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ABSTRACT

One of the problems with current practice in software development is that often cus-
tomer requirements are not well captured, understood and analysed, and there is no
clear traceable path from customer requirements to software specifications. This often
leads to a mismatch between what the customer needs and what the software developer
understands the customer needs.

In addition to capturing, understanding and analysing requirements, requirements
engineering (RE) aims to provide methods to allow software development practition-
ers to derive software specifications from requirements. Although work exists towards
this aim, the systematic derivation of specifications from requirements is still an open
problem.

This thesis provides practical techniques to implement the idea of problem progres-
sion as the basis for transforming requirements into specifications. The techniques allow
us to progress a software problem towards identifying its solution by carefully investi-
gating the problem context and re-expressing the requirement statement until a specifi-
cation is reached. We develop two classes of progression techniques, one formal, based
on Hoare’s Communicating Sequential Processes (CSP), and one semi-formal, based
on a notion of causality between events. The case studies in this thesis provide some

validation for the techniques we have developed.
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1. INTRODUCTION

One of the problems with current practice in software development is that often cus-
tomer requirements are not well captured, understood and analysed, and there is no
clear traceable path from customer requirements to software specifications. This often
leads to a mismatch between what the customer needs and what the software developer
understands the customer needs [27].

This problem has been known to the software engineering community for a long
time. For example, in the 2nd International Conference on Software Engineering in
1976, the review by Bell and Thayer [12] confirmed that “the rumoured ‘requirements
problems’ are a reality”. Later in 1994, the “Chaos Report” [152] by the Standish
Group indicated that this problem continued to exist in software development practice.
Historically, the discipline of requirements engineering (RE) was born because of the
realisation that there had not been enough focus on requirements [143].

In addition to capturing, understanding and analysing requirements, an important
aim of requirements engineering is to provide methods to allow software development
practitioners to derive software spéciﬁcations from requirements. Although work exists
towards this aim, such as the scenario approaches [3] and goal-ofinted approaches [166,
159], the problem of systematically deriving specifications from requirements is still an
open problem in RE. After reviewing the current state of the literature this thesis will

address this open problem in a systematic way.
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1.1 Aim and Research Methodology

We adopt the problem-oriented approach to requirements and specifications proposed
by Jackson [82] and in particular his work on problem frames [83]. T ackson distin-
guishes between requirements and specifications, where a specification is a behavioural
description of the computing machine in terms of its shared interface with its environ-
ment; and a requirement is a description of some desired behaviour in the environment
that the computing machine must eventually bring about.

We take this approach for several reasons:

Firstly, it encompasses the basic idea that having a proper understanding of the prob-
lem (the requirement in its context) is a first essential step in providing an appropriate
solution. There is evidence that many failed software projects did not get their require-
ments right in the first place so that mistakes were propagated through the entire devel-
opment process, and became much more expensive to fix in later phases [152, 105].

Secondly, it underlines an important distinction between the problem space, where
the requirements are, and the solution space, where the specifications are. By separating
the description of requirements from that of specifications, we can formulate a clear
argument about how the requirements can be adequately satisfied by the specifications.

Thirdly, it provides a notation (the problem diagram) to represent details of the prob-
lem space in relation to the solution space, hence the means to reason about require-
ments, contexts, specifications and their relationships.

The aim of this thesis is to provide practical techniques to implement the idea of
problem progression sketched in [83] as the basis for transforming requirements into
specifications. The techniques we will provide for problem progression will allow us

to progress a problem towards identifying its solution by carefully investigating the
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problem context and re-expressing the requirement statement until a specification is
reached.

We develop two classes of progression techniques, one formal, based on Hoare’s
Communicating Sequential Processes (CSP) [68], and one semi-formal, based on a no-
tion of causality between events [111]. We choose CSP because it has a rich set of
operators we can exploit for describing and transforming problems, in particular, the
parallel composition operator and Lai’s quotient operator [101]. This fully-formal tech-
nique allows for the derivation of specifications from requirements by formal calculus.
We develop rule-based techniques based on causality because they can be applied to a
wider variety of problems where fully-formal descriptions can not be easily obtained.

We test our techniques on a range of case studies!. We apply the formal technique
to a simplified version of a point-of-sale (POS) system; we apply the semi-formal tech-
niques to more complex case studies - a conventional point-of-sale (POS) problem and
a package router control problem. We argue that although they are not real-world case
studies, they are sufficiently complex and representative of real-world situations to test
our hypothesis - that we have solved the problem of systematically deriving software
specifications from requirements using our techniques. With these examples, we have
demonstrated that our techniques can be practically applied in solving realistic software
development problems that are described using causal phenomena.

Both empirical studies and well-chosen exemplars are very common ways of val-
idating software engineering research [149]. Through these case studies we support
the claim that we have developed adequate techniques for problem progression in the

context of requirements engineering.

! In this thesis, case studies refer to examples with various complexity usually taken from the literature.
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1.2 Thesis Contribution

The main contributions of the thesis are:

e A formal approach and associated techniques for the derivation of specifications

from requirements based on CSP;

e A semi-formal approach and associated rule-based techniques for the practical

derivation of specifications from requirements in a wide range of problems;

e An assessment of the proposed techniques on a number of examples and case

studies.

1.3 Thesis Outline

This thesis is structured as follows:

Chapter 2 surveys related literature, focusing on how current RE approaches tackle
the problem of deriving specifications from requirements. Their advantages and disad-
vantages are examined. A gap is highlighted in the literature which this thesis intends
to fill.

Chapter 3 describes what problem progression is and its conceptual basis, which
includes the problem frames approach (i.e., its engineering background and some basic
elements).

Chapter 4 describes a formal approach to problem progression using CSP. In this
chapter, problem progression is interpreted in a formal setting and constructive tech-
niques are applied in a case study to derive specifications from requirements. Limita-
tions of applying such a formal technique in problem progression are discussed, and the

necessity of further less-formal techniques is argued.
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Chapter 5 describes a semi-formal approach to problem progression based on the
notion of causality. A working definition of causality and some derived notations and
techniques are given. Progression rules are defined for the practical achievement of
problem progression.

Chapter 6 applies the techniques defined in chapter 5 to two case studies. The first
case study is a typical point-of-sale (POS) problem, and the second one is a package
router problem.

Chapter 7 discusses how the aim of this thesis is fulfilled, concludes the thesis, and

sets an agenda for future work.



2. LITERATURE SURVEY

This chapter reviews current requirements engineering approaches with a focus on their
advantages and disadvantages. After examining how each of them allows for the deriva-
tion of specifications from requirements, we highlight a gap in the literature which our

work intends to fill.

2.1 Why Requirements Engineering?

2.1.1 Software Crisis and Important Findings

The formation of Software Engineering (SE) was led by the so-called “software crisis”
[2] in late 1960s. At that time, requirements analysis was perceived as a potentially
high-leverage but neglected area in software development [55]. By the mid-1970s, the
review by Bell and Thayer [12] had produced plenty of empirical data, confirming that
“the rumoured ‘requirements problems’ are a reality”. The growing recognition of the
critical nature of requirements in software engineering gradually established Require-
ments Engineering (RE) as an important sub-field of Software Engineering [55]. (It was
not until 1993 that the 1st international conference dedicated to requirements engineer-
ing - 1st IEEE International Symposium on Requirements Engineering [143] - was held
in San Diego, CA, U.S.A.)

The software crisis was also highlighted by the publication of Brooks’ famous book
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The Mythical Man-Month: Essays on Software Engineering [19] and his seminal paper
No Silver Bullet: Essence and Accidents of Software Engineering [20], which became
chapter 16 of the 20th anniversary edition of the book [21]. Brooks attributed the soft-
ware crisis to two distinct kinds of difficulties in software development (engineering)
- essential difficulties and accidental difficulties. The paper suggested that there is no
need for “a silver bullet” for solving major accidental difficulties because they have been
solved by past breakthroughs in software engineering. Essential difficulties are much
harder to solve because of the inherent properties of modern software systems - com-
plexity, conformity, changeability, and invisibility, and they should be the targets for the
silver bullet.

Although most of these properties seem inherent in software and hardware, in fact
many of them are caused by the nature of their interaction with the outside world: for
example, Brooks [21] argues that conformity is caused by the ihvolvement of different
people, and “cannot be simplified out by any redesign of the software alone”; this is
more true as to changeability: “the software product is embedded in a cultural matrix of
applications, users, laws, and machine vehicles. These all change continually, and their
changes inexorably force change upon the software produbt.”

In [20], Brooks puts “requirements refinement” as one of the promising ways to

tackle such essential difficulties:

“The hardest single part of building a software system is deciding precisely
what to build. No other part of the conceptual work is as difficult as es-
tablishing the detailed technical requirements, including all the interfaces
to people, to machines, and to other software systems. No other part of the

work so cripples the resulting system if done wrong. No other part is more
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difficult to rectify later.”

Since requirements refinement is a difficult task in SE, it deserves to be the focus
of engineering efforts in modern software development. An interesting observation of
this thesis on Brooks’ comments about requirements refinement is that the “detailed
technical requirements” essentially refer to software specifications, and the process of
“deciding precisely what to build” can be regarded as deriving specifications from re-
quirements.

Although much progress has been made since the 1960s, requirement deficiencies
in many software development projects are still a main contributing factor to project
failures [43]. Sommerville and Sawyer [151] observe that a large number of project
cost overruns and late deliveries still exist because of poor requirements engineering

processes.

2.1.2 The Role of Requirements Engineering in Software Development

Before investigating the role that RE plays in software development, let us look at Zave’s

definition of RE [168]:

“Requirements engineering is the branch of software engineering concerned
with the real-world goals for, functions of, and constraints on software sys-
tems. It is also concerned with the relationship of these factors to precise
specifications of software behavior, and to their evolution over time and

across software families.”

From the above definition, Nuseibeh and Easterbrook have argued that the role of RE

is representing the “why” and “what” of a system, analysing its requirements, validating
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that they are really what stakeholders want, defining what should be built, verifying
that it has been built correctly, and adapting to the changing world by reusing partial
specifications in RE [115].

Although there is now little dispute about the importance of requirements engineer-
ing in software development and a lot of different approaches and frameworks have been
developed for RE, there is still little consensus on process support or even a common
vocabulary of definitions [41, 122].

Recently, there have been some attempts to provide a common foundation and some
processes for RE. For example, Zave and Jackson [169] have identified weaknesses (i.e.,
the “four dark corners”) in RE and they have proposed a conceptual foundation for RE:
they argue all descriptions involved in RE should describe the environment, provide nec-
essary control information, support requirement refinement, etc. They propose a mini-
mum criteria for determining exactly what it means for RE to be considered successfully
completed, based on a relationship among requirements, domain knowledge and speci-
fications. Nuseibeh et al. [114, 59] have proposed the Twin-Peaks process model [114]
as a way to embed RE in software development practice: the model is an adaptation of
the spiral model [14] based on experiences in industrial development projects. It pro-
poses to relate software requirements and architectures in an iterative fashion, in which
the role of requirements engineering is to achieve a satisfactory structure in the problem
space as early as possible to inform architectural design in the solution space. However,
these proposals have yet to be widely accepted in the academic community and adopted
in industrial practice.

This thesis contributes to the investigations of the above proposals, and it views the
role of requirements engineering in software development in the following way: firstly

it helps to start the process of moving from the problem space to the solution space
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by eliciting requirements and domain knowledge, and structuring them in a suitable
way to derive specifications that can influence and justify design decisions, and then
drive successive iterations of the development process by fine-tuning such knowledge
either informed by the problem space (e.g., mistakes, conflicts or changes in domain
knowledge or requirements, etc) or the solution space (e.g., architectural styles or de-
sign choices, etc). In the following section, we will review current main approaches in
requirements engineering and discuss how they support the derivation of specifications

from requirements.

2.2 Narrative Approaches

There are two main types of “narrative” approaches to requirements engineering - use
cases and scenarios, which often overlap with each other. We use the term narrative
to indicate that these approaches describe the context and requirements in natural lan-
guage. Narratives are used for eliciting and validating requirements with project stake-

holders [108], and are popular in software development practice [162].

2.2.1 Use Cases

Use cases are a technique for capturing the intended requirements of a new system or
software change. Each use case consists of one or more scenarios that narratively de-
scribe how the intended system should interact with the user or other systems to achieve
a particular goal [164].

