6.2.9 Ninth Step o f Progression

RD(3)a

ev does not
belong to D'

share(pkgDst) cau ses
send(pkgDst)

f inR S c au ses share(pkgDst)
when pkgDst=left or pkg-righ t

PA! (share(pkgDst))

not belong to

share(pkgDst) c au ses
send{pkgDst)

seŝ j

Rio ')

Reading
station

RS! {setfdipkgus
Controller

{set(pkgDst))
Switch

set(pkgD sf) c a u se s | set(pkgDst) causes^ |
'\swState{pkgDst) fs w State(pkgDst)

Fig. 6.28: Appropriate package routing progression step 9: applying the rule RD(3)a

In the ninth step, we apply the removing domain rule RD(3)a to remove Package as

shown in Figure 6.28, and we arrive at the rewritten requirement:

R 10 = “Assuming the behaviour o f B in l, Bin2 and Package, i f the con-

6. Case Studies 183

troller receives pkgDst (i.e.,send(pkgDst) occurs), with pkgDst = left or

pkgDst = right, then the switch should receive commands from the con

troller to set its state appropriately set (i.e., either set (left) or set(right)

occurs), depending on the value o f pkgDst after x + y seconds.'”.

Application of this rule is justified by the fact that R9 does not constrain or refer to

Package’s phenomena anymore, hence it can be removed from the diagram. Any dog

eared box that is attached to Package is part of Package’s domain properties, hence is

removed together with Package.

6.2.10 Tenth Step o f Progression

O TIa

D!{ev) D! {ev}D! {ev}

share(pkgDst) c au ses
send(pkgD st)

ReadingReading

Switch

Fig. 6.29: Appropriate package routing progression step 10: applying the observe-to-issue rule
OTIa

In the tenth step, we apply the observe-to-issue rule OTIa, and switch from domain

Switch to the Controller, as they share set(pkgDst), as shown in Figure 6.29.

By applying the rule, we arrive at the following requirement statement:

6. Case Studies 184

R u =“Assuming the behaviour o f B in l, B in l and Package, if the con

troller receives pkgDst (i.e.,send(pkgDst) occurs), with pkgDst = left

or pkgDst = right, then the controller should issue commands to set the

switch state appropriately set (i.e., either set (left) or set(right) occurs),

depending on the value o f pkgDst after x + y seconds.”.

6.2.11 Eleventh Step o f Progression

In the eleventh step, we apply the removing domain rule RD (l)a first to remove Switch

(see the Figure 6.30), and then rule RD(2)b to remove Reading station (see Figure 6.31

on the next page),

R D (l) a {ev}
< R ! I

D! {ev}

share(pkgDst) c au se s j
send(pkgD st)

D
{ev}
----------^

share(pkgDst) c au se s |
send(pkgD st) 111

set(pkgD st) causes^ _ j
| swState{pkgD st)

Switch

Fig. 6.30: Appropriate package routing progression step 11 (1): applying rule RD(l)a

By applying the rules, we arrive at the following requirement statement:

R 12 ^ 'A ssum ing the behaviour o f B in l, Bin2, Package, Switch and Reading

station, i f the controller receives pkgDst (i.e.,send(pkgDst) occurs), with

pkgDst = left or pkgDst = right, then the controller should issue appro-

6. Case Studies 185

R D (2)b {ev}

D'! {ev}

{ev}

Readingshare{pkgDst) c au se s
send(pkgD sf)

{$et{pk,gC

Ru J
*rf ■

h>\
Controller

Fig. 6.31: Appropriate package routing progression step 11 (2): applying rule RD(2)b

priate commands (i.e., either set (left) or set (right) occurs), depending on

the value o f pkgDst after x + y seconds.’”.

That completes all the steps of problem progression as the requirement statement

R 12 is expressed only in terms of specification phenomena, i.e., all Controller’s phe

nomena. Figure 6.32 shows the final problem diagram after the problem progression.

{send(pkgDst)>

Controller R12
{set(pkgDsf)}

Fig. 6.32: Final problem diagram after problem progression

Table 6.6 summarises the development of the requirement statements throughout the

entire process of problem progression (next page).

6. Case Studies 186

N am e D escrip tion

R i
If th e p a c k a g e 's d es tina tion is pkgDst, with pkgDst=left o r pkgDst=right, a n d th e p a c k a g e e n te rs th e
read in g s ta tion Q .e .,\inR S occu rs), th en th e p a c k a g e sho u ld e n te r th e ap p ro p ria te bin (i.e., e ith e r
\ in B in 1 o r f inBin2 o ccu rs) a fte r x+y+z+w se c o n d s .

R 2
(by rule C ET(6)b)

If th e p a c k a g e 's destina tion is pkgDst, with pkgDst=left or pkgDst=right, a n d th e p a c k a g e s h a re s
pkgD st with th e read ing sta tion 0.e.,share(pkgDsf) o ccu rs), th e n th e p a c k a g e sho u ld e n te r the
ap p ro p ria te bin (i.e., e ith e rf/n S /'n f oA inB in2 o ccu rs) a fte r x +y +z+w s e c o n d s .

R 3
(by rule ITOb)

If th e p a c k a g e 's destina tion is pkgDst, with pkgDst=left o r pkgDst=right, a n d th e read ing sta tion re a d s
pkgD st Q .e.,share(pkgDsf) o ccurs), th en th e p a c k a g e sho u ld e n te r th e ap p ro p ria te bin (i.e., e ith e r
fin B in l o r f inBin2 o ccu rs) a fte r x+y+z+w se c o n d s .

R 4
(by rule CTE(7)b)

If th e p a c k a g e 's des tina tion is pkgDst, with pkgDst=left o r pkgDst=right, a n d th e read ing station
s e n d s pkgD st to th e contro ller (\.e.,send(pkgDsf) o ccu rs), th e n th e p a c k a g e shou ld e n te r th e
ap p ro p ria te bin (i.e., e ith e r f inB in l o r f inBin2 o ccu rs) a fte r x+ y+z+w s e c o n d s .

Rs
(by rule ITOb)

If th e p a c k a g e 's des tina tion is pkgDst, with pkgDst=left o r pkgDst=right, a n d th e contro ller rece iv es
pkgD st (i.e .,send(pkgDst) o ccu rs), th en th e p a c k a g e shou ld e n te r th e ap p ro p ria te bin (i.e., e ither
f in B in l o r\in B in 2 o ccu rs) a fte r x+y+z+w se c o n d s .

Re
(by rule ETC(7)a)

If th e p a c k a g e 's d es tina tion is pkgDst, with pkgDst=left o r pkgDst=right, a n d th e contro ller rece iv es
pkgDst (i.e.,send(pkgDst) o ccu rs), th en th e p a c k a g e shou ld e n te r th e sw itch (i.e .,f/ 'n S lV o ccu rs) with
th e sw itch s ta te app rop ria te ly s e t (i.e., e ither sw Sfafe(left) o r sw S fafe(right)), d e p e n d in g on th e value
of pkgD st a f te r x+ y s e c o n d s .

R 7
(by rule RD (3)a)

A ssum ing th e b eh av io u r of B in l an d Bin2, if th e p a c k a g e 's destin a tio n is pkgDst, with pkgDst=left or
pkgDst=right, a n d th e contro ller rece iv es pkgDst (\.e.,send{pkgDst) o cc u rs) , th e n th e p a c k a g e shou ld
e n te r th e sw itch (i.e .,\ in S W o ccu rs) with th e sw itch s ta te ap p rop ria te ly s e t (i.e., e ith e r swState(leff) o r
sw State(righf)) d e p e n d in g on th e va lu e of pkgDst a fte r x+ y se c o n d s .

r 8
(by rule ITOa)

A ssum ing th e b eh a v io u r of B in l a n d Bin2, if th e p a c k a g e 's destin a tio n is pkgDst, with pkgDst=left o r
pkgDst=right, a n d th e contro ller rece iv es pkgDst (\.e.,send(pkgDsf) o cc u rs) , th e n th e sw itch o b se rv e s
th e p a c k a g e en tering (i.e .,f/nS M /occu rs), with th e sw itch s ta te app ro p ria te ly s e t (i.e., e ith e r swState
(left) o r swState(righf)), d ep en d in g on th e va lu e of pkgDst a fte r x+ y s e c o n d s .

Rs
(by ru le ETC(7)a)

A ssum ing th e b eh av io u r of B in l an d Bin2, if th e p a c k a g e 's des tin a tio n is pkgDst, with pkgDst=left or
pkgDst=right, a n d th e contro ller rece iv es pkgDst (Le.,send(pkgDsf) o cc u rs) , th en th e sw itch should
rece iv e c o m m a n d s from th e contro ller to s e t its s ta te app rop ria te ly s e t (i.e., e ith e r set(leff) o r set(righf)
o cc u rs), d ep e n d in g on th e v a lu e of pkgDst a fte r x+ y se c o n d s .

R 10 =
(by ru le s RD (3)a)

A ssum ing th e b eh av io u r of B in l, B in2 an d Package, if th e con tro ller re c e iv e s pkgDst (i.e .,se n d
(pkgDst) o ccu rs), with pkgDst=left o r pkgDst=right, th e n th e sw itch shou ld rece iv e co m m an d s from
th e con tro lle r to s e t its s ta te appropriately s e t (i.e., e ith e r set(left) or set(righf) o ccu rs), d ep en d in g on
th e v a lu e of pkgDst a fte r x+ y se c o n d s .

R11 =
(by ru le s OTIa)

A ssum ing th e b eh a v io u r of B in l, Bin2 an d Package, if th e contro ller re c e iv e s pkgD st (i.e .,se n d
(pkgDst) o cc u rs) , with pkgDst=left o r pkgDst=right, th e n th e con tro ller sho u ld is s u e co m m an d s to s e t
th e sw itch s ta te appropria te ly s e t (i.e., e ith e r set(left) o r set(right) o ccu rs), d ep e n d in g on th e v a lu e of
pkgD st a f te r x+ y se c o n d s .

R12 =
(by ru le s RD(1)a& (2)b)

A ssum ing th e b eh av io u r of B in l, Bin2, Package, Switch a n d R eading station, if th e controller
r e c e iv e s pkgDst (\.e.,send{pkgDsf) o ccu rs), with pkgDst=left or pkgDst=right, th e n th e contro ller
sho u ld is s u e ap p ro p ria te co m m an d s (i.e., e ith e r se/(/e/f) o r set(righf) o cc u rs) , d e p e n d in g on th e value
of pkgD st a fte r x+ y se c o n d s .

Tab. 6.6: Requirements transformations in the package router problem progression

6. Case Studies 187

6.3 Discussions

The POS example has demonstrated the progression of a simple problem: the domains

are linearly arranged; there are no timing issues and causality is not conditional. Pro

gression rules were applied to a matched part of the problem diagram in a stepwise

manner. In each step, a small portion of the texts was manipulated according to the

templates set out by the application conditions of the rule. Assumptions about the re

moved domains were explicitly stated in the rewritten requirements, which guaranteed

that the transformation was solution-preserving. In this case study, our progression only

arrives at a high-level behaviour description of the Controller machine, while low-level

software design is left the developer to decide. In comparison, the formal approach in

Chapter 4 applied to a similar problem has forced us to reason more rigourously about

this low-level design, thus leading to more detailed design.

The package router example has addressed more complex causal relations than the

POS problem. In particular, the Package’s domain properties involve time consider

ations in the causal relation which capture the passage of time as the package travels

through the router. This has required us to add timing constraints in requirement state

ments.

There are issues in the problem which we have not explored. For instance, it was

not decided whether the routing device should serve one package at one time or multiple

packages. In the latter case, the minimum time lag between two packages would have

to be enforced so that the flipping of the switches can be co-ordinated to avoid conflicts.

This might require the machine to be constantly updated with each package’s position

in the device to achieve maximum efficiency. In this situation, a model domain that

is connected to the sensors reflecting the real time positions of all packages should be

6. Case Studies 188

built. The requirement would be more complex, but the progression should be still

addressable with our techniques.

6.4 Chapter Summary

This chapter has demonstrated how the notion of causality and associated rule-based

techniques can be applied in the context of problem frames to address problem progres

sion. The case studies illustrated a systematic process of deriving a machine specifica

tion from the requirement, including cases in which biddable and timed causality should

be considered.

7. DISCUSSIONS, CONCLUSIONS AND FUTURE WORK

In this chapter, we review the aim of this thesis and assess the extent to which our tech

niques fulfil this aim. Based on their applications to the case studies, we compare and

evaluate the two different classes of techniques which have been introduced in Chapter

4 and Chapter 5. Finally, conclusions on the work are drawn and an agenda for future

work is proposed.

7.1 Aim of the Thesis and Contribution Evaluation

In the beginning of the thesis, we have set out the following aim of this thesis:

to derive specifications from requirements in a systematic way by defining

practical techniques to implement problem progression.

We presented two contributions of this thesis to fulfil the above aim. The first is a

formal approach incorporating Lai’s quotient operator and other CSP notations for the

derivation of specifications from requirements which can be formally described. The

second is a semi-formal approach incorporating the notion of causality and associated

rule-based techniques for the practical derivation of specifications from requirements in

a wider range of problems.

In this discussion, we will examine both approaches and associated techniques in

terms of the following aspects: whether they provide a systematic solution, the scope of

7. Discussions, Conclusions and Future Work 190

their application, and the practicality of their application.

7.1.1 How Systematic Are They?

According to the Oxford English Dictionary [76], the word “systematic” means “ar

ranged or conducted according to a system, plan, or organized method”. Therefore, the

question is: “Can our techniques and methods be applied in an orderly manner so that

useful results can be achieved?”.

The formal approach is systematic due to the nature of the operatiors defined over

process and specification terms. Within this approach, various CSP operators, particu

larly Lai’s quotient operator and the parallel composition operator allow us to derive sys

tematically specifications from requirements. The case study in Chapter 4 demonstrates

how such techniques can be applied systematically to construct a correct specification.

The results were checked rigourously through the FDR tool as a way of validating the

correctness of its construction.

The semi-formal approach is also systematic because our classes of progression

rules give a complete coverage of all possible problem topologies. In other words, for

any valid problem diagram, we can systematically match and find a progression rule to

reason through a domain’s causal behaviours.

7.1.2 Scope o f Their Application

The formal approach has limited scope of application in RE. We can only apply the

techniques when we can express domain properties and requirements as CSP expres

sions. The case study in Chapter 4 suggests that if we can express the domains and

requirements using CSP descriptions, we can construct the solution specification in a

7. Discussions, Conclusions and Future Work 191

systematic way. The study also indicates that the formal techniques become very com

plex and are unlikely to scale up to real-world problems.

The semi-formal approach has a much wider scope of application. We can apply

the progression rules as long as causal relationships can be established about domain

properties, and certain chains of causality can be identified in a problem diagram. Since

the definition and application conditions of the progression rules are based on a fixed

pattern of natural language descriptions, we argue that this approach is more general

for RE. A comparison of the case studies in Chapter 4 and in Chapter 6 shows how the

semi-formal approach can tackle much more complex problems than the formal one.

7.1.3 Practicality o f Their Application

Let us evaluate how the techniques can be practically applied in RE.

The formal approach has limited practicality of application in RE. A large amount of

complex formal manipulations is needed for progressing even a very simple problem, as

shown in the case study in Chapter 4. It is not very realistic to expect RE practitioners to

have sufficient knowledge of CSP and the predicate calculus, and the ability to perform

the formal manipulations.