Use cases are thought to facilitate the elicitation and communication of requirements
from the user’s point of view [139, 144]. Although use cases are not object-oriented in

nature, historically, they have been closely linked to UML (Unified Modelling Language
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[16]) and OOAD (Object-Oriented Analysis and Design [104]) to support a complete

development process.

What Is the Definition of a Use Case?

There have been many different definitions of use case in the literature, each of which

has a slightly different focus. Here are some of them:

“A use case is a narrative document that describes the sequence of events of

an actor (an external agent) using a system to complete a process.” [89]

“They are stories or cases of using a system. Use cases are not exactly
requirements or functional specifications, but they illustrate and imply re-

quirements in the stories they tell.” [103]

“A use case is a description of a set of sequences of actions, including vari-
ants, that a system performs to yield an observable result of value to an

actor.” [16]

In [30], Cockburn summaries 18 different definitions of use case given by different

experts, teachers and consultants and gives the following definition:

“Scenario. A sequence of interactions happening under certain conditions,
to achieve the primary actor’s goal, and having a particular result with re-
spect to that goal. The interactions start from the triggering action and
continue until the goal is delivered or abandoned, and the system completes

whatever responsibilities it has with respect to the interaction.”

“Use Case. A collection of possible scenarios between the system under

discussion and external actors, characterized by the goal the primary actor
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has toward the system’s declared responsibilities, showing how the primary

actor’s goal might be delivered or might fail.”

Scope and Elements of a Use Case

According to the above definition, a use case consists of the following elements: firstly,
the “system under discussion” mostly refers to the digital computer where the hardware
and its intended software reside. It is typically treated as a “black box” perceived from
the outside world to prevent premature assumptions about how the intended system is
implemented; secondly, the “actors” are parties outside the system that interact with it.
An actor can be a class of users or other systems (including other software systems).
Actors can be classified into the primary actors and secondary actors. The primary actor
is the stakeholder whose goal is the main theme of the use case and the secondary actor
is an external actor who provides a service to the system under discussion; and thirdly,

the “goal” is a single task or purpose that a use case must achieve.

The “system under discussion”

There is some ambiguity with the word “system” in the above use case definition (a
detailed discussion on this can be found in [83]):

If, traditionally, the system strictly means the digital computer (including its hard-
ware and software), then what all use cases are describing is the computer’s interaction
with actors outside. This view is heavily focused on the computer and its close neigh-
bourhood, with assumptions that its relationship with the wider neighbourhood is trivial.

Figure 2.1 is a typical use case diagram illustrating this focus on the boundary be-

tween the system under discussion and the actors.
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Arrange a
meeting Retrieve
contact details
Update calendar
entry
Administrator Departmental
member

Fig. 2.1: Use case diagram for the shared calendar system taken from f124] unmodified

A brief narrative description of the use case - arranging a meeting using the shared

calendar system - can be as follows [124]:

e The user chooses the option to arrange a meeting.

e The system prompts the user for the names of attendees.

* The user types in a list of names.

» The system checks that the list is valid.

* The system prompts the user for meeting constraints.

» The user types in meeting constraints.

» The system searches the calendars for a date that satisfies the constraints.
* The system displays a list of potential dates.

¢ The user chooses one of the dates.
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e The system writes the meeting into the calendar.

e The system emails all the meeting participants informing them of the appoint-

ment.

From the above example, we can see that use cases (especially the textbook version
by Cockburn [31]) tend to focus on details about how users interact with the computer
system. However, from a requirements engineering perspective, their subject matter
should be wider. For instance, Robertson and Robertson [132] suggest that “business
use cases” are needed where the scope is much wider than the system-actor boundary.
Instead of using the term “the system”, they use the term “the work” to cover a much
wider context. In [133] they have named Cockburn’s use case “product use case” to
distinguish from their “business use case”. Figure 2.2 shows the “business use case” in

relation to the “product use case” in the wider context of “business event”.

Fig. 2.2: Connections between the product use case, business use case and business events (taken
from [133] unmodified)
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Advantages of the Use Case Approach

In use cases, the focus is on the boundary between the digital computer and the actors,
thus avoiding detailed design of the solution before the requirements are explored. The
narrative nature of a use case often makes it accessible for requirements elicitation,

documentation and validation from the actor’s perspective.

Disadvantages of the Use Case Approach

Use cases have downsides as well: the focus of the textbook version of a use case (e.g.,
[31]) is limited to the boundary between the digital computer and the actor in its envi-
ronment, in other words, not enough context is considered for requirements engineering.
Like other natural languages, badly-written use cases suffer from ambiguity and incon-
sistency due to lack of sound guidelines. Use cases are not well suited to capturing
non-functional requirements, hence, there is always an “other specification” section in
addition to use cases (e.g., [104]). Regnell ez al. [130] observe that we usually get “a
loose collection of use cases which are separate, partial models, addressing narrow as-
pects of the system requirements” in this approach, which suggests use cases should be

guided or complemented by more complete models.

2.2.2 Scenarios

Scenarios have been a focus in requirements engineering research and practice because
they. can offer narratives to bridge the communication gap among various stakeholders
in a development project. In requirements engineering, they have been effective in
eliciting, describing and validating requirements [5, 132, 3]. Scenarios are also used in

other fields such as human-computer interaction (HCI) [25, 124] and strategic planning
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[22], etc.

What Is a Scenario?

A scenario has been defined as an “informal narrative description” by Carroll [24].
Preece et al. [124] observe that in human-computer interaction (HCI), a scenario de-
scribes human activities or tasks in a story format which allows stakeholders to explore
and express contexts, needs, and requirements. Within use cases, a scenario usually
represents one path through the actor’s interaction with the machine.

Another definition of a scenario is given by Haumer [66]: a scenario presents a con-
crete story or instance of a specification, i.e., examples of using a system to accomplish

some desired function.

Advantages of the Scenario Approach

Robertson and Robertson’s approach to requirements [132] shows how and why a sce-
nario approach has some advantage over the textbook version of use case by looking at
a wider context - responding to the real business event behind use cases in support of
product innovation.

Scenarios provide an informal, narrative and concrete style of descriptions that focus
on the dynamic aspects of the computer-environment interactions [160]. They help get
the user involved in the RE process, increase the developer’s understanding of domain
modelling, and facilitate communication between developers and customers [142].

Haumer [66] observes that scenarios help project stakeholders reach partial agree-
ment and consistency because scenarios can ground discussions and negotiations on real
examples. He also points out that scenarios are good for maintaining certain concrete

levels of traceability in the whole development process, e.g., writing test cases [66].
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Lamsweerde et al. [160] argue that scenarios may serve many purposes in the re-
quirements engineering life-cycle, such as requirements elicitation [123] [8]; populat-
ing conceptual models [140] [138], business rules [136] or glossaries [162]; validating
requirements together with prototyping [153], animation [44], or planning generation
tools [7] [53]; reasoning about usability during system development [26]; generating
acceptance test cases [75]; and structuring requirements through user-oriented decom-

position for subsequent work assignment [162].

Disadvantages of the Scenario Approach

Scenarios share many of the disadvantages and limitations of use cases. For example,
they are mainly described in a natural language, whose ambiguity may be an issue
[23, 90]. Sutcliffe [154] observes that scenarios may encourage “confirmation bias”, that
is, people tend to seek only positive examples that agree with their preconceptions [93].
He also points out that scenario approaches have sampling and coverage problems -
scenarios can bias beliefs in frequencies of events and probabilities [155], which reflects
the conflict between particular details in scenarios and the high level of abstractions

required in requirements.

2.2.3 Deriving Specifications from Requirements Using Use Case and Scenario

Approaches

In use case and scenario approaches, high-level use cases or scenarios usually capture
business processes within organisations [31, 132, 3]. These high-level narratives are
then manually re-expressed as low-level use cases or scenarios which capture the direct
interaction between a software system and its actors. Once the low-level use cases or

scenarios have been re-expressed as the direct interaction between the system and actors,
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other techniques, such as UML, are used to generate software design or code [104]. This
process is not systematic and is left to the developer’s ability and experience.

The main difficulty with use case and scenario approaches is how to transform high-
level descriptions into low-level ones. The fact that scenarios have sampling and cov-
erage problems [154] reflects some difficulties for deriving specifications from require-

ments if scenarios are not complemented by other models.

2.3 Goal-Oriented Approaches

There are two major goal-oriented approaches to requirements engineering, namely the
KAOS approach [160] and the i* approach [166]. Goal-oriented approaches have be-
come popular in requirements engineering because they are useful in acquiring require-
ments, relating requirements to organisational and business context. They also play
some roles in dealing with conflicts and in driving design [167].

The definition of a goal is given by van Lamsweerde as follows [159]: “A goal is an
objective the system under consideration should achieve. Goal formations thus refer to
intended properties to be ensured; they are optative statements as opposed to indicative

ones, and bounded by the subject matter [82, 169].”

2.3.1 The KAOS Approach

KAOS is a method for eliciting, specifying and analysing goals, requirements, scenarios
and responsibility assignments [38]. It is aimed at providing support for the whole
requirements process through elaboration from high-level goals to requirements, objects
and assigning operations to various agents. It consists of a specification language, an

elaboration method, and meta-level knowledge [160].
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Advantages of the KAOS Approach

KAOS’s starting points are goals, which can be seen as high-level requirements. They
are usually far away from implementation details. They provide an appropriate language
to communicate with those stakeholders whose primary concerns are the overall goals
or strategies of the organisation, e.g., high-level managers and decision makers [158].
The KAOS approach uses logic to support reasoning about goal refinement with
some patterns and tool support, such as GRAIL, which can be integrated with other

CASE tools such as DOORS [39], and Objectiver [1].

Disadvantages of the KAOS Approach

KAOS’s primary focus is on goals rather than contexts so that the way in which goals
are decomposed does not always reflect the complex structures and relationships among
requirements and real-world contexts; therefore sometimes a bad goal decomposition
will dictate a set of sub-goals that are more difficult or even impossible to satisfy by the

software or environment agents.

2.3.2 Thei* Approach
What is i*?

The i* framework has been developed for modelling and reasoning about organisational
contexts and their information systems. It has two major modelling components: the
Strategic Dependency (SD) model and the Strategic Rationale (SR) model. SD de-
scribes the dependency relationships among actors in an organisational environment;
SR describes stakeholder interests, concerns, and how they may be addressed by vari-

ous configurations of systems and environments [166]. The framework is used in con-
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texts where there are multiple parties with strategic interests that may be reinforcing or

conflicting each other [165].

Advantages of the i* Approach

The starting point of the i* approach is usually far away from the computing machine.
Unlike KAOS, the primary focus of i* are soft goals [29], that is, the so-called non-
functional requirements. Since this approach focuses on soft goals, some global non-
functional property requirements such as security, usability, performance or flexibility
can be expressed as goals for refinement [163]. Since itvsupports an agent-oriented ap-
proach to RE, it has the potential to be linked to agent-oriented programming languages

[120].

Disadvantages of the i* Approach

The i* approach shares similar disadvantage of the KAOS approach. Soft goals are

difficult to quantify, thus its modelling is mostly a rough approximation to the real world.

2.3.3 Deriving Specifications from Requirements Using Goal-Oriented Approaches

In goal-oriented approaches, requirements are expressed as goals, which may range
from high-level goalS (e.g., strategic concerns within an organisation) down to low-
level operational goals (e.g., technical constraints on the software agent or particular
concerns on the environment agent), therefore goal refinement can be seen as a form
of requirement transformation [129]. Software specifications are then derived from the
subset of operational goals which are assigned to software agents.

In the KAOS approach, goal refinement is made systematic through the associa-

tion of the goal model with a small set of related models that capture structural and
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behavioural aspects of the solution software [106]. For example, scenarios and tabular
event-based specifications have been exploited for the elaboration of behavioural mod-
els in [160] and [102], respectively. Generic refinement patterns were given in [40] to
justify the appropriate reuse of sound goal refinement steps that have been proven for-
mally correct. Therefore, goal decomposition in KAOS can be systematic in the sense
that high-level goals (i.e., close to requirements) can be transformed into operational
goals (i.e., close to specifications) by following some well-formed refinement patterns.

In the i* approach, research towards this direction is ongoing, e.g., the Tropos
project [113]. According to our literature survey, there is yet to be a systematic way

of deriving specifications from requirements in this approach.

2.4 A Formal Approach to Relating Requirements and Specifications -

The Four Variable Model

The four-variable model proposed by Parnas and Madey provides a rigourous way of
relating requirements and specifications [118]. The model was used for documenting
requirements and specifications for the A7-E aircraft using the Software Cost Reduction
(SCR) method [6], where tabular formalism was applied. The Consortium Require-
ments Engineering (CoRE) methodology was developed based on the model [50], which
was later applied to some avionics systems in the aviation industry [51, 109].