The semi-formal approach is based on causality, and its complexity lies in identify

ing causal relationships within domain descriptions. However, in this thesis, we have

classified and elaborated the notion of causality in order to facilitate the organisation and

representation of complex causal relationships. This may help in eliciting the required

knowledge from problem stakeholders for the analysis of a particular problem. There

fore, we argue that our causality-based techniques could fit within many RE practices,

thus having the potential to be adopted by practitioners.

7. Discussions, Conclusions and Future Work 192

1.2 Conclusion and Future Work

Reflecting back on our work presented in this thesis, we conclude that our aim of de

riving specifications from requirements in a systematic way was achieved by our work.

That such aim was worth investigating was justified by the literature survey in Chapter

2 , which suggested that the systematic derivation of specifications from requirements

is a challenging but important open problem in software engineering. We have investi

gated two approaches, one formal and one semi-formal, to address this problem. Here

is a summary of our investigation:

The difference between the formal and semi-formal approaches has been well em

phasised by the relevant chapters. Formality, whilst appropriate in the most critical of

developmental situations, requires too much work in terms of the production of formal

descriptions and working with them to produce a closed-form solution. Application of

the formal technique outside this scope is less likely to work for the reasons we have

discussed in this thesis. Instead our semi-formal technique has a much wider scope

of application and a better chance of integration in current requirements engineering

practices.

One promising direction for the semi-formal technique is developing tool support.

The problem progression process in Chapter 6 requires many tedious steps. There is

a need for simplifying this process without sacrificing the rigour. As an initial step,

perhaps the tool will allow practitioners to help the identification of causal phenomena,

which will be used for justifying the injective matching of our progression rules, then the

tool will mechanically search and identify all sound instances of graph transformation

convergence, which will be chosen by the requirements engineer.

The solution we have presented is partial: as can be seen from Chapters 4 and 6 ,

7. Discussions, Conclusions and Future Work 193

there are problems that require other problem-solving techniques in addition to those

we have detailed. From requirements to specifications, it may be close to the best we

can do: the application domain will always require the manipulation of informal de

scriptions, and we have by necessity been limited to the recognition and manipulation

of unambiguous descriptions of causal relations.

For the semi-formal techniques we have proposed, one difficulty we have not ad

dressed is that in any real-world development context there will typically be many val

idating stakeholders, such as customers, legislators and regulators, each of whom will

have a different view on what are the important (and obvious) causal relations. This

leads us to consider whether the conceptual basis we have worked with is indeed a com

plete picture: it may be that, because of the differing views of stakeholders, problems

need to be parameterised for each of them. In this case, it is the intersection of the stake

holders’ solutions that must be found. Future work may consider how our approach can

be extended to generate a solution within that intersection. One remedy might be to be

gin with descriptions whose meaning is agreed by all stakeholders before commencing

the solution process we have presented. In this case, the framework we have provided

becomes as general as possible.

Another area for future work is that we have tried, in this thesis, to provide a frame

work for constructing solutions to problems, ensuring that if we start from a valid prob

lem description, through transformation the solution will be valid too. We note that a

framework for solution synthesis is much more demanding than a framework for prob

lem analysis: solution synthesis requires problem analysis as an initial part, as well as

creative steps that generate solutions from problems. We have gone some small way

to show how this can be done with our techniques, but there is still some way to go to

provide tools adequate for computing as engineering.

APPENDIX

A. DETAILS OF DISTINGUISHING “CONTROL” AND

“OBSERVE” IN CSP DESCRIPTIONS

In CSP, a process may appear in any of the following syntax:

P ::= STOPa \ CHAOSa \ cle -> P \ c?x -> P \ P n Q \

P D Q \ P \ \ Q \ P \ c \ p t X : A.F(X) ,

and only some have the above property. For instance, c?x —> STO P || c!l —>

STOP does not.

In the following, in order to make P in P? = {} hold, we need to restrict each part

of P, shown below:

(A). According to definition (a) and (b), and the semantics of STOPA (A is its

alphabet),

STOPaI = { d | d\v e STOPa } = {}, and

STOPa ? = {d \ d lx G STOPA} = {},

Since STOPAl H S T O P /! = {}, there is no need to restrict STOPa .

(B). According to definition (a) and (b), and the semantics of CHAOSa (non-empty

set A is its alphabet),

C H AO S/ = { d \ P = CHAOSa A dlv G A} C A, and

CHAOSa? = { d \ P = CHAOSa A d lx G A} C A.

In this thesis, we do not model a domain as CHA OS.

A . Details o f Distinguishing “Control” and “Observe” in CSP Descriptions 196

(C). According to definition (a) and (b), and the semantics of c!e —> P,

(e!e —» P)! = {d \ dlv £ a(c!e -+ P)} = {c} U P!, and

(c!e -> P)? = {d | d lx € a(c!e P)} = PI.

Therefore,

(c!e -> P)!n (c !e -* P)?

= ({c} U P!) n P ?

= (f c } n P ?) u (P ! n P ?)

= ({c} n P ?) u { }

= {c} n p ? .

In order to make it an empty set, {c}flP? needs to be empty, in other words, c ^ P?

is the restriction we need for cle —» P.

(D). Similar to (C), c ^ P! is the restriction we need for c?x —► P .

(E). According to definition (a) and (b), and the semantics of P n Q,

(P fl 0)! = {d | d b G o;(P n Q)} = P! U Q\, and

(P n 0)? = {d | d?a; G a (P n Q)} = P? U <3?.

Therefore,

(p n g) i n (p n g) ?

= (P ! u g !) n (P ? u g ?)

= ((P! U Q\) H P ? U ((P! U 0!) fl 0?)

= (P! n p ?) u (Q! n p ?) u (P i n Q?) u (Q\ n g?)

= { } u (g ! n p ?) u (P ! n g ?) u { }

= (g m p ?) u (P ! n g ?) .

In order to it an empty set, (g i D P ?) = { } A (P ! f l Q?) = {}isthe restriction we

need for P fl Q.

A. Details o f Distinguishing “Control” and “Observe” in CSP Descriptions 197

(F). Similar to (E), (Q\ fl PI) = {} A (P! fl Ql) = {} is the restriction we need for

p n g .
(G). Similar to (E), (Q \fl P?) = {} A (P! fl Q?) = {} is the restriction we need for

p || g.
(H). According to definition (a) and (b), and the semantics of P \ c,

(P \ c)! = {d | dlv appears in P \ c } = Pl \ {c}, and

(P \ c)? = {d | d lx appears in P \ c} = P? \ {c}.

Therefore (U is the universal set),

(P \ c) ! D (P \ c) ?

= (P ! \ { c })n (P ? \ { c })

= P! n (P \ c)! n (P \ c)?

= (P! \ {c}) n (P? \ {c})

= p i n {u \ {c}) n p ? n {u \ {c})

= P ! n P ? n ((/ \ { c })

= {}n (u\{c})

= {}•

There is no need to restrict P \ c.

(I). According to definition (a) and (b), and the semantics of p X . F (X) ,

(f iX.F(X))l = {d | dlv e a{pX.F(X)) } = Fl, and

(pX.F(X))? = {d | dP.x G a(fj ,X.F{X))} = Fl .

Therefore,

(p X . F (X)) l n (p X . F (X)) l

= f i h f i

= {}■

There is no need to restrict pX . F (X) .

B. DETAILS OF PROBLEM PROGRESSION RULES

B. 1 The Reducing through Cause and Effect Rule Class

This rule class generates a new requirement statement by replacing effects with causes,

or causes with effect, based on the causal relations identified among events in domain

descriptions. We specialise this rule class into two sub-rule classes, namely the effect-

to-cause rule class and the cause-to-effect rule class.