The four variable model consists of the following four variables [110]:

e MON - monitored variable in the environment that the system! observes and

responds to;

! In this context, the word “system” refers to the software and its I/O devices.
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e CON - controlled variable in the environment that the system controls;

o INPUT - input variable through which the software senses the monitored vari-

able;

e OUTPUT - output variable through which the software changes the controlled

variablle.
The following four mathematical relations are defined under the model [110]:

e NAT defines the natural constraints by the environment, such as those imposed

by the physical law;

e REQ defines the system requirements, dictating how the controlled variable is
to respond to changes in the monitored variable, which is to be imposed by the

system;
e IN defines the relationships of the monitored variable to the input variable;

e OUT defines the relationship of the output variable to the controlled variable.

One of the advantages of this model is that it explicitly defines the boundary between
the system and its environment and represents them as separate mathematical variables
whose relationships must obey some mathematical relations. Its tabular representation
and decomposition of complex logic formulas facilitates tool support such as SCR and
CoRE methods.

However, as pointed out by Jackson [83], the original four-variable model is suitable
for developing software for certain kinds of behaviour control problems. The range
of its applicability is restricted mainly because of its underlying assumption that the

requirements are always expressed in terms of the monitored and/or controlled variables.
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2.5 Problem-Based Approaches

The problem-based approach was started by Jackson’s first description of problem anal-
ysis in [82], which was later developed more fully in [83]. A problem is viewed as a
requirement in a real-world context for which a software solution is sought. The process
of software development is then regarded as a problem-solving process, eventually lead-
ing to a solution that satisfies the requirement in its context. Central to this approach
is the problem frames framework [83], which delivers a whole set of concrete ideas
that are usable in guiding problem analysis and associated development in requirements
engineering.

In summary, the term “problem-based approach” refers to all the work that shares

the same philosophy as Jackson’s view on software development [83].

2.5.1 Foundation

The work by Zave and Jackson [169] provides the foundation and motivations for
problem-based approaches in requirements engineering. It points out fundamental weak-
nesses of existing approaches in RE at that time (1997), and states that the following
four aspects (the so-called “four dark corners”) should be addressed (exact quotes from

[169], as listed in italics below):

1. “All the terminology used in requirements engineering should be grounded in the

reality of the environment for which a machine is to be built.”

2. “It is not necessary or desirable to describe (however abstractly) the machine to
be built. Rather, the environment should be described in two ways: as it would be
without or in spite of the machine and as we hope it will become because of the

machine.”
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3. “Assuming that formal descriptions focus on actions, it is essential to identify
which actions are controlled by the environment, which actions are controlled by
the machine, and which actions of the environment are shared with the machine.
All types of actions are relevant to requirements engineering, and they might need
to be described or constrained formally. If formql descriptions focus on states,

then the same basic principles apply in a slightly different form.”

4. “The primary role of domain knowledge in requirements engineering is in sup-
porting refinement of requirements to implementable specifications. Correct spec-
ifications, in conjunction with appropriate domain knowledge, imply the satisfac-

tion of the requirements.”

The paper then proceeds with a proposal on how the four dark corners can be ad-
dressed through problem-oriented requirements engineering, although it falls short of
indicating how a requirement engineering process can be built on such a foundation.

Following up from the Four Dark Corners paper, Gunter et al. [56] provide formal-
isation of the work by Zave and Jackson [169], with extended clarifications by Hall and
Rapanotti in [60]. Their work focuses on formal models in order to be as rigourous as
possible in describing and reasoning about the relationships between requirements and
specifications.

Despite the importance of the work on formalisation, the problem with applying
formal models to requirements engineering still remains because there is a lot of infor-
mality to deal with in requirements engineering. As argued by Jackson in [85, 86], there
is always a mismatch between formal modelling and the informal world in the formali-
sation. Formal models are at best a simplified approximation to the real world. In many

cases, the limitations of these models can not be ignored in requirements engineering.
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2.5.2 Problem Frames

Problem frames were introduced in Jackson’s book Software Requirements & Specifi-
catons: a lexicon of principles, practices and prejudices [82] in 1995 (they were first
mentioned in Jackson’s paper [88] a year earlier). A fuller and more systematic repre-
sentation of problem frames can be found in his later book Problem Frames: andlysing
and structuring software development problems [83] in 2001.

Problem frames propose an approach to describing, analysing and giving early solu-
tion to software-intensive problems, such as control, information, business, military or
medical systems [35]. Since the work in this thesis is based on this approach, we will
describe problem frames more fully in chapter 3.

This approach explicitly separates the solution machine from its environment and the
requirement. It provides a graphical notation for representing a problem and its parts.
It requires that all descriptions be grounded in the real world, that is, be as faithful as
possible to reality, and be the basis of communication with domain experts and users in
a language that they can .understand: problem owners usually do not have expertise in
the computing machine but have experiences or expertise in the application domains.

There is a great emphasis on domain properties, which are the basis for defining the
scope of a development project - getting the scope right is crucial to any development
[132] [131],

In many ways, the problem frames approach remains an open framework in that it
does not prescribe a particular process or description language, thus enabling links to
other frameworks or integration with other approaches. It also provides patterns for

recognising basic problem classes, which can help solve more complex problems.
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Deriving Specifications from Requirements Using Problem Frames

The problem frames approach includes two forms of problem transformation to allow

for the derivation of specifications from requirements:

Problem decomposition

Problem decomposition adopts a divide-and-conquer approach to solving a problem:
from an initial complex problem, simpler and smaller subproblems are derived. Each
solution to the subproblems will contribute to the solution of the original problem. De-
composition may be achieved by matching basic problem frames defined in [83], by
applying generic decomposition heuristics [83], or based on specific knowledge of the
problem, which requires specific skills of the analyst [35].

Currently, the process of problem analysis is based primarily on problem decompo-
sition guided by heuristics until the problem becomes so simple that we can define the

specifications. No systematic techniques have been provided to support the process.

Problem progression

Problem progression is an idea given in [83] which is a form of transforming problem
contexts and requirements so that the analysis of the problem can be progressed towards
the computing machine. However, not many details are given, and it remains an under-
explored area of the problem frames approach [35].

This thesis gives a definition of problem progression, develops associated tech-
niques, and applies them to several case studies. Details on problem progression will be

given in Chapter 3.
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2.5.3 Problem-Oriented Software Engineering

Recently, Hall et al. [64] have proposed Problem-Oriented Software Engineering (POSE)
which extends and generalises Jackson’s problem frames in the following way: it per-
mits various forms of solution descriptions that stretch to different levels of abstraction,
such as from high-level specifications, design down to low-level code; it supports ar-
chitectural structuring of the solution space; the process of problem solving is transfor-
mational, providing traceability between problem and solution domains and is accom-
panied by adequacy justification of the transformation. Hence, POSE stretches from
requirements engineering through to program code. Development in POSE is stepwise
with transformations by which problems are moved towards software solutions. The
framework takes the form of a sequent calculus in the Gentzen style [95], in which both

formal and informal steps of software development are accommodated.

2.6 Transformational Approaches in Software Engineering

As observed by Rapanotti et al. in [127], since the late 1970s, many approaches to
software development have been focusing on the transformation of software specifica-
tions into code using techniques and processes that work within the solution domain.
For example, many formal approaches to software development have been focusing on
logic and calculi. Representatives of such approaches are Feather’s approach to formal
specification of closed systems using the language Gist [52], the refinement calculi of
Morgan [112] and Back ez al. [9], and the categorical refinement of Smith [150]. Some
recent developments in automatic tool support have given hopes of achieving large scale
program verifications [70, 71, 94]. However, to what extent these formal techniques are

suitable for the systematic derivation of specifications from requirements remains, by
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and large, an open question. Chapter 4 of this thesis explores this issue and gives some
observations and arguments on one particular formal technique.

Many researchers have also explored transformational approaches in requirements
engineering. For example, Johnson’s work on deriving specifications from requirements
[92] proposes automated support for transforming requirements into specifications. He
has defined a language [91] for the description of requirements and environmental prop-
erties, from which simulations of the behaviour of the system and environment can be
derived. Jackson and Zave [87] give some elements of a method for transforming re-
quirements to specifications, and illustrate them with an example. We share in this the-
sis much of the principled basis of their approach. The work in this thesis (in particular
chapter 5) embodies such principles as practical techniques for transforming require-

ments into specifications in the context of problem frames.

2.7 Summary

This chapter has reviewed major current approaches in requirements engineering and
examined how each of them contributes to the systematic transformation of require-
ments into specifications. Results of the review suggest the following points. Use case
and scenario approaches need to be complemented by other models to derive low-level
scenarios from high-level ones due to their sampling and coverage problems [155]. One
variant of goal-oriented approaches, KAOS, has some well-formed patterns to help the
systematic derivation of operational goals from high-level goals, but transformation of
contexts is not explicit in goal refinement. The problem frames approach explicitly
allows for the transformation of both requirements and contexts, but systematic trans-

formational techniques are currently missing from this approach. To fill this gap in
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the problem frames approach, this thesis provides some transformational operators and
rules (which will be defined in later chapters) for one class of problem transformation -

problem progression.



3. PROBLEM PROGRESSION

In this chapter we describe problem progression and its conceptual basis in problem

frames. We describe only those aspects of problem frames that are relevant to our work.

A more complete presentation can be found in [83].

3.1 The Problem Frames Approach

The idea of problem frames was published in Jackson’s book Software Requirements &
Specifications [82], in which it was outlined as one of a small number of topics related
to software development. He gave a more systematic account of problem frames later
in Problem Frames: Analyzing and Structuring Software Development Problems [83].

For more than a decade, researchers in the requirements community have explored
and extended problem frames into a conceptual framework for requirements engineering
(see [35, 36, 62] for collections of recent work). This framework suggests a principled
approach to software development. As Jackson puts it [84], “The problem frames ap-
proach is not a development method. It is, rather, a perspective and a conceptual frame-
work, embodying a certain way of looking at an important group of problem classes and
of structuring the intellectual processes of developing good solutions.”

In this thesis, “the problem frames approach” is used interchangeably with “the
problem frames framework”; we will simply use “problem frames” or “PF” to represent

both in most situations. Wherever we need to make the meaning explicit, we often
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prefer the phrase “the problem frames approach”.

3.1.1 The Engineering Root of PF

The problem frames approach takes an engineering view of software development. For
example, in [82] Jackson gives an account of various possible aspects of software devel-
opment, such as the concerns and expertise voiced by the mathematician, the financier,
the management, the sociologist, the lawyer, or the stockbroker, etc. He argues that
although each of them may play a crucial role in certain development projects, yet the
central point of all software development should be the task of the software engineer.
He points out that as software engineers, “our business is engineering - making ma-
chines to serve useful purposes in the world. And our technology is the technology of
description”.

Of course, this does not mean that the knowledge and expertise of mathematicians,
financiers, project managers, sociologists, lawyers or stockbrokers are ignored by engi-
neering. In fact, they can be elicited from these domain experts as domain knowledge,
which is an important part of requirements engineering. In PF, they are encoded as do-
main properties. PF does not prescribe any particular language for describing them so
as to accommodate a variety of languages used by these experts.

This engineering perspective is emphasised and elaborated again by Jackson in [84]
- based on Rogers’ definition of engineering [134], which is quoted and expanded by

Vincenti [161]:

“Engineering refers to the practice of organizing the design and construc-
tion of any artifice which transforms the physical world around us to meet

some recognized need.”



3. Problem Progression 32

In the PF view of software development, Jackson [84] interprets the artifice to be
designed and constructed as the machine, on which software is built and executed to
serve a particular purpose. The purpose is to satisfy a recognised need, which is called
requirement. In order to satisfy the requirement, we need the machine to transform part
of the physical world around us, which is called the problem world. The satisfaction
of the requirement can be observed only in the problem world, therefore PF views the
requirement as existing only in the problem world.

In PF, problem descriptions are captured and expressed by diagrams (notations will
be introduced later), which model the machine, the problem world, the requirement, and
their relationships. Moreover, in order to serve engineering purposes, PF also provide
tools to help analyse problems and derive solutions, such as problem decomposition,

subproblem recomposition, and dealing with some standard concerns that arise in the

analysis process [83].