The Effect-To-Cause (ETC) Rule Class

Under this sub-rule class, the requirement statement is rewritten so that any occurrence

of an effect, say event “... e occurs ...” is replaced by an occurrence of its guarded

cause, say “... c occurs and g holds ...”. This rule class contains nine possible cases de

pending on whether e and c are internal, shared and controlled, or shared and observed

by domain D , as shown in Table 5.1.

Each individual working rule is derived from one of the admissible cases in Ta

ble 5.1. These working rules are shown in Figure B .l, Figure B.2 and Figure B.3 below.

Note that in Figure B.2, rule ETC(6)a has two possible problem topologies:

1. domain D shares {e} and {c} with two different domains, i.e., it shares {c} with

domain D", and {e} with domain D'\

2. domain D shares {e} and {c} with the same domain D ' .

B. Details o f Problem Progression Rules 199

ETC(l)a
c, e in ternal t o * - ^
D, c c a u s e s e
w h en g

ETC(l)b
c, e in ternal to '—5*'
D, c c a u s e s e
w h en g

D { e } _ y

c, e in ternal t o ' - ^
D, c c a u s e s e
w hen g

/

D

c, e in ternal to '—̂
D, c c a u s e s e
w h en g

c, e in ternal to*—̂
D, c c a u s e s e
w h en g

D Ms R'

c, e in ternal to*—
D, c c a u s e s e
w hen g

r
D D R')

ETC(2)a

•D/{c>

ETC(2)b

>D!{c}

ETC(3)a

—v

ETC(3)b

D'!{c)

e in ternal to
D, c c a u s e s e
w hen g ________

e in ternal to
D, c c a u s e s e
w hen g

e in ternal to
D, c c a u s e s e
w h en g________

e in ternal to ^
D, c c a u s e s e
w h en g________

e in ternal to ^
D, c c a u s e s e
w h en g ________

e in ternal t o ^ s
D, c c a u s e s e
w h en g________

e in ternal
to D
c c a u s e s e
w h en g

e i n t e r n a l ^
to D
c c a u s e s e
w hen g

e i n t e r n a l ^
to D
c c a u s e s e
w h en g

e in terna!
t o D
c c a u s e s e
w h en g

e i n t e r n a l ^
to D
c c a u s e s e
w hen g

e in ternal
to D
c c a u s e s e
w hen g

Fig. B.l: Rules ETC(l)a, ETC(l)b, ETC(2)a, ETC(2)b, ETC(3)a, and ETC(3)b, derived from
admissible cases (1), (2) and (3) in Table 5.1, respectively

B. Details o f Problem Progression Rules 200

ETC(4)a

D!(e} D!{e) >D!{e)

ETC(4)a

D/{e> D!{e}

c in ternal to
D, c c a u s e s e
w hen g ________

c internal to
D, c c a u s e s e
w hen g ________

c in ternal to
D, c c a u s e s e
w h en g

c in ternal to
D, c c a u s e s e
w h en g________

c in ternal to
D, c c a u s e s e
w h en g

c in ternal to ^
D, c c a u s e s e
w h en g

ETC(6)a c c a u s e s
e w h en gn

D

c c a u s e s 12*
e w hen g

D

D/{e> D'

D !(c>
D/{e> D'

c c a u s e s
e w hen g

D" / -----
L V / \ * ;*Dim /

r—i— {e} ---------

D"

p.'{0̂ /
D D!{e} D'

D"

hPHo)

c c a u s e s
e w hen ga

/ ; r '/ >

D D!{e} D'

c c a u s e s 12‘l
e w hen g

1
1
I
1

1

D
D/{c>
D/{e> D'

c c a u s e s
e w h en g

/✓
b/{c>
D! {e> D'

ETC(6)b

D"

D/{c>

c c a u s e s 12*)
e w hen g |

R

D -

c c a u s e s ’2*)
e w hen g |

D -

D/{e> D'

P/(c>
D/{e> D'

c c a u s e s
e w hen ga

D"
I \ J ''lD '{^ /

D/{e> D'

D"

iPHc)

c c a u s e s
e w hen

leŝ)
n s j

''{c>
D/{e> D'

c c a u s e s 12
e w hen g

i
1
1
1

I

D
D/{c}
D!{e) D'

c c a u s e s 12*
e w h en g o

{c } /—
ss*

1 D
D ! { C) r
D!{e}\ D'

Fig. B.2: Rules ETC(4)a, ETC(4)b, ETC(6)a, and ETC(6)b, derived from admissible cases (4)
and (6) in Table 5.1, respectively

B. Details o f Problem Progression Rules 201

ETC(7)a
c causes'
e when g

c causes
e when g

c causes'
e when g

D7{C>

D/{e>

c causes'
e when g

c causes'
e when g

c causes'
e when g

PV{c>
D !{e) D !{e}

ETC(7)b
c causes
e when g

c causes
e when g

c causes'
e when g

D"!

D ! {e >

c causes
e when g

c causes'
e when g

c causes1,
e when g

D/{e>

Fig. B.3; Rules ETC(7)a and ETC(7)b, derived from admissible cases (7) in Table 5.1

Since we always draw these diagrams when applying them, there is no need to distin

guish them using different rule names (we also preserve our naming convention in this

way). For similar reasons, rule ETC(6)b, ETC(7)a and ETC(7)b all have two possible

problem topologies.

The Cause-To-Effect (CTE) Rule Class

Under this sub-rule class, the requirement statement is rewritten so that any occurrence

of a cause and its conditional guard, say event “... c occurs and g holds ...” is replaced

B. Details o f Problem Progression Rules 202

by an occurrence of its effect, say e occurs This rule class contains nine possible

cases depending on whether c and e are internal, shared and controlled, or shared and

observed by domain D , as shown in Table 5.2.

Each individual working rule is derived from one of the admissible cases in Ta

ble 5.2. These working rules are shown in Figure B.4, Figure B.5 and Figure B.6 .

Note that in Figure B.5, rule CTE(6)a has two possible problem topologies:

1. domain D shares {e} and {c} with two different domains, i.e., it shares {c} with

domain D", and {e} with domain D'\

2. domain D shares {e} and {c} with the same domain D'.

Since we always draw these diagrams when applying them, there is no need to distin

guish them using different rule names (we also preserve our naming convention in this

way). For similar reasons, rule CTE(6)b, CTE(7)a and CTE(7)b all have two possible

problem topologies.

B. Details o f Problem Progression Rules 203

C TE (l)a
c, e in ternal t o ^ j c, e in ternal t o ^ *] c, e in ternal t o ^ - ^
D, c c a u s e s e D, c c a u s e s e D, c c a u s e s e
w h en g w h en g / w h en g

/

C TE (l)b

{C>

c, e in ternal t ? - ^)
D, c c a u s e s e
w h en g

(cy

c, e in ternal
D, c c a u s e s e
w hen g

----- 1-- , r
D

R'

c, e in ternal t o ^ ^ j
D, c c a u s e s e
w h en g

R'

CTE(2)a

D!{c) -D/{c>

CTE(2)b

Dlic) D!{c)

e in ternal to
D, c c a u s e s e
w hen g

e in ternal to
D, c c a u s e s e
w h en g

e in ternal to ^
D, c c a u s e s e
w h e n g ________

e in ternal to
D, c c a u s e s e
w hen g ________

e in ternal to
D, c c a u s e s e
w h en g ________

e in ternal to
D, c c a u s e s e
w h en g ________

CTE(3)a

CTE(3)b

D7{c>D7{c>

e in ternal
to D
c c a u s e s e
w hen g

e in ternal L
to D
c c a u s e s e
w hen g

e in ternal
to D
c c a u s e s e
w h en g

e i n t e r n a l ^
to D
c c a u s e s e
w hen g

e in ternal
to D
c c a u s e s e
w h en g

e i n t e r n a l ^
to D
c c a u s e s e
w h en g

Fig. BA: Rules CTE (1) a & b, CTE (2) a & b, and CTE (3) a & b, derived from admissible
cases (1), (2) and (3) in Table 5.2, respectively

B. Details o f Problem Progression Rules 204

CTE(4)a

D!{e)

CTE(4)a

D/{e> D !{e) 'D! {e}

c internal to
D, c causes e
when g______

c internal to
D, o causes e
when g______

c internal to
D, c causes e
when g______

c internal to
D, c causes e
when g______

c internal to
D, c causes e
when g

c internal to
D, c causes e
when g______

CTE(6)a

D"

D !{c)

c causes
e when ga

D

c causes'̂
e when g

D

D/{e> D'

(K

{c>.>........'