3.1.2 Representing Problems
Phenomena - The Most Basic Elements of Problem Descriptions

In order to describe the problem world in a way that facilitates understanding and com-
munication, Jackson proposes the notion of phenomenon as the basis of descriptions.
He defines a phenomenon to be “an element of what we can observe in the world” [83].
The word “element” implies that phenomena provide the fundamental vocabulary or
alphabet for describing the world, in other words, identifying all the relevant phenomena
in the context provides enough basic elements for describing the problem at hand.
Of course, as Jackson argues in [84], abstractions are unavoidable in any treatment

of physical phenomena. We can write abstract phenomena as long as they can be un-
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ambiguously explained in terms of phenomena that we can observe. For example, if we
regard the pressing of a button by a lift user to be a phenomenon in a problem address-
ing the specification of a lift controller, then we are making abstractions from a chain
of causal events which start from depression of the button all the way to, let us assume,
assigning the corresponding encoded value to a machine register. We can consider this
complex chain of causal events as a single event at certain higher level of abstraction,
provided that we can unambiguously interpret it using observable phenomena: in our
example, when a lift user presses a button, the physical movement of the button connects
the associated circuit, which sends an electronic signal through the cable connected to
the controller machine, which then matches one of the predefined key codes, for which
an encoded value is correspondingly assigned to a register of the machine. This ab-
straction of phenomena is not only convenient for communication but also powerful in
controlling complexity in analysis and design [45].

According to Jackson [83], phenomena consist of individuals (something that can
be named and distinguished from others) and relations (a set of associations among

individuals):

e An individual can be an event - an occurrence at some point in time, regarded
as atomic and instantaneous, e.g., a keystroke; or an entity - something that can
persist or change over time, e.g., a motor car; or a value - something that can not

change over time, e.g., the character “X” or the number 23.

e A relation can be a state - a relationship among individual entities and values that
can be true at one time and false at another, e.g., Temperature(Room, 29.5); or
a truth - a relationship among values that is either true at all times or false at all

times, e.g., LengthOf{ “ABCD”, 6); or a role - a relationship between an event and
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its participating individuals.

Jackson [83] introduces two categories of phenomena: causal phenomena are di-
rectly caused or controlled by some domain, and they can cause other phenomena in
turn, e.g., a pulse event in a traffic light unit can cause a state change in the Stop and Go
lights; symbolic phenomena are used to symbolise other phenomena and relationships
among them because they can neither change themselves nor cause changes elsewhere,
though they can be changed by external causation, e.g., the data content of a floppy disk
record. As we will see later, a large part of this thesis focuses on causal phenomena and
associated cause-and-effect relationships.

Domains are an abstraction of phenomena grounded in the real world: a domain is
defined to be “a set of related phenomena that are usefully treated as a unit in problem
analysis” by Jackson [83]. Another characteristic of a domain is that it is usually a con-
crete and self-contained artefact that maps to domain experts’ intuition and knowledge
on how they partition the problem world into well-understood parts whose phenomena
are potentially relevant to the problem. PF makes an explicit distinction between the
internal phenomena and the external phenomena of a domain. The internal phenomena
of a domain are private to the domain un-shared with other domains; while the external
phenomena are shared with other domains.

Jackson’s classification of domains is also based on phenomena [83]: a causal do-
main is one whose properties include predictable causal relationships among its phe-
nomena; a biddable domain usually consists of people, and it lacks positive predictable
internal causality among its phenomena; a lexical domain is a physical representation
of data of symbolic phenomena (a lexical domain can be regarded as a structure of

symbolic phenomena, or as a causal domain).
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Similarly, a requirement is grounded in the real world since it is “a condition on one
or more domains of the problem context that the machine must bring about” [83]. In
other words, the only way that we (including the customer and the developer) can judge
if the requirement is satisfied is by observing the desired phenomena in the real world.

From above, we can see that every artefact in PF is an abstracted form of phenomena
with certain characterisation; therefore phenomena are the building blocks for PF. Any
reasoning or analysis in PF is based on phenomena descriptions.

Adopting the notion of phenomenon to describe the problem world has at least two

advantages:

e Descriptions that are based on phenomena are firmly grounded in the real world.
In PF, the soundness of complex phenomena descriptions can be validated with
domain experts by elaborate structures of “designations” and “refutable descrip-
tions” [81, 82]: a designation refers to the relationship between a phenomena
description and what it describes in the real world, thus allowing for informal ex-
planation of how the phenomena can be recognised; a refutable description says
something about the problem world that can, in principle, be refuted by finding a

counter example of the description.

e Itis a way of allowing certain important stakeholders (e.g., domain experts) to be

involved early in establishing the problem scope for analysis [107].

Domain Properties - Indicative Relationships among Phenomena

A domain is defined to be an encapsulated set of related phenomena and its properties
are the inherent (or indicative) relationships among its internal and external phenomena.

In Jackson’s own words, domain properties are “the expected and assumed relationships
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among the phenomena of a domain” [83].

In many realistic software development problems, several phenomena are not shared
directly with the solution machine, but they still need to be affected indirectly by the
machine for the requirements to be satisfied. As we will see later, domain properties
are important for bridging the gap between phenomena that are directly shared with the

solution machine and those phenomena that are not.

Problem Diagrams - Schematic Organisation and Scalable Abstraction of Phenomena

Descriptions

In any problem descriptions, the scope of observable phenomena needs to be estab-
lished. PF provides a graphical notation to express the scope of a problem and its parts.
A context diagram shows the structure of the problem context in terms of domains and
connections between them [83]. A Problem diagram augments the context diagram

with a representation of the requirement. An example of problem diagram is given in

Figure 3.1.
B . . -, Lo T TS ~
Controller | CM! {on, off} . fis-on, is-off} , Work ™
. Device === A . ]
machine . regime .

Fig. 3.1: A simple problem diagram taken from [35] modified

Figure 3.1 shows a control problem in which the machine is to control a device for

a work regime. There are the following basic elements of a problem diagram:

e The machine domain named Controller machine is represented by a box with a
double stripe; the device domain named Device is represented by a box with no

stripe; the requirement named Work regime is represented by a dashed oval.
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e The shared phenomena between the Controller machine domain and the Device
domain are represented by a solid line connecting them, identified by CM! {on,
off}, where CM! represents that these shared phenomena are controlled by the ma-
chine (in other words, they are observed by the device). There is a convention to
follow about shared phenomena in a problem diagram containing many domains
- if there is no line linking two domains in a the diagram, then it is assumed that
they do not directly share any phenomena - this implicit convention is important

for any problem analysis.

e The fact that the requirement Work regime constrains certain internal phenomena
of the device is represented by a dashed line with an arrowhead pointing towards

the Device domain, identified by {is-on, is-off}.

e Phenomena {on, off} are known as specification phenomena because they are
shared with the machine; while phenomena {is-on, is-off} are known as require-

ment phenomena because they are the subject of the requirement references [83].

Problem diagrams provide a schematic organisation of the phenomena that are within

the scope of the problem to be solved. Their roles in describing problems are twofold:

e on the one hand, they help visualise the topological complexity of the software
development problem (depending on the complexity of the problem, an arbitrary
number of application domains with varied connections could be drawn in the

same problem diagram, see Chapter 6 for more complex examples);

e on the other hand, for clarity of the model, they omit details of the domains’

internal phenomena unless they are referred to or constrained by the requirement.
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Problem diagrams are complemented by problem descriptions with details about the

domain’s internal phenomena.

Basic Problem Classes and Frames

Central to the PF approach is the idea of providing a catalogue of recurrent software
problems for reuse. Essentially, a problem frame is a recurrent problem template repre-
senting a problem class. Jackson [83] introduces five basic frames as an initial catalogue
of identified problem classes for structuring and decomposing complex problems and
their solution.

Practitioners can follow the same principle and build their own repertoire of problem
patterns as their ability to solve problems grows over time. For example, the problem
frames community have found new problem frames such as the user interaction frame
[61], the simulator frame [17] and the pipe-and-filter or model-view-controller AFrames
[126].

Next, for the purpose of illustration, we will look closely at the required behaviour

frame, which is one of the five basic problem frames.

The required behaviour frame - an example

The problem described by the required behaviour frame is: “There is some part of the
physical world whose behaviour is to be controlled so that it satisfies certain conditions.
The problem is to build a machine that will impose that control.” [83]. The graphi-
cal representation of a problem frame is called a frame diagram. The frame diagram
associated with the required behaviour frame is given in Figure 3.2.

In the diagram, CI, C2, C3 are causal phenomena; the C annotation in the bottom

right corner of the Controlled domain represents the fact that the domain type of this
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- ~~

Controlled c3 _(" Required ™,
domain [c | “._ behaviour .’

S -7

CMIC1
CD!C2

Control
machine

Fig. 3.2: Required behaviour: frame diagram (taken from [83] unmodified)

domain is causal; the annotation CM! represents the fact that the shared phenomena
C1 are controlled by the Control machine domain (e.g., this is where the machine can
exert control); the annotation CD! represents the fact that shared phenomena C2 are
controlled by the Controlled domain (e.g., this is where the machine gets the feedback
about the controlled domain); and the dashed arrow line labelled C3 constrains certain
internal causal phenomena C3 of the Controlled domain.

The above diagram is a template for recurrent problems. In order to match a problem
diagram to this template, the domain types, the phenomena types, and the control and
observation characteristics of the phenomena have to be the same.

A frame concern [83] is an argument that we must make, by fitting descriptions
of the requirement, the machine and the problem domains together, to convince our
customers that the requirement is adequately satisfied. The frame concern is expressed

diagrammatically, as shown in Figure 3.3 for the required behaviour frame.

-------- -~
Required ™\
. behaviour

Controlled el

Control
domain (€0 RN A

machine Rad =

We will build the

machine to behave
like this, so that ...

(specification)

%)
D )

... knowing that the
controlled domain behaves
like this,

(domain description)

... we'll be sure that the
required behaviour will
be enforced like this

(requirement)

— O

Fig. 3.3: The frame concern for the required behaviour frame
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Here is an example of a required behaviour problem - a simple automatic tempera-
ture control problem.

A modern office building needs an automatic heating control system during the cold
winter months in a year. The building has a fixed pattern of usage - the building needs
heating on every working day from 9:00 am till 5:00 pm, which are the regular working
hours in the offices. The problem is to build a simple controller machine that will switch
on the heating devices (we assume the heating devices have a mechanism to maintain
the temperature) at 8:45 am and switch them off at 4:45 pm every day.

Figure 3.4 shows the problem diagram for this problem:

: pemTTTTTT S ~
Heating | HC! {on, off Heating | fison isoff ** Heating
controller devices . rlegime .

-~
i

Fig. 3.4: A simple automatic heating control problem diagram

Heating devices: devices used to generate heat. They can be in either the is-on state
or the is-off state. Pulse events on and off can affect state changes, thus this domain is
a causal domain.

Heating regime: the requirement is that the heating devices should be on between
8:45 am and 4:45 pm every day.

{on, off}: these are shared phenomena between the Heating controller domain and
the Heating devices domain; HC! means that the phenomena are controlled by the Heat-
ing controller domain; they are the specification phenomena.

{is-on, is-off}: these are the requirement phenomena, which happen to be internal
to the Heating devices domain; {is-on, is-off} represent the two states of the Heating
devices: is-on represents the devices being on; is-off represents the devices being off.

The task of problem analysis is to find a machine behaviour that will make the heat-
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ing devices do what is required. Once a machine behaviour is found, the frame concern
captures the form of argument we need to have in terms of all problem descriptions.
Therefore, addressing the frame concern adequately means making sure that require-
ment, domain and machine specification descriptions match properly, and the problem

is solved.

Heating Heating /" Heating
controfler | 7 = devices ; .\ regime

We will build thi

Heating controller to

behave like this, so ... knowing that the

that... Heating devices work like ... we'll be sure that

this, the Heating regime

(specification) will be this
(domain description)
(1) (requirement)
\_’

2
()\> ®)

Fig. 3.5: Frame concern in the heating control problem

For this heating control problem our descriptions must support the argument shown
in Figure 3.5, that is, we must establish that the specified behaviour of the Heating
controller (1), combined with the domain properties of the Heating devices (2), will
adequately achieve the required behaviour - the Heating regime (3). A controller speci-
fication which would allow us to make such an argument is:

Heating controller: the heating controller machine should send an on pulse at 8:45
am and send an off pulse at 4:45 pm every day.

And the argument is:

(1) We will build the Heating controller to behave like this: “the heating controller
machine should send an on pulse at 8:45 am and send an off pulse at 4:45 pm every

day”, so that ...
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(2) ... knowing that Heating devices work like this: “devices used to generate heat.
They can be in either the is-on state or the is-off state. Pulse events on and off can affect
state changes”,

(3) ... we’ll be sure that the requirement Heating regime will be this: “the heating
devices should be on between 8:45 am and 4:45 pm every day”.

The advantage of using the basic frames is that we can utilise the expertise of others
and the structured analysis that has been proven useful in software development. In
other words, the basic frames give a template of the problem and an associated argument
template for us to use. However, for realistic problems that do not necessarily fit any of
the basic frames, we need to find other ways of solving them.

One approach proposed in [83] is to decompose the problem into a combination of
simpler subproblems that match basic frames. Then the solutions to these subproblems
are eventually recomposed into a machine specification.

Another approach, which is the subject of this thesis, is to transform the complex
problem into something that is more amenable to solution (something that we are more
familiar with or have previous experiences in solving, but which does not necessarily
fit a basic frame), while preserving the requirement traceability [54] expressed in the

problem diagram by following some systematic rules (as suggested in [129]).

3.1.3 Transforming Problems

According to Jackson [84], although the PF does not prescribe particular steps of de-
velopment, we can imagine a development process where we begin by capturing the
customer’s requirement, and proceed with the given domain properties to devise a ma-
chine behaviour specification. Part of this process is what Jackson calls problem pro-

gression (or reduction) - starting from an overall problem involving all the observable
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phenomena in the problem world, we need to derive a reduced problem where only the
specification phenomena are left. At this point, Jackson suggests: *“a problem of en-
gineering in the world has been reduced to the problem of building a machine with a
specified external behaviour” [84].

In this thesis, we consider problem progression as starting from a situation where
the problem world consists of a complex structure of interacting problem domains. We
propose ways of progressing the problem in a stepwise manner by successively remov-
ing domains which are farthest from the machine and re-interpreting the requirement
appropriately. In other words, we propose ways of deriving specifications from require-
ments in a systematic fashion. This is reminiscent of the work on deriving code from
specification [70, 72]. The similarity between the two can be summarised as follows:
the main purpose of the former is to provide a systematic way of deriving a specification
that satisfies the customer’s requirements; the main purpose of the latter is to system-
atically derive code to satisfy a specification. The two notions complement each other

within an overall development process.

Tools for Problem Analysis

In problem frames, a number of tools have been given for problem analysis:

Problem decomposition through projection [83]: also known as the “divide-and-
conquer” principle in solving complex problems; the idea is to apply some heuristics
or pfevious knowledge in order to divide the overall problem into a finite number of
projected subproblems that are easier to solve than the overall problem. Moreover,
very often the subproblems are ﬁtted to basic frames. This projection is different from
partitioning the overall problem, as illustrated in Figure 3.6: in problem decomposition

through projection, the relationships among subproblems are like those among A, B, C
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and D on the left-hand side of the figure, e.g., subproblems A and B may include the
same domains or shared phenomena in their overlap area; in contrast, in partition, as in
the right-hand side of the figure, the overall problem is partitioned into non-overlaping

subproblems.

S

Projection Partition

Fig. 3.6: A comparison between projection and partition (taken from [83] unmodified)

Problem variant [83]: this includes Jackson’s treatment of variant problems. A
variant frame is a variant of a basic problem frame in which an additional problem
domain is added, or the control characteristics of a shared phenomenon are changed.
Four variants are introduced to deal with problems that do not fit the basic frames,
namely, by adding connection variants, description variants, operator variants to the
problem diagram or elaborating control variants in the diagram [83].

AFrames: Hall et al. [61, 126] have introduced architectural frames (known as
AFrames) as the means to apply architectural patterns to identify subproblems based on
standard solution architectures. One of the merits of this approach is that both problem
decomposition and subsequent recomposition are addressed at the same time.

Problem progression: this will be discussed in detail in the next section as it is the

subject of this thesis.
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3.2 Problem Progression and its Significance

The idea of problem progression was briefly explained in [83], reflected in Figure 3.7.
In the words of Jackson:
“You can think of any problem [expressed in PF] as being somewhere on a progres-

sion towards the machine, like this:

M (— DD [—| DC [—| DB (—| DA |-+ RA }

‘‘‘‘‘

M |— Db — DC —| DB |-+ RB )
l/——~\
M |— DD — DC |-+ RC )
I,——§\
M (— oD |-< RD }

\\\\\

-

| _ 7 \\
M -1 RM )

~

—_———

Fig. 3.7: A progression of problems (taken from [83] unmodified)

The top problem is deepest into the world. Its requirement RA refers to domain
DA. By analysis of the requirement RA and the domain DA, a requirement RB can be
found that refers only to domain DB, and guarantees satisfaction of RA. This is the
requirement of the next problem down. Eventually, at the bottom, is a pure program-
ming problem whose requirement refers just to the machine and completely ignores all
problem domains.”

This discussion emphasises that we cannot just look at software development prob-
lems very close to the machine. We should look at the problem in its wider context.

When we are solving problems that are very close to the machine, we have to make sure
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that the solution satisfies the wider problem.

The above general principle of moving closer to the machine by analysing assump-
tions about deeper contexts in relation to the requirements is valuable because it enables
the possibility for a problem analyst to move systematically from an unfamiliar prob-
lem to a familiar problem: the closer you get to the machine, the easier it becomes for
the software developer to apply his or her expertise, thus the more familiar the prob-
lem becomes. Diagrammatically in Figure 3.7, the solution to each of the problems
is represented by the same machine M. This indicates that from the initial problem at
the top, we transform each problem in a solution-preserving way: that is, the solution
to the progressed problem satisfies the original problem. Note that in each step of the
transformation, we change the requirement to compensate for the reduced context by
making appropriate assumptions. This is required to guarantee that the solution to the
progressed problem will satisfy the initial problem when embedded in the wider context.

In order to explain our interpretation of problem progression in [83], let us take the
heating control problem as an illustrative example of problem progression:

Recall that the requirement Heating regime is “the requirement is that the heating
devices should be on between 8:45 am and 4:45 pm every day”, and the heating devices’
domain properties are: “Heating devices: devices used to generate heat. They can be in
either the is-on state or the is-off state. Pulse events on and off can affect state changes,
thus this domain is a causal domain”. It follows that in order for the heating devices
to be is-on between 8:45 am and 4:45 pm every day, they have to be switched on at
8:45 am (caused by the pulse event on) and switched off at 4:45 pm (caused by the
pulse event off). Then we can re-express the requirement as the specification Controller
commands: “the heating controller machine should send an on pulse at 8:45 am and

send an off pulse at 4:45 pm every day”. The transformation is carried out in such a
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way that it takes into consideration domain properties of the heating devices so that the
solution Controller commands will work in the initial problem (expressed by the top

diagram in Figure 3.8).

- -

: -~ ~
Heating | HC! fon, off} Heating <ﬁ_s-_o_n,_l_s-_o_ffz " Heating T\
controller devices . regime ./
progression bridged by
properties of
Heating devices domain

——————
- -

~

Heating | HC!fon, of} " Controller

‘. _________
controller RNy commands o

~— -

Fig. 3.8: Problem progression for the simple automatic heating control problem

Problem progression is not well-developed in Jackson’s original book [83], but only
mentioned as an idea in one of the question-and-answer sections of the book. In this
thesis, we take this idea forward by working out the details of transforming both the
requirement and the problem context. Therefore, we claim that the work in this thesis
contributes to this idea in a practical and constructive way.

Very recently, Seater and Jackson [148] have done some related work on deriv-
ing specifications from requirements in the context of problem frames, in which the
requirement is transformed into a specification, and, as a by-product of the transforma-
tion, a record of domain assumptions, which they call “breadcrumbs”, are produced as
justification for the progression. The focus of the transformation is on rephrasing the
requirement progressively until it is expressed as a machine specification, while devel-
oping domain assumptions which make the requirement transformation sound. They

call such transformation “requirement progression” as their focus is rewriting the re-
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quirement rather than transforming the whole problem as we do in this thesis. Also
Seater and Jackson’s work is focused on Alloy [79], a first-order logic modelling lan-
guage, while we apply a wider range of techiques from fully formal, based on Hoare’s

CSP, to semi-formal, based on causal reasoning.

3.3 Summary

In this chapter, we introduce Jackson’s idea of problem progression based on the prob-
lem frames framework. We take the idea of problem progression forward by exempli-
fying how progression can be carried out in practice on an example. In the next two
chapters, we will develop two classes of techniques to systematically support problem

progression.



4. A FORMAL APPROACH TO PROBLEM PROGRESSION

As introduced in the previous chapter, problem progression is a type of problem trans-
formation that is carried out in a solution-preserving way. It is captured and represented
by a series of related transformed problem diagrams. Given this conceptual basis, our
aim is to find practical ways to interpret it so that constructive techniques can be applied
to its implementation. The next two chapters will give two complementary approaches
to problem progression and show how constructive techniques can systematically help
solve problems.

Our first formal approach adopts CSP descriptions and operators. We show how
CSP can be used as a description language for problem diagrams, and then derive a
CSP-based semantics for them. This allows certain constructive CSP operators from the
literature to be used to progress problems. We then apply the technique we develop to
an example problem to show how our formal approach to progression works.

We begin the chapter by formulating the example problem which will be used for
illustration throughout, and conclude the chapter with a discussion of the limitations
of the use of formally based techniques in problem progression, arguing the need for

further and less formal approaches.
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4.1 An Example

The example is that of a supermarket point-of-sale (POS) system which allows cus-
tomers to scan and pay for their shopping without any intervention from supermarket
staff!. The problem is described as follows:

A Self-Checkout POS System

A new point-of-sale (POS) system is needed to process sales for a supermarket shop
in the UK. The POS includes both the desired software and some hardware purchased
Jfrom a third party, including a barcode reader, a cash acceptor and dispenser handler,
a touch-screen display, and a receipt printer, etc. The problem is that customers should
pay for and receive a receipt for the correct amount on presentation of items to the POS
system.

Table 4.1 shows the identified domains and their informal descriptions for this prob-

lem.

Name Description

A person who wants to buy an item from the

CUST |G,

The system which includes the desired
software and the hardware purchased from a
POS third party, such as a barcode reader, a cash
acceptor and dispenser handler, a touch-
screen display, and a receipt printer, etc

Tab. 4.1: Domains and their descriptions

1 This type of POS has recently appeared in many UK supermarkets.
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A problem diagram for the self-service POS system is given in Figure 4.1.

- -

POS CU!a CUST {present(item)} ',/REQ Y
iuaintedadedededed ke ~ H
PO!' b {present(receipt)}'s. _ L

a: {present(item), present(payment)}
b: {present(notice)}, {present(change)}, {present(receipt)}

Fig. 4.1: Point-of-sale: problem diagram

Table 4.2 shows the shared phenomena between domains in Figure 4.1 and explains

their designations in natural language.

Name Designation

The event in which the customer presents an item of product
s(he) wants to buy to the POS system. This event is initiated

present(item) and controlled by the customer CUST domain, thus
represented by CU! that proceeds it.
The event in which the customer presents the payment for the
present(payment) purchased item to the POS system. This event is initiated and

controlled by the customer CUST domain, thus represented
by CU! that proceeds it.

The event in which the POS system presents a notice to the
present(notice) |customer. This event is initiated and controlled by the POS
domain, thus represented by PO! that proceeds it.

The event in which the POS system presents the change due
present(change) |to the customer. This event is initiated and controlled by the
POS domain, thus represented by PO! that proceeds it.

The event in which the POS system presents a receipt to the
present(receipt) |customer. This event is initiated and controlled by the POS
domain, thus represented by PO! that proceeds it.

Tab. 4.2: Shared phenomena and their designations

The requirement statement represented by REQ is: “customers should pay for and

receive a receipt for the correct amount on presentation of items to the POS system.”
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4.2 Semantics of Problem Diagrams

Hall et al. [63] provide a denotational semantics of problem diagrams defined as fol-

lows. Let us consider the problem diagram in Figure 4.2.

-—————
- -

Slc d Rae N

K!O e AN -7

~
__________

Fig. 4.2: A generic problem diagram, K may be arbitrarily complex

The semantics assumes descriptions of the diagram are expressed in a language,
called the Domain and Requirement Description Language (DRDL). The only require-
ment which is made of this language by the semantics is that it has a notion of satisfac-
tion. The meaning of a problem diagram is that of a “challenge” to find a specification

S that satisfies R in the context of K, and is denoted by the set:

c,0: [K,R]={S : Specification | S controls ¢ A S observes o A K, S Fprpr, R}

In the set definition, “observes” and “controls” have the usual PF meaning, and
Fprpr indicates satisfaction as defined in the chosen DRDL..