DIM
D/{e> D'

CTE(6)b

D"

D !{c }

c causes
e when ga
D/{e> D ‘

c causes
e when g

D

{ c }
**

DUc}
D/{e> D'

c causes
e when ga

D"

D/{e> D'

c causes'
e when ga

D"

D ! {c \ /

D D !{e } D'

D"

c causes
e when ga

/ (R ' '»

V { e >
D D'

c causes1̂*)
e when g

1111

1

D
D/{c>
D/{e> D'

c causes
e when g

D ! {e)

1^*1 / ' ~ ' ' ' N

□ V R')
✓✓

D!(c}
DUe> D’

c causes1̂
e when g |

D"
// *

/ (R '

D/{e> D'

c causeŝ
e when g

1111

1

D
D/{c>
D/{e> D'

c causes
e when g

n ~xs□ V R> J
✓ s

\D !{c}\
lD 7 { i> l

D'

Fig. B.5: Rules CTE (4) a & b, and CTE (6) a & b, derived from adm issible cases (4) and (6) in
Table 5.2, respectively

B. Details o f Problem Progression Rules 205

CTE(7)a
c causes1
e when g

c causes
e when g

c causes1
e when g

D/{e>

c causes1
e when g

c causesL
e when g

c causes
e when g

D'!{c>
D/{e>

CTE(7)b
c causes1
e when g

ccausesL
e when g

c causes
e when g

D"!{C}

c causesL
e when g

c causes'
e when g

c causes1
e when g>----

D/{e> D/{e>D !{e }

Fig. B .6: Rules CTE (7) a & b, derived from adm issible cases (7) in Table 5.2

BIBLIOGRAPHY

[1] http://www.objectiver.com/.

[2] Software engineering : Report on a conference sponsored by the nato science

committee, 7th to 11th October 1968. page 231, Garmisch, Germany, January

1969. Brussels, Scientific Affairs Division.

[3] I. F. Alexander and N. Maiden, editors. Scenarios, Stories, Use Cases Through

the Systems Development Life-Cycle. John Wiley and Sons, Ltd., 2004.

[4] R. Allen and D. Garlan. Formalizing architectural connection. In Proceedings of

the 16th international conference on Software engineering, pages 71-80, 1994.

[5] T. A. Alspaugh, A. I. Anton, T. Barnes, and B. Mott. An integrated scenario

management strategy. In International Syposium on Requirements Engineering

(RE’99), pages 142-149, Limerick, Ireland, June 1999.

[6] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Pamas, and J. E.

Shore. Software requirements for the a7-e aircraft. In NRL Memorandum Report

3876, Naval Research Laboratory, Washington DC, August 1992.

[7] J. S. Anderson and S. Fickas. A proposed perspective shift: Viewing specification

design as a planning problem. In Proc. IWSSD-5, Fifth In f I Workshop Software

Specification and Design, pages 177-184. IEEE, 1989.

http://www.objectiver.com/

Bibliography 207

[8] A. I. Anton, W. M. McCracken, and C. Potts. Goal decomposition and sce

nario analysis in business process reengineering. In Proc. CAISE’94, Sixth Conf.

Advanced Information Systems Eng., pages 94-104. Lecture Notes in Computer

Science 811, Springer-Verlag, 1994.

[9] R.-J. Back and J. von Wright. Trace refinement of action systems. In Interna

tional Conference on Concurrency Theory, 1994.

[10] R. M. Balzer, N. M. Goldman, and D. S. Wile. Operational specification as the

basis for rapid prototyping. ACM SIGSOFT Software Engineering Notes, 7(5):3—

16, December 1982.

[11] L. Baresi and R. Heikel. Tutorial introduction to graph transformation: A soft

ware engineering perspective. In 2nd International Conference on Graph Trans

formation, Rome, Italy, October 2004.

[12] T. E. Bell and T. A. Thayer. Software requirements: Are they really a problem? In

Proceedings o f the 2nd international conference on Software engineering, pages

61 - 68, San Francisco, USA, 1976. IEEE Computer Society Press.

[13] S. Berner. About the development of a point of sale system: an experience re

port. In 25th International Conference on Software Engineering, pages 528-533,

Portland, Oregon, USA, 2003. IEEE Computer Society.

[14] B. W. Boehm. A spiral model of software development and enhancement. IEEE

Computer, 21(5):61-72, 1988.

[15] P. Bohm, H. R. Fonio, and A. Habel. Amalgamation of graph transformations: a

Bibliography 208

synchronization mechanism. Journal o f Computer and System Science, 34:377—

408, 1987.

[16] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User

Guide. Addison-Wesley, 1999.

[17] I. Bray and K. Cox. The simulator: Another elementary problem frame? In

B. Regnell and E. Kamsties, editors, 9th International Workshop on Require

ments Engineering: Foundation for Software Quality - REFSQ’03, pages 121-4,

Velden, Austria, 2003. Essener Informatik Beitrage.

[18] S. Brookes, C. A . R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. Journal o f the ACM, 31:560-599, 1984.

[19] F. R Brooks. The Mythical Man-Month: Essays on Software Engineering.

Addison-Wesley, 1975.

[20] F. P. Brooks. No silver bullet: Essence and accidents of software engineering.

IEEE Computer, 20(4):10-19, 1987.

[21] F. P. Brooks. The Mythical Man-Month: Essays on Software Engineering 20th

Anniversary Edition. Addison-Wesley, 1995.

[22] T. Bui, D. Kersten, and P. C. Ma. Supporting negotiation with scenario man

agement. In Proc. 29th Hawaii International Conference on System Sciences,

volume III. IEEE Computer Soc. Press, 1993.

[23] J. M. Carroll. Scenario-Based Design: Envisioning Work and Technology in

System Development. Wiley, 1995.

Bibliography 209

[24] J. M. Carroll. Introduction to the special issue on “scenario-based systems devel

opment”. Interacting with Computers, 13(1):41—42, 2000.

[25] J. M. Carroll and M. B. Bosson. Getting around the task-artifact cycle: How to

make claims and design by scenario. ACM Transactions on Information Systems,

10(2):181—212, 1992.

[26] J. M. Carroll and M. B. Rosson. Narrowing the specification implementation

gap in scenario-based design. In J. M. Carroll, editor, Scenario-Based Design:

Envisioning Work and Technology in System Development, pages 247-278. John

Wiley and Sons, 1995.

[27] J. Castro, M. Kolp, and J. Mylopoulos. A requirements-driven development

methodology. In CAiSE 2001, June 2001.

[28] Y. Chen and J. W. Sanders. Weakest specifunctions for bsp. Parallel Processing

Letters, ll(4):439-454, 2001.

[29] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements

in Software Engineering. Kluwer Academic Publishers, 2000.

[30] A. Cockbum. Structuring Use Cases with Goals. Human and Technology, 1995.

[31] A. Cockbum. Writing Effective Use Cases. Addison-Wesley, 2000.