Formally, the above formula denotes the set of all possible solutions to a generic
problem diagram. A limitation of the above semantics is that the formula is not con-
structive: we do not know how to calculate an element of the set. For example, the
semantics does not tell us how to solve our example problem in section 4.1.

To solve the problem formally, we need to find techniques within a formal frame-
work that allow us to calculate and construct a precise solution specification based on

the semantics. The techniques should give more technical insights and guidance to pop-
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 ulate the solution set. Also we need to be able to address more complex problems than
that of Figure 4.2, with problem diagrams containing an arbitrary number of interact-
ing domains. To be able to progress these problems formally, we need a technique that
captures this complexity and supports a process of reducing it by formél transformation.

To summarise, in this section we have chosen a formal interpretation of a generic
problem diagram and its solution specification as a set, based on Hall et al.’s semantics.
In the remainder of this chapter we will define a constructive approach to calculate an
element of the set semantics, that is, a formal solution specification for a problem like
that in section 4.1. In the next section, we will choose a restricted form of CSP as
a DRDL. We will formalise various artefacts in a problem diagram into various CSP
descriptions, and then find constructive operators for progressing problems based on

such descriptions.

4.3 Formalising a Problem Diagram Using CSP as a DRDL

In the following, we will give a brief introduction to the relevant CSP concepts we are
going to use to consider CSP as a DRDL, so that we can use it as the basis for problem
progression. Note that CSP is a very rich language and we will only use a subset of it

for our purpose.

4.3.1 The CSP language

Hoare’s Communicating Sequential Processes (CSP) [68] is a formal description lan-
guage used in software engineering. Although its original purpose was to describe
concurrency in programming [67], it has evolved and been applied to other areas of

software engineering: for example, modelling and analysis of security protocols [141],
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specifying software architecture connections [4], describing system level interactions
between software and hardware [135], and software verification [72, 70]. It also influ-
enced the development of the Occam programming language [78]. Recently, since its
event-based notations can map to real-world events, a small subset of CSP-like notations
have been used to model the interactions between the computer system and its environ-
ment to satisfy human-computer interaction requirements [65]. In software engineering
practice, the CSP tools FDR (Failures-Divergence Refinement) and ProBE developed
by Formal Systems (Europe) Ltd. [77] have been applied to industrial-scale projects,
such as security systems [58], hybrid systems [119] and model-checking [37].

The theory of CSP has undergone many revisions and extensions, whose milestones
are represented by several classical books: the early work is outlined in Hoare’s book
Communicating Sequential Processes [68], which introduces the basic concepts of the
CSP language. Later Roscoe extended Hoare’s work on CSP foundations, semantics,
and tool applications in his book The Theory and Practice of Concurrency [137]>. A
more recent book, Concurrent and Real-time Systems: The CSP Approach [146], by
Schneider introduces the main aspects of modern CSP, adding more CSP models and
introducing timed CSP. It uses an operational semantics to explain CSP operators and
adopts real-world examples and exercises to make it more suitable and accessible for
education to a wider audience.

In this chaptef we choose CSP as a DRDL in the formalisation of problem diagrams
and their semantics, based on which some CSP operators are chosen for the formal

construction of the solution guided by problem progression.

2 The CSP used in Hoare’s book [68] is considered as the first version, and the one used in Roscoe’s
book is regarded as the second version [137].
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Basic Concepts, Definitions and Notations

CSP provide notations suitable for describing and analysing real-world systems which
consist of interacting components. As summarised in [146], the view taken by CSP for
analysing the world is that of regarding each of these interacting components as a pro-
cess, that is, an independent and self-contained entity with particular interfaces through
which it interacts with its environment. If two processes are combined to form a bigger
system, then their combination becomes a self-contained entity with a particular inter-
face, i.e., a bigger process. This highlights the fundamental view of this framework that
processes are compositional in nature, for example, Kramer observes that CSP supports
compositional analysis [97].

The following definitions and conventions are adopted for the meaning and basic

syntax of events, processes and alphabets [68, 146]:

e An event is an atomic action that can be performed or suffered by an entity (or
object) in the world. An event is denoted by a single lower-case letter, e.g., a,
b, c or a lower-case word, e.g., coin - a coin is inserted in the slot of the vend-
ing machine, choc - a chocolate is extracted from the dispenser of the vending

machine;

e A process is an independent and self-contained entity (Hoare called such entities
“objects in the world around us” [68]) with a particular set of events, through
which it interacts with its environment. A process is denoted by an upper-case
word or acronym, e.g., VMS - simple vending machine, USR - user, or a single

upper-case letter P, Q, R;

o An alphabet is the set of events that are relevant for a particular description of
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an entity. An alphabet is denoted by adding o before a process name, e.g.,
aVMS = {coin, choc} - the simple vending machine has in its alphabet two
different classes of events®, coin and choc. Note this choice of alphabet ignores
some other possible classes of events, e.g., the maintenance of the vending ma-
chine could require that loadchoc and emptycoin events. Choosing what should
be included in the alphabet of a process depends on the assumptions made about

its context and may have a significant impact on the analysis.

Basic CSP Syntax

The following describes some basic CSP syntax that we will use (adapted selectively
from [68, 146, 137]):

e STOP, is a special process which does nothing and never engages in an event

in its alphabet A (A can often be omitted if it’s clear from context what events A

contains).

e CHAOS, is a process which can always choose to engage in or reject any events

in A. It is regarded as the least predictable and the least controllable process.

e Event Prefix: If P is a process and an event ¢ is in P’s alphabet, then the new
process a — P can be constructed. It is a process that is initially able to perform
only a, then afterwards it behaves as P. For example, a partial behaviour of a
simple vending machine that consumes one coin and serves one chocolate can be

described as coin — choc — STOP.

e Communication: When a is an event between the process P and its environ-

ment, it is usually denoted in the c.v format, where c represents a communi-

3 There may be many occurrences of events belonging to these two classes.
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cation channel and v represents the value being sent or received by P via c.
For a process that engages in a communication, the process either accepts an
input variable z on channel ¢, denoted c?z, or outputs the value e on chan-
nel ¢, denoted cle. For example, in the above simple vending machine, coin
is regarded as an “input” event and choc is an “output” event, and the “values”
can be a 1pound coin and a 200g chocolate bar, respectively, so we can write

coin? 1pound — choc! 200g — STOP.

e Event Prefix Choice is a process that is initially prepared to perform any of the
prefix events of more than one possible process choices prefixed by different
events. The actual behaviour of this process depends on which prefix event
actually occurs, then it behaves as the corresponding process after the chosen
prefix event. The prefix choice is denoted in a format like a — P | b — @
which separates all the candidate choices. For example, a vending machine that
serves either one chocolate or one toffee before it breaks can be described as

choc — STOP | toffee — STOP.

e Process internal choice: P T () denotes a process that behaves either like P
or (), where the selection between them is arbitrary, uninfluenced by the external
environment. It is also named the nondeterministic choice. For example, in a
money-changing machine (MCM) which always gives the right change in one of
two combinations MCM = in? 1pound — ((out! 50p — out! 50p — MCM) N
(out! 20p — out! 20p — out! 20p — out! 20p — out! 20p — MCM)), its

external user has no influence over which combination she or he gets.

o Indexed internal choice [ ], ; P; is a process which can behave as any one of the

P;, where J is a non-empty set of indices and process P; is defined foreach i € J.
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Examples will be given in the case study.

Process external choice: P [J Q) denotes a process that behaves either like P or
@, where the selection between them is chosen by the environment. The choice
is resolved by the performance of the very first event of either P or @, in favour
of the process that performs it. For example, if the initial event of P is a, and the
initial event of Q is b, and a is different from b, that is, if P = a — P’ and @ =
b — @' and a # b, then the external choice operator [J is the same as the event

prefix choice operator: PO Q = (e — P)O(b— Q') =(a — P)| (b — Q).

Parallel Composition: when two processes P and @) are executed concurrently,
each process may execute independently according to its prescribed patterns of
behaviour. If P and Q; share a synchronised event, then the range of possible
behaviour of P or ) will be influenced by the synchronisation. We describe the

combined behaviour of P and @ as parallel composition, denoted P || Q.

Event Hiding: the event hiding operator \ applied to P denoted P \ c is a process

which behaves like P but with all communications on channel ¢ concealed; its

alphabet is P \ {c}.

Process Recursion: if F is a continuous function from processes to processes,
then uX : A.F(X) is the process X with alphabet A satisfying X = F(X). For
example, a simple vending machine which serves as many chocolates as required
VMS = (coin — (choc — VMS)) can be equivalently described by a recursive

equation VMS = uX : {coin, choc}.(coin — (choc — X)).
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4.3.2 Modelling a Domain as a CSP Process

Having introduced the basic elements of the CSP, we can now find similarities (in fact,
a close match) between Jackson’s notion of a domain in PF and the notion of a pro-
cess in CSP: they are both self-contained entities that interact with other domains (pro-
cesses) through shared phenomena (alphabet). At this point, the formalisation is quite
straightforward: a domain D in PF is a process D, with its set of shared phenomena as
the alphabet aD. Individually, a single shared phenomenon (including an instance of
shared event, state or role) of domain D is formalised as a single external event ev of
process D. Note this does not prevent D having “internal” phenomena, only that such

phenomena should be hidden from its environment through event hiding.

4.3.3 The (Stable) Failures Model in CSP

CSP is a very rich language, for which many theories and models have been developed,
such as the fraces model, the failures model, the failures/divergences/infinite traces
model, etc [137, 146]. For the purpose of formalising problem diagrams and interpreting

problem progression, we need to choose a suitable CSP model that has the closest match.

Justification for Choosing the (Stable) Failures Model

Our motivation behind formalising a problem diagram is to reason about transform-
ing requirements and domain descriptions in a rigourous manner. In PF, Jackson gives
two important aspects of a domain property and requirement that must be captured and
addressed in the reasoning: safety is “a domain property or requirement that some spec-
ified event or state change will definitely not happen”; liveness is “a domain property

or requirement that some specified event or state change will definitely happen” [83].
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Therefore, a formal description of a problem (diagram) should include both safety prop-
erties and liveness properties.

The stable failures model in CSP is widely regarded as being able to model both
safety properties and liveness properties, while the traces model only captures the safety
properties [146].

Although the failures/divergences/infinite traces model takes into account a more
complex situation where a process may have a divergent behaviour (the process per-
forms internal transitions forever, never reaching a stable state nor performing any
event), nothing can be guaranteed of the behaviour of such a process [146]. After com-
paring and reviewing many CSP models, Schneider [146] concludes that “the stable
failures model for CSP [137] is a relatively recent development [...], the insight behind
the stable failures model is that divergence can often usefully be ignored” (on page 259).
We do not choose a model that coﬁtains divergent behaviours in our formal approach
to problem progression because in PF divergent behaviours of a domain raise standard
problem concerns that are analysed and addressed informally. For our purpose of pro-
gression, formal reasoning has to make the assumption that these divergent behaviours
have been addressed. We claim that our formal approach to problem progression ad-
dresses the main part of the problem rather than formalises every aspect of the informal

world. Based on the above reasons, we do not choose the failures/divergences/infinite

traces model.

Traces - Basic Concepts, Definitions and Notations

Since the (stable) failures model involves both traces and refusals, let us have a brief

look at traces first:

A basic way of describing a process is through the description of its traces. A trace
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of a process is a finite sequence of symbols recording the events in which the process
has engaged up to some moment in time. The relative order of the occurrences of
these events is also recorded. For example, a trace is denoted as a sequence of symbols,
separated by commas and enclosed in angle brackets: (ay, ..., a,) is the trace consisting
of an ordered sequence of event symbols a, ..., a,. The trace that has no event involved
is called an empty trace, denoted (). The empty trace is the shortest possible trace of
every process.

The complete set of all possible traces of a process P is a function of P denoted as
traces(P) [68].