[32] A. Corradini, H. Ehrig, M. Loewe, U. Montanari, and F. Rossi. Algebraic Ap

proaches to Graph Transformation, Part II: Models o f Computation in the Double

Pushout Approach.

Bibliography 210

[33] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Loewe. Al

gebraic approaches to graph transformation, part i: Basic concepts and double

pushout approach. Technical Report TR-96-17, University of Pisa, March 1996.

[34] A. Corradini and F. Rossi. Hyperedge replacement jungle rewriting for term

rewriting systems and logic programming. Theoretical Computer Science, 109:7—

48, 1993.

[35] K. Cox, J. G. Hall, and L. Rapanotti. Editorial: A roadmap of problem frames

research. Information and Software Technology, 47(14):891—902, 2005.

[36] K. Cox, J. G. Hall, and L. Rapanotti. 1st international workshop on advances and

applications of problem frames. In Proceedings o f 26th International Confer

ence on Software Engineering (ICSE’04), pages 754-755, Edinburgh, May 2004.

IEEE Computer Society Press.

[37] S. Creese. Industrial strength csp: Opportunities and challenges in model-

checking. 5 Years Communicating Sequential Processes, pages 292-292, 2004.

[38] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements

acquisition. Science o f Computer Programming, 20:3-50, 1993.

[39] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. Grail/kaos: An

environment for goal-driven requirements engineering. In Proceedings o f 19th

International Conference on Software Engineering (ICSE’97), pages 612-623,

Boston, May 1997.

[40] R. Darimont and A. van Lamsweerde. Formal refinement patterns for goal-driven

Bibliography 211

requirements elaboration. In Proc. FSE’4 - Fourth ACM SIGSOFT Symp. Foun

dations o f Software Eng., pages 179-190, San Francisco, October 1996.

[41] A. M. Davis. The comparison of techniques for the specification of external

system behaviour. Communications o f the ACM, 31(9):1098—1115, 1988.

[42] E. W. Dijkstra. Guarded commands, non-determinarcy and the formal derivation

of programs. Communications o f the ACM, 18:453-457, 1975.

[43] M. Dorfman. Requirements Engineering. Software Requirements Engineering,

Second Edition. IEEE Computer Society Press, 1997.

[44] E. Dubois, P. Du Bois, and M. Petit. Object-oriented requirement analysis: an

agent perspective. In Proceedings o f the ECOOP’93 - Seventh European Conf.

Object-Oriented Programming, pages 458-481. Lecture Notes in Computer Sci

ence 707, Springer-Verlaginger, 1993.

[45] M. Shaw (editor). Software engineering for 21st century: A basis for rethinking

the curriculum. Technical Report CMU-ISRI-05-108, Institute for Software Re

search International, School of Computer Science, Carnegie Mellon University,

February 2005.

[46] H. Ehrig. Tutorial introduction to the algebraic approach of graph grammars. In

H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, 3rd International

Workshop on Graph-Grammars and Their Application to Computer Science, vol

ume 291 of Lecture Notes in Computer Science, pages 3-14. Springer Verlag,

1987.

[47] H. Ehrig, P. Bohm, U. Hummert, and M. Lowe. Distributed parallelism of graph

Bibliography 212

transformation. In 13th International Workshop on Graph Theoretic Concepts

in Computer Science, volume 314 of Lecture Notes in Computer Science, pages

1-19. Springer Verlag, 1988.

[48] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals o f Algebraic

Graph Transformation. Springer, 1st edition, March 2006.

[49] S. Elbaum, S. Karre, and G. Rothermel. Improving web application testing with

user session data. In 25th International Conference on Software Engineering,

pages 49-59, 2003.

[50] S. Faulk, J. Brackett, P. Ward, and J. Kirby. The core method for real-time re

quirements. IEEE Software, IEEE Computer Society Press, 9(5):22-33,1992.

[51] S. Faulk, L. Finneran, J. Kirby, S. Shah, and J. Sutton. Experience applying the

core method to the lockheed c-130j software requirements. In The 9th Annual

Conference on Computer on Computer Assurance, pages 3-8, Gaithersburg, MD,

June 1994.

[52] M. S. Feather. Language support for the specification and development of com

posite systems. ACM Transactions on Programming Languages and Systems,

9(2): 198-234, 1987.

[53] S. Fickas and R. Helm. Knowledge representation and reasoning in the design of

composite systems. IEEE Trans, on Software Engineering, pages 470-482, June

1992.

[54] O. Gotel and A. Finkelstein. An analysis of the requirements traceability prob

Bibliography 213

lem. In First International Conference on Requirements Engineering, pages 94-

101. IEEE Comp Society Press, 1994.

[55] S. Greenspan, J. Mylopoulos, and A. Borgida. On formal requirements modeling

languages: Rml revisited. In Proceedings o f the 16th International Conference

on Software Engineering, pages 135 -147, Sorrento, Italy, 1994. IEEE Computer

Society Press.

[56] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A reference model for

requirements and specifications. IEEE Software, 2000.

[57] A. Habel, J. Muller, and D. Plump. Double-pushout approach with injective

matching. In H. Ehrig et al., editor, Graph Transformation. Springer Verlag,

Lecture Notes in Computer Science 1764, 2000.

[58] A. Hall and R. Chapman. Correctness by construction: Developing a commercial

secure system. IEEE Software, 19(1): 18-25, 2002.

[59] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti. Relating

software requirements and architectures using problem frames. In RE ’02, pages

137-144, Essen, Germany, 2002. IEEE Computer Society Press.

[60] J. G. Hall and L. Rapanotti. A reference model for requirements engineering. In

11th IEEE Int. Conf. on Requirements Engineering, pages 181-187, Monteray,

California, 2003. IEEE.

[61] J. G. Hall and L. Rapanotti. Problem frames for socio-technical systems. In

J. Mate and A. Silva, editors, Requirements Engineering fo r Sociotechnical Sys

tems. Idea Group, Inc., 2004.

Bibliography 214

[62] J. G. Hall, L. Rapanotti, K. Cox, and Z. Jin. 2nd international workshop on ad

vances and applications of problem frames. In Proceedings o f 28th International

Conference on Software Engineering (ICSE 2006). ACM Press, May 2006.

[63] J. G. Hall, L. Rapanotti, and M. Jackson. Problem frame semantics for software •

development. Software and Systems Modeling, 4(2): 189-198, May 2005.

[64] J. G. Hall, L. Rapanotti, and M. A. Jackson. Problem-oriented software engineer

ing. Technical report, Department of Computing, The Open University, Walton

Hall, Milton Keynes, UK, October 2006.

[65] M. Harrison and P. Barnard. On defining requirements for interaction. In Pro

ceedings o f IEEE International Symposium on Requirements Engineering, pages

50-54, San Diego, CA, USA, 1993.

[66] P. Haumer. Requirements Engineering with Interrelated Conceptual Models and

Real World Scenes. PhD thesis, 2000.

[67] C. A . R. Hoare. Communicating sequential processes. Communications o f the

ACM, 21(8):666-677,1978.

[68] C. A . R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna

tional, 1985.

[69] C. A . R. Hoare and J. He. The weakest prespecification i, ii. Fundamenta

Informatica, 9:51-84, 217 252, 1986.

[70] C. A. R. Hoare and J. He. Unifying Theories o f Programming. Prentice-Hall,

1998.

Bibliography 215

[71] T. Hoare. The verifying compiler: A grand challenge for computing research.

Journal o f ACM, pages 63-69, Jan 2003.

[72] T. Hoare and J. Misra. Verified software: theories, tools, experiments vision of a

grand challenge project. The EASST (European Association o f Software Sceince

and Technology) newsletter, 11:5-30, December 2005.