The following are some basic operations on finite traces that we will use later in this

chapter (adapted from [68] and [146]):

o Catenation is an operation that constructs a trace by putting two traces s and ¢
together by writing s first and then connecting the beginning of ¢ to the end of s. It

is denoted as s™t, e.g., (coin, choc)™(coin, toffee) = (coin, choc, coin, toffee);

e Restriction is an operation that constructs a trace from a given trace ¢ by omit-
ting all symbols outside a given set A. It is denoted as ¢ | A, for example,

(coin, choc, coin, toffee, coin, choc) | {choc, toffee} = (choc, toffee, choc);

e Head is an operation that allows to get the first symbol of a non-empty trace, de-
noted as head(¢r). Tail is an operation that allows us to construct a trace by getting
the result of removing the head of a non-empty trace, denoted as tail(¢r). For ex-
ample, head({coin, choc, coin)) = coin, tail({coin, choc, coin)) = (choc, coin);

these operations on an empty trace are undefined;

o Length is the number of symbols in a trace. It is denoted |¢r| for a trace tr, for
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example, |(a, b, a)| = 3;

o Prefix: ur < tr means ur is a prefix of tr, for example, (a,b) < (a,b,c); a
more general form of trace prefix can be written as ur <™ ¢r which means ur is
a prefix of ¢r at most n symbols shorter, that is, ur < tr A |tr| — |ur| < n, for

example, {a, b) <? (a,b,c,d), and (a,b) <? (a,b,c).

Stable Failures - Basic Concepts and Definitions

A process P is guaranteed to respond to an offer of an event ev if that event can be
performed from P, provided that there are no internal transitions from P that keep P
fully occupied, thus preventing P from engaging in event ev. In other words, a process
P which can make no internal progress is said to be stable, denoted as P |. Guarantees
are concerned with stable states. A stable process P can always respond in some way
to the offer of a set of events X by its environment if there is at least one event a € X
that P can engage in. If there is no such event ¢ € X, then P refuses the entire offer set
X [146].

The CSP approach to the semantics of a refusal is to associate a process with its
traces, and then to use this information to understand the behaviour of the process as a
whole. Suppose that we carry out an experiment on the process P in an environment
that offers the set X of events, and we wait as long as necessary to see if any events in
X are performed. If no events are performed, then set X is considered a stable refusal
of process P [146].

According to [146], at some point during an execution of process P, an offer set X
of events will be refused by P. This refusal will be recorded with the finite traces of

events ¢r which were performed during the execution leading up to the refusal of X.
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The pair (tr, X) (usually written as (¢r, ref)) is said to be a stable failure of P.

A Predicative Semantics of the (Stable) Failures Model

In this thesis, we adopt Lai and Sanders’ “predicative” semantics [101] of CSP syntax.
Their work, which originates in [100] (it has become part of the unifying theory of
programming [70]), gives a predicative version of CSP’s failures model, which defines
some basic concepts and their components in the model using predicates on traces r
and refusals ref:

In the predicative failures model, a specification is a predicate with free variables ¢r
(traces) and ref (refusals). |

In the predicative failures models, a process is a specification that satisfies the fol-

lowing four conditions:

P1. P(<>,{})

P2. P(tr-ur, {}) = P(tr, {})

P3. Y C X A P(tr,X) = P(tr, Y)

P4. P(tr,X) A~3v : val(c) e P(tr~(c.v), {}) = P(tr, X U{c})

Recall that a CSP process has been informally defined as an “independent and self-
contained” entity or object with a particular set of events, through which it interacts
with its environment [67, 146]. We observe that the above four conditions give a formal
meaning to the “independent and self-contained” properties that a valid process must
have.

P1 defines that a process can refuse nothing before it starts to execute;
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P2 defines the trace integrity of a process: if a sequence of events has happened or
has been recorded, e.g., {r~ur, then some early part of the sequence of events, e.g., tr
must have happened. P2 is called prefix closure;

P3 defines the failure integrity of a process: if a process P can refuse a set of events
X after engaging a sequence of events ir, then it can certainly refuse a subset Y C X
events after the same trace. P3 is called subset closure;

P4 defines the relationship between refusals and events that are not possible: if no
event from the value set of channel ¢ can follow the trace ¢r, then the value set can be
added to the refusal set. Events are either possible or can be refused [146].

The following defines a predicative failures semantics of various components of an

arbitrary process P in terms of trace ¢r and refusal ref (adapted selectively from [101]):

e Process STOP, with alphabet A refuses to engage in any communication in A,

that is, the simplest process
STOP(tr, ref) 2 (ir = ()) A (ref C A).

e Process CHAQOS, is modelled by arbitrary behaviour, that is, the weakest process

A

CHAOS(tr, ref) = true.

e cle — P isaprocess whose alphabet equals that of P, which contains c; it outputs

a value e on channel ¢ and then behaves like process P

(cle — P)(tr,ref) 2 (c ¢ ref) < tr = () > (head(tr) = (c.e))
A Pltail(tr)/tr].

The above defines that the very first event that process (cle — P) engages in has

to be its output event cle (when it starts, i.e., tr = (), it cannot refuse communi-
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cation on channel c), then afterwards, i.e., when ¢r # (), the head of its trace is

(c.e) and the tail of its trace is exactly like that of process P.

c?z — P is a process whose alphabet equals that of P, which contains c; it inputs

a value on channel c, stores it as variable z, and then behaves like process P

(c?z — P)(tr,ref) = (c ¢ ref) < tr = () > Fv: val(c) o
(head(tr) = (c.v) A Pltail(tr)/tr,v/z]).

The above defines that the very first event that process (c?z — P) engages in has
to be its input event c?z (when it starts, i.e., ¢r = (), it cannot refuse communi-
cation on channel c), then afterwards, i.e., when ¢r # (), there exists a value v on
channel ¢ such that the head of its trace is (c.v) and the tail of its trace is exactly

like that of process P by replacing = with v.

The nondeterministic choice P M @ between P and (@ is a process that behaves

like either P or (), but the choice is internal, uninfluenced by the environment

(P 1 Q)(tr, ref) 2 P(tr,ref) Vv Q(tr, ref).

In our work, a process that is composed using the internal choice operator is
usually implemented/programmed using conditional instructions (e.g., “if ... then

... else”) in a programming language, see the FDR script in our case study.

The deterministic choice P [0 @) between P and () is a process that behaves
like either P or (), but the choice is determined by the environment on the first

interaction

(PO Q)(tr, ref) £ (P(tr, ref)AQ(tr, ref)) < tr = () 1> (P(tr, ref )V
Q(tr, ref)).
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e For processes P and ), their communication interface is defined to be a(P) N
a(Q). The parallel composition P || @ of P and @ is a process whose alphabet
is the union of those of P and (); it behaves like P and @ evolving in parallel,

with all communications on their communication interface synchronised

(P|| Q)(tr,ref) 23X CaP,Y CaQe[(ref =X UY)
A P(tr [ aP,X)A Q(tr | aQ, V)%

The above defines that if P is able to refuse some events X in its interface a.P,
then so is the combination; if @) is able to refuse some events Y in its interface
o @, then so is the combination; if synchronisation is required for the performance

of events, then either component is independently capable of blocking them [146].

e P\ cis a process that behaves like P but with all communications on channel
¢ concealed,; its alphabet equals P \ {c}. The failure semantics of P \ c has a

more complex definition [101], which is not used in this thesis, thus omitted.

e recursion: if F' is a continuous function from processes to processes, then pX :
A.F(X) is the process X with alphabet A satisfying X = F(X). The failure
semantics of uX : A.F(X) given by Lai and Sanders [101] is not used in this

thesis, thus omitted.

There are other process combinators, some of which can be found in [67, 18]. Since
they are not used in this thesis, we omit them for reasons of conciseness. The behaviour

of an arbitrary process P is one of the combinations of the above components [101]:

4 Note that in order to avoid confusion with other brackets like “(” and “)”, we use “[” and “|” to
indicate the scope of the existential quantifiers.
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P(tr,ref) u:=
(STOP, | CHAOS, | (cle = P)|(¢?z — P) | (PN Q)| (POQ)| (P Q)
| (P\ &) | 4X : AF(X))(tr, ref)

4.3.4 Modelling a Requirement and \-pgpy, in the Predicative Failures Model

In PF, a requirement is defined to be some constraint on or reference to some phys-
ical phenomena in the problem context. Unlike a domain which is defined to be an
independent and self-contained entity modelled by a process, a requirement is generally
described by a predicate that can be either satisfied when it evaluates true, or not sat-
isfied when it evaluates false. By modelling a requirement in PF as a specification in
the predicative failures model, we can find a close match between the truth value of a
predicate and the satisfaction or dissatisfaction of a requirement.

Recall that in the predicative failures model, a CSP specification is defined to be a
predicate with free variables ¢r (traces) and ref (refusals). The set of all specifications
is denoted Spec. The set Spec is defined to be an ordered set (an ordered set is a set
that contains a binary relation for expressing the order that is reflexive, anti-symmetric
and transitive, for details and examples refer to [147]). Within the ordered set Spec of
specifications, there is the following equivalence relationship between the meaning of
satisfaction (usually denoted sat) and logical implication between predicates [101]:

Under Lai and Sanders’ predicative failures model, a specification Sp is said to sat-
isfy specification Sg, i.e., Sp sat Sg if and only if Sp = Sq [101]. If we regard the
solution set in Hall er al.’s semantics as a subset of the ordered set Spec, then the en-
tailment - pgpy, relation can be interpreted as satisfaction sat in the predicative failures
model.

There is a single complication; more details will be given in a later section.
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4.3.5 Modelling the Sharing of Phenomena as Parallel Composition

The notion of parallel composition in CSP was introduced to investigate the behaviour
of a complete system composed of subsystems that act and interact with each other as
they evolve concurrently. For example, when we analyse the combined behaviour of
two processes put together, their interactions (if they exist) can be regarded as events
that require simultaneous participation of both processes involved. Hoare [68] argues
that we can assume that the alphabets of the two processes are the same when analysing
their overall behaviour. He uses the notation P || @ to denote the process that behaves
like the composition of processes P and () interacting in lock-step synchronisation. He
gives an example where a chocolate can be extracted from a vending machine VM only
when its customer CUST wants it and only when the vending machine is ready to serve.
When thinking about this particular interaction, we can describe the combined process
as VM || CUST.

Although some other styles of parallel composition operators have been introduced
since Hoare’s work, such as alphabetised parallel, interleaving, generalised parallel,
Roscoe [137] points out that the main difference between Hoare’s text on parallel com-
position and others is the treatment of alphabet. Hoare’s treatment makes the operator
more elegant while other versions have explicit alphabets thus more complex. He con-
cludes that the choice of one version over the other is a matter of taste, and this differ-
ence is not regarded as an important issue since everything done in one version can be
done in the other with trivial changes.

In PF, the interactions between two connecting domains have similar characterisa-
tions: the phenomenon they share is considered instantaneous, and both domains are

simultaneously engaged in the same phenomenon [83]. From the CSP point of view,
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parallel composition is equivalent to conjunction (i.e., logical “and”) when we use CSP
as a specification language (rather than an implementation language) [137]. The view of
this thesis that parallel composition is essentially conjunction with channel phenomena
shared is in agreement with Zave and Jackson’s observation - “Conjunction as Compo-
sition” [170].

More details of the modelling will be given in a later section.

4.3.6 Distinguishing “Control” and “Observe” in CSP Descriptions

In PF, the notion of “control” and “observe” plays an important part in problem de-
scriptions. From a domain’s description, we should be able to distinguish those visible
phenomena that are controlled by the domain from those that are observed by it; this
amounts to the property [169] that only a domain that controls a phenomenon should
be able to change it. As Zave and Jackson [169] point out, full CSP [68] does not have
the syntax to explicitly distinguish between control of a shared communication and ob-
servation of it, so we must impose it. We need to restrict domain models to those CSP
processes for which “control” and “observe” make sense:

For any CSP process P with alphabet o.P, we define

(a). P! & {d| (dv € aP)V (P = CHAOS,p \ dlv € aP)}, i.e., those

channels controlled by P;

(b). P? £ {d | (d?z € aP)V (P = CHAOS,p A d?z € aP)}, i.e., those

channels observed by P.