[73] G. Hommel. Vergleich verschiedener spezifikationsverfahren am beispiel einer

paketverteilanlage. Technical report, Kemforschungszentrum Karlsruhe GmbH,

August 1980.

[74] B. Hopkins. Causality and development: Past, present and future, chapter 1,

pages 1-17. John Benjamins Publishing Company, Lancaster University, 2004.

[75] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. Formal approach

to scenario analysis. IEEE Software, 12(2):33-41, 1994.

[76] http://dictionary.oed.com/.

[77] http://www.fsel.com/. Formal systems (europe) ltd.

[78] INMOS. occam 2.1 Reference Manual. SGS-THOMSON Microelectronics Ltd.,

May 1995.

[79] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,

Cambridge, MA, April 2006.

[80] D. Jackson and M. Jackson. Problem decomposition for reuse. Software Engi

neering Journal, 11(1): 19-30,1996.

http://dictionary.oed.com/
http://www.fsel.com/

Bibliography 216

[81] M. Jackson. Problems, descriptions and objects. In OOIS’94: 1994 International

Conference on Object Oriented Information Systems, pages 25-35. Springer Ver-

lag, 1994.

[82] M. Jackson. Software Requirements & Specifications: A lexicon o f principles,

practices and prejudices. ACM Press. Addison-Wesley Publishing Company,

1995.

[83] M. Jackson. Problem Frames: Analyzing and Structuring Software Development

Problems. Addison-Wesley Publishing Company, 2001.

[84] M. Jackson. Problem frames and software engineering. Elsevier 1ST special issue

on the 1st International Workshop on Advances and Applications o f Problem

Frames, 47(14):903-912, 2005.

[85] M. Jackson. The world and the machine (keynote). In 17th Int. Conf. on Software

Engineering (ICSE’95), pages 282-292, Seatle, USA, April 1995. IEEE/ACM.

[86] M. Jackson. Three aspects of requirements engineering. Course M883, Comput

ing Research Centre, The Open University, October 2005.

[87] M. Jackson and P. Zave. Deriving specifications from requirements: an exam

ple. In Proceedings o f the 17th international conference on Software engineering

(ICSE’95), pages 15-24, Seattle, Washington, United States, 1995. ACM Press.

[88] M. A. Jackson. Software development method. In A. W. Roscoe, editor, A Clas

sical Mind: Essays in Honour o f C A R Hoare. Prentice-Hall International, 1994.

[89] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Soft

ware Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.

Bibliography 217

[90] I. Jacobson, J. Rumbaugh, and G. Booch. The Unified Software Development

Process. Addison-Wesley, Reading, Mass., 1999.

[91] W. Johnson. Overview of the knowledge-based specification assistant. In Pro

ceedings 2nd Knowledge-Based Software Assistant Conference, 1987.

[92] W. Johnson. Deriving specifications from requirements. In Proceedings

ICSE’1988, pages 428-438. IEEE CS Press, 1988.

[93] P. N. Johnson-Laird. The Computer and the Mind: An Introduction to Cognitive

Science. Cambridge MA: Harvard University Press, 1988.

[94] C. Jones, P. O’Heam, and J. Woodcock. Verified software: A grand challenge.

IEEE Computer, 39(4):93—95, April 2006.

[95] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, NJ.,

1964.

[96] M. Korff. Graph-interpreted graph transformations for concurrent object-oriented

systems. In 5th International Workshop on Graph Grammars and their Applica

tion to Computer Science, 1994.

[97] J. Kramer. Distributed software engineering. In Proceedings o f the 16th in

ternational conference on Software engineering ICSE’94, pages 253-263. IEEE

Computer Society Press, 1994.

[98] H. J. Kreowski. Is parallelism already concurrency? part 1: Derivations in

graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, ed

itors, 3rd International Workshop on Graph-Grammars and Their Application

Bibliography 218

to Computer Science, volume 291 of Lecture Notes in Computer Science, pages

343-360. Springer Verlag, 1987.

[99] H. J. Kreowski and A. Wilharm. Is parallelism already concurrency? part 2: Non

sequential processes in graph grammars. In H. Ehrig, M. Nagl, G. Rozenberg,

and A. Rosenfeld, editors, 3rd International Workshop on Graph-Grammars and

Their Application to Computer Science, volume 291 of Lecture Notes in Com

puter Science, pages 361-377. Springer Verlag, 1987.

[100] L. Lai. The decomposition of concurrent systems. Transfer of status report, p.r.g.,

o.u.c.l., Oxford University, 1987.

[101] L. Lai and J. W. Sanders. A weakest-environment calculus for communicating

processes. Research report PRG-TR-12-95, Programming Research Group, Ox

ford University Computing Laboratory, 03-1995 1995.

[102] R. D. Landtsheer, E. Letier, and A. van Lamsweerde. Deriving tabular event-

based specifications from goal-oriented requirements models. Journal o f Re

quirements Engineering, 9(2): 104-120, 2004.

[103] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process. Prentice-Hall, 1st edition, 1998.

[104] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and the Unified Process. Prentice-Hall, 2nd edition, 2002.

[105] B. Lawrence, K. Wiegers, and C. Ebert. The top risks of requirements engineer

ing. IEEE Software, 2001.

Bibliography 219

[106] E. Letier and A. van Lamsweerde. Deriving operational software specifications

from system goals. In SIGSOFT2002/FSE-10, Charleston, SC, USA, November

2002.

[107] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson. Using abuse frames to bound

the scope of security problems. In Proceedings o f the 12th IEEE International

Requirements Engineering Conference. IEEE Computer Society, 2004.

[108] N. Maiden. Crews-savre: Scenarios for acquiring and validating requirements.

Automated Software Engineering, 5(4):419—446, 1998.

[109] S. P. Miller and K. F. Hoech. Specifying the mode logic of a flight guidance sys

tem in core. Technical report, Technical Report WP97-2011, Rockwell Collins,

Cedar Rapids, LA, August 1997.

[110] S. P. Miller and A. C. Tribble. Extending the four-variable model to bridge

the system-software gap. In The 20th Digital Avionics Systems Conference

(DASC’01), 2001.

[111] J. D. Moffett, J. G. Hall, A. Coombes, and J. A. McDermid. A model for a

causal logic for requirements engineering. Journal o f Requirements Engineering,

1(1):27—46, 1996.

[112] C. Morgan. Programming from Specifications. Prentice Hall International Series

in Computer Science. Prentice-Hall International, 1994.

[113] J. Mylopoulos and J. Castro. Tropos: A framework for requirements-driven soft

ware development. In J. Brinkkemper and A. Solvberg, editors, Information

Bibliography 220

Systems Engineering: State o f the Art and Research Themes. Lecture Notes in

Computer Science, Springer Verlag, June 2000.

[114] B. Nuseibeh. Weaving together requirements and architectures. IEEE Computer,

34(3): 115-117, 2001.

[115] B. Nuseibeh and S. Easterbrook. Requirements engineering: A roadmap. The

Future o f Software Engineering, ACM, 2000.

[116] OMG. Unified modeling language (uml), version 2.0.

[117] R Padawitz. Graph grammars and operational semantics. Theoretical Computer

Science, 19:117-141, 1982.

[118] D. L. Pamas and J. Madey. Functional documents for computer systems. Science

of Computer Programming, 25(1):41—61, 1995.

[119] J. Peleska. Applied formal methods - from csp to executable hybrid specifica

tions. 25 Years Communicating Sequential Processes, pages 293-320, 2004.

[120] A. Perini, P. Bresciani, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Towards

an agent oriented approach to software engineering. In WO A, pages 74-79. WOA

2001, 2001.

[121] M. Piff. Discrete Mathematics: an Introduction for Software Engineers. Cam

bridge University Press, 1991.

[122] K. Pohl. Process Centred Requirements Engineering. RSP marketed by J. Wiley

and Sons Ltd., England, 1996.

Bibliography 221

[123] C. Potts, K. Takahashi, and A. I. Anton. Inquiry based requirements analysis.

IEEE Software, 11(2):21-32, April 1994.

[124] J. Preece, Y. Rogers, and H. Sharp. Interaction Design: Beyond Human-

Computer Interaction. John Wiley and Sons, 2002.

[125] L. Rapanotti, J. G. Hall, and M. Jackson. Problem transformations in solving the

package router control problem. Technical Report 2006/07, Department of Com

puting, The Open University, Walton Hall, Milton Keynes, Buckinghamshire,

UK, July 2006.

[126] L. Rapanotti, J. G. Hall, M. Jackson, and B. Nuseibeh. Architecture-driven prob

lem decomposition. In The 12th IEEE International Requirements Engineering

Conference (RE'04), Kyoto, Japan, 2004. IEEE.

[127] L. Rapanotti, J. G. Hall, and M. A. Jackson. Problem Oriented Software En

gineering: solving the Package Router Control problem. Centre for Research

in Computing, The Open University, Walton Hall, Milton Keynes, Bucking

hamshire, UK, 2007.

[128] L. Rapanotti, J. G. Hall, and Z. Li. Problem reduction: a systematic technique for

deriving specifications from requirements. Technical report, Department of Com

puting, Centre for Research in Computing, The Open University, UK, Feburary

2006.

[129] L. Rapanotti, J. G. Hall, and Z. Li. Deriving specifications from requirements

through problem reduction. IEE Proceedings - Software, 153(5): 183-198, Octo

ber 2006.

Bibliography 222

[130] B. Regnell, M. Andersson, and J. Bergstrand. A hierachical use case model with

graphical representation. In IEEE International Symposium and Workshop on

Engineering o f Computer-Based Systems, March 1996.

[131] J. Robertson. On setting the context - some notes. The Atlantic Systems Guild

Inc., 2006.

[132] S. Robertson and J. Robertson. Mastering the Requirements Process. Addison-

Wesley, 1999.

[133] S. Robertson and J. Robertson. Volere requirements: How to get started. 2004.

[134] G. F. C. Rogers. The Nature o f Engineering: A Philosophy o f Technology. Pal-

grave Macmillan, 1983.

[135] G-C. Roman. Specifying software/hardware interactions in distributed systems.

In Proceedings o f the 9th international conference on Software Engineering ICSE

’87, pages 126-139, 1987.

[136] D. Rosea, S. Greenspan, M. Feblovitz, and C. Wild. A decision marking method

ology in support of the business rules lifecycle. In Pro. RE’97 - Third Int’l Symp.

Requirements Eng., pages 236-246, Anapolis, 1997.

[137] A. W. Roscoe. The Theory and Practice o f Concurrency. Prentice Hall, 1997.

[138] K. S. Rubin and J. Goldberg. Object behaviour analysis. Comm. ACM, 35(9):48-

62, September 1992.

[139] J. Rumbaugh. Getting started: Using use cases to capture requirements. Journal

of Object-Oriented Programming, September 1994.

Bibliography 223

[140] J. Rumbaugh, M. Blaha, W. Prmerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modelling and Design. Prentice-Hall, 1991.

[141] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling

and Analysis o f Security Protocols: The CSP Approach. Addison-Wesley, 2000.

[142] J. Ryser and M. Glinz. A scenario-based approach to validating and testing soft

ware systems using statecharts. In 12th International Conference on Software and

Systems Engineering and their Applications ICSSEA’99, Paris, France, 1999.

[143] USA San Diego, editor. First IEEE International Symposium on Requirements

Engineering (RE’93). IEEE Comp Society Press, January 4-6, 1993.

[144] G. Schneider and J. P. Winters. Applying Use Cases: A Practical Guide. Addison-

Wesley, 1998.

[145] H. J. Schneider. Describing distributed systems by categorial graph grammars. In

15th International Workshop on Graph-theoretic Concepts in Computer Science,

volume 411 of Lecture Notes in Computer Science, pages 121-135. Springer

Verlag, 1990.

[146] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. John

Wiley and Sons, Ltd., 2000.

[147] B. S. W. Schroder. Ordered sets: an introduction. Birkhauser, 2003.

[148] R. Seater and D. Jackson. Problem frame transformations: deriving specifications

from requirements. In Proceedings 2nd International Workshop on Advances and

Applications o f Problem Frames, Shanghai, China, 2006.

Bibliography 224

[149] M. Shaw. Writing good software engineering research papers. In 25th Interna

tional Conference on Software Engineering (ICSE 2003), pages 726-736. IEEE

Computer Society, 2003.

[150] D. R. Smith. Comprehension by derivation. In 13th International Workshop on

Program Comprehension IWPC, pages 3-9, May 2005.

[151] I. Sommerville and R Sawyer. Requirements Engineering: A Good Practice

Guide. John Wiley and Sons, 1997.

[152] StandishGroup. The chaos report. Technical report, The Standish Group Interna

tional, Inc, 1994.

[153] A. Sutcliffe. A technique combination approach to requirements engineering.

In Proc. RE’97 - Third In f I. Symp. Requirements Eng., pages 65-74, Anapolis,

1997.

[154] A. Sutcliffe. Scenario-based requirements engineering. In RE 2003 Mini-tutorial,

2003.

[155] A. G. Sutcliffe. User-Centred Requirements Engineering. Springer-Verlag, Lon

don, 2002 .

[156] W. Swartout and R. Balzer. On the inevitable intertwining of specification and

implementation. Communications o f the ACM, 25(7):438—440, July 1982.

[157] W. M. Turski. And no philosophers’ stone, either. Information Processing 86,

pages 1077-1080, 1986.

[158] A. van Lamsweerde. Requirements engineering in the year 00: A research per

spective. 2000 .

Bibliography 225

[159] A. van Lamsweerde. Goal-oriented requirements engineering: A guided tour.

In 5th IEEE International Symposium on Requirements Engineering, pages 249-

263, Toronto, August 2001.

[160] A. van Lamsweerde and L. Willemet. Inferring declarative requirements spec

ifications from operational scenarios. IEEE Trans, on Software Engineering,

24(12): 1089-1114, 1998.

[161] W. G. Vincenti. What Engineers Know and How They Know It: Analytical Stud

ies from Aeronautical History. The Johns Hopkins University Press, Baltimore,

paperback edition, 1993.

[162] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Scenario usage in system

development: A report on current practice. IEEE Software, 15(2):34-45, 1998.

[163] www.wikipedia.org. Soft goal.

[164] www.wikipedia.org. Use case.

[165] E. Yu. i* website.

[166] E. Yu. Towards modelling and reasoning support for early-phase requirements

engineering. In Proceedings o f the 3rd IEEE Int. Symp. on Requirements Engi

neering (RE’97), pages 226-235, Washington D.C, USA, Jan 6-8, 1997.

[167] E. Yu and J. Mylopoulos. Why goal-oriented requirements engineering. In

E. Dubois, A.L. Opdahl, and K. Pohl, editors, Proceedings o f the 4th Interna

tional Workshop on Requirements Engineering: Foundations o f Software Quality,

pages 15-22, Pisa, Italy, 1998. Presses Universitaires de Namur.

http://www.wikipedia.org
http://www.wikipedia.org

Bibliography 226

[168] P. Zave. Classification of research efforts in requirements engineering. ACM

Computing Surveys, 29(4):315—321, 1997.

[169] P. Zave and M. Jackson. Four dark comers of requirements engineering. ACM

Transactions on Software Engineering and Methodology, 6(1): 1-30, January

1997.

[170] P. Zave and M. A. Jackson. Conjunction as composition. ACM Transactions on

Software Engineering and Methodology, 2(4), October 1993.