To be able to distinguish “control” from “observe”, we must consider only processes
such that P! N P? = {} holds. Appendix A contains a characterisation of processes for

which this condition holds.
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4.3.7 Achieving a Complete Interpretation of Hall et al.’s PF Semantics in CSP

Let us revisit Figure 4.2 (recalled here as Figure 4.3):

-———
- ~ -

S!C d /" N

K!o e ~. P

-~ -
B

Fig. 4.3: Interpreting problem frame semantics using CSP

Recall that a domain’s behaviour in PF can be formalised as a CSP process: the
machine domain S in Figure 4.3 can be formalised as a process 9, and the context K
can be formalised as a process K (we can model n number of application domains
Dy, D, ..., D, as a single combined process K = D, || Dy || ... || D,) with their sharing
of phenomena as parallel composition (S || K). Since the requirement R is a con-
straint on or reference to domain K’s property or phenomenon, we can formalise it as a
predicate on the context K, i.e., a CSP specification R. Also recall that the entailment
relation Fpgrpr in Hall et al.’s semantics can be interpreted as sat. We note that in the
POS example, the requirement does not mention present(notice), present(payment)
or present(change). This presents us with a problem in our CSP modelling (the com-
plication referred to earlier) as these events must be mapped to the silent action or else
be captured by the RE(Q statement. To this end we must alter the semantics slightly so
that

(K || S)\[(oeUc)\ (dU e)]sat R.

The control-and-observe relationships about domain S can be formalised as the fol-

lowing two equations based on the definitions given in the previous section:

e S! = ¢, meaning “domain § controls its shared phenomena c”;
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e S? = 0, meaning “domain S observes its shared phenomena o0”.

Now we can interpret Hall ef al.’s semantic challenge

¢c,o0:[K,R] = {S : Specification | S controls ¢ A § observes o A K,S tFprpy R}

as a challenge in CSP

c,0:|K,R] = {S : Specification | S! = cAS?= o A(K || S)\[(cU 0)\(d U e)] sat R}.

When K = Dy || Ds || Ds, ... || Dy, for CSP processes Dy, Ds, ..., Dy,

C,0: [D] ” D2 H ” Dn,R]
= {S : Specification | S'!=c A S?7=0 A (D1|| D2 || ..- || Dn || S)
\[(cU o)\ (dU e)] sat R}.

Note the parallel composition operator in the above formula is valid for all com-
plex topologies/structures of connecting domains, though details of the operator and the

calculated result may be more complex.

4.4 Solving the Challenge Using Lai’s Quotient

We consider the case where d U e = ¢ U o first, so that (K || S)\[(c U 0)\(d U ¢)] =
K || §. In order to meet the challenge of finding an S such that K || S sat R, we need a
new operator that can perform the opposite calculation of parallel composition. Let us
look at what is available in CSP literature:

According to Chen and Sanders [28], the concept of “weakest calculation” in com-
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puting owes its origins to Dijkstra’s weakest preconditions [42). Later, Hoare and He
[69] define the weakest prespecification and postspecification to provide a “weak in-
verse” for sequential composition. The meaning of a weak inverse operator can be
explained in the following simple example:

In algebra the operator “—” is called the inverse of the “+” operator, because if
X + A = B, then we can calculate unknown value of integer X from given values of
integers A and B, thatis X = B — A; we can apply operator “—” to any known integers,
and the result is always an integer.

However, as Chen and Sanders [28] point out, not every operation of a given type
has an inverse. For example, integer multiplication does not have an inverse: for an
unknown integer X and given integers A and B, if X X A = B, then X can be calculated
by X = B + A; however, we cannot always get an integer if we apply operator “+”
to any two integers (sometimes we get decimal fractions). Therefore, for the given type
of integer calculation, operator “+” is called a weak inverse of the operator “X” rather
than an exact inverse of “x” [28].

Lai and Sanders [101] extend Hoare and He’s notion of “weak inverse” of sequen-
tial composition to parallel composition and they have given the weakest environment
calculus to provide the weakest process X that placed in parallel with an established
subcomponent P satisfies their overall specification R:

X||PsatR< Xsat P\ R

P \\ R is called the weakest environment of a process. Lai and Sanders [101] provide
a closed predicate definition for the weakest environment: given specifications P, R and

achosen set A C aP, the weakest environment of P in R, denoted P \\ R with alphabet
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aR \ aP U A as the specification:

P\ R(tr,ref) & Yur: traces(R)V rep C oP
efir=ur[a(P\R)

A P(ur | aP,rep)

= R(ur, rep U ref)]

Figure 4.4 illustrates the role of Lai’s quotient in problem progression.

X P(urloP, rep)

I < R(ur, repUref)

__________
e

~ -
--------

P -
’ ~
]

’
~ ’

sssss

problem progression
achieved by applying
the quotient operator

Fig. 4.4: A generic problem diagram, (adapted from [84]) illustrating Lai’s quotient)

An informal explanation of the above formula is: in a CSP failures model, given

that a composed system must satisfy R (a process expressed by a predicate on variables

ur and rep U ref), if one of the subsystem can be expressed as a given process P, then

the weakest environment of P - the remaining subsystem to be specified P \\ R can be

calculated constructively by the following two predicates: P\ R’s trace is #r and its

refusal is ref; for all the traces of R - ur and for all the refusals of P - rep, such that

P\ R’s trace is the overall system’s trace restricted to the remaining subsystem P \\ R’s

alphabet, and if the predicate P(ur [ P, rep) on process P’s trace and refusals holds,

then the predicate R(ur, repUref) on the overall system’s traces and refusals must hold.

For us, the importance of Lai’s quotient is that it provides a (in some sense) canon-

ical solution to a challenge, at least when domains are described in the CSP family
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of notations. Now Hall et al.’s semantic challenge (at least in the simple case when

cU o = d U e) becomes:

c,0:[K,R]={S : Specification | S'=¢c A S?7=0 A Ssat K\ R}.

4.4.1 Interpreting Problem Progression as Stepwise Applications of Lai’s Quotient

From Figure 4.4 we can see that by applying the quotient operator we achieve the effect
of removing domain P and re-expressing requirements R into a new statement P \\ R
which specifies domain X ’s behaviour. Therefore, if we can formalise a problem dia-
gram using CSP, then one problem progression step can be interpreted as one step of

applying the quotient operator.
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Fig. 4.5: A progression of problems (adapted from [84]), interpreting problem progression as
stepwise applications of Lai’s quotient.

For a complex problem diagram which may have many domains, problem pro-

gression can be regarded as stepwise applications of the quotient operator until the
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re-expressed requirement constrains or refers to only the machine’s behaviour, as il-
lustrated in Figure 4.5.

Note that when we apply the first step of progression using Lai’s quotient, we regard
the combined process M || DD || DC || DB as the unknown process to be found (like
X in Figure 4.4). This is in agreement with the view in PF that the solution domain is
treated in the same way as an application domain [83]. We can apply similar techniques
until only the machine domain M is left, which indicates that the problem progression

is completed.

4.5 Case Study - Solving the POS Example Problem

Based on our techniques in providing the general solution, we are now ready to solve

the example POS problem that we have introduced in the beginning of this chapter.

4.5.1 Formalising the Domain and Requirement

Note that when applying our formal techniques to the example problem, we need to
describe it using both predicate expressions and process expressions in CSP. We need
predicates to be able to apply the definition of Lai’s quotient operator to construct the
solution specification; we need process expressions to communicate intuitions about
relative orderings of occurrences of events and associated values communicated, and for
validating the derived specification against requirements using FDR, which has direct
support for process expressions in CSP.

The following are the informal domain and requirement descriptions and their for-
malisation (with justifications):

The Customer Domain CUST:
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Informally, a customer is a person who wants to buy an item from the shop. First of
all, he presents the item he wants (whose price is ¢ pence, with 7 a number between 1
and 100) to the self-checkout POS system (e.g., through the bar code scanner). Then, af-
ter receiving a notice n from the system (e.g., via a screen display showing the payment
needed), he presents, perhaps, part payment in cash p pence, a coin of value 1p, 2p, 5p
or 10p to the system (e.g., through a cash acceptor). If the presented payment is suffi-
cient, i.e., i < p, then the customer will be given the change c (e.g., via the dispenser
handler), followed by a receipt for r = ¢ as a proof of purchase (e.g., a printout from the
receipt printer); if the presented payment is insufficient, i.e., p < i, then further notices
displaying the remaining amount of payment are issued to the customer until sufficient
payment is presented, after which the customer will be given the change and a receipt.
Note that i, n, p, ¢, r are assumed to be in natural numbers, i.e., i, n, p, ¢, r € N. In this
example, we assume that the above payment method is in cash for a single item, and
that 1, n, p, c, r are expressed in pence in British money.

In this example, for brevity of presentation, we use item, notice, pay, change, and
receipt as a short form of events present(item), present(notice), present(payment),
present(change), and present(receipt) in Figure 4.1, respectively.

From the descriptions above, we model the behaviour of a customer using the fol-

lowing formula:

CUST = [Nie(s,. 100 itemli — notice?i — PAY, where

PAY = [1,¢ (1,2,5,10} pay!p — (change?c — receipt?i — STOP,cusT
[ notice? n — PAY).

In the above formula, item, notice, pay, change, receipt denote the names of com-

munication channels of process CUST, all of which are synchronised with its envi-
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ronment process POS. Within this context, i, n, p, ¢, r denote the values being passed
_through these channels. The symbol ! means the value is output by process CUST onto

its communication channel, and ? means a certain value is received by process CUST
from its communication channel. For brevity, we sometimes refer to an event by its
channel name only, when unambigous.

Eventually process CUST ends with STOP, ¢cyst, Where

aCUST = {item, notice, pay, change, receipt},
which indicates that his engagement in the above events is terminated.

The justifications for the above formalisation are:

e The customer is a biddable domain in PF, whose behaviour is modelled through
the indexed internal choice operator’ [, {1,....100» Where the value of the item 7 is
assumed to range from 1 to 100 pence. The value of the item is defermined by the
customer’s choice. Similarly, PAY is also modelled through the indexed choice
operator [ ],¢(; 5 5 19> Where the amount of payment p is assumed to be any of 1,

2,5 or 10 pence, whose choice is determined by the customer.

e Only sensible behaviours of the customer shared with POS should be formalised.
This is consistent with PF that non-sensible commands or events are often ig-
nored [83]. For instance, some random behaviours of the CUST, such as present-
ing a payment without any item, should be ignored/refused by POS. Therefore,
CUST should start with event item!i, which means any other events such as

pay!p, notice?n, change?c or receipt?r should be in CUST’s refusal set;

o In this particular example, the value communicated in the first notice event is ¢;

while the values communicated in other notice events keep changing, thus repre-

5 In this thesis, biddable behaviour is modelled by internal choice.
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sented by variable n; similarly, the values communicated in the pay event and the
change event keep changing, thus represented by variables p and c, respectively;

the value communicated in the receipt event is always i - a constant;

o After presenting the item item!i, and receiving a notice about it notice?i, the

customer engages in the PAY process;

e Whether to pay more or leave the shop with the change and receipt is not the
decision of the customer CUST, but of the POS. Therefore, after presenting the

payment pay!p, CUST’s behaviour could be either:

- receiving the due change change?c, followed by the receipt receipt?s. Then
the customer’s involvement with POS stops, resulting in the customer leav-
ing the shop with the purchased items and receipt (this is the situation when
i < p)or

- receiving a notice notice?n about further payment is needed, which prompts
the customer back to the beginning of the PAY process (this is the situation

when p < 7).

In process PAY, external choice operator [J is used between the two processes

after event pay!p because the above choice is determined externally by POS.

The Requirement REQ):

The requirement could be informally described as: “customers should pay for and
receive a receipt for the correct amount on presentation of items to the POS system”.

From the above statement, the requirement RE() only constrains two events: when-
ever event item.i happens, eventually event receipt.r should happen, and the value of r

should be equal to that of 4, i.e., 7 = . Therefore,
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REQ =[;c {1,...,100} it€m.i — receipt.i — STOPqitem,receipt)-

Note we use item.: and receipt.i to represent that both CUST and POS participate
in this event. In other words, from CUST’s perspective, the event should be denoted
as item!i, and from POS’s perspective, the same event should be denoted as item?:,
therefore expression receipt.: includes both perspectives of CUST and POS. This gives
us the intuition that if an item.7 and item 77 are given/exist, we are sure that stem!i can
be derived/must exist.

The above process expression is not detailed enough for us to construct POS be-
cause it does not prescribe all of the interaction behaviours between CUST and POS,
i. e., events notice, pay and change do not appear in REQ’s alphabet. For instance, ac-
cording to the CSP semantics of a problem diagram introduced previously, for problem
diagram in Figure 4.1 we need to find a process POS such that

(POS || CUST) \[{item, notice, pay, change, receipt }\{item, receipt}] sat REQ,

and the solution set for the problem diagram is:

{notice, change, receipt}, {item, pay} : [CUST, REQ)]
= {POS : Specification| POS! = {notice, change, receipt} A POS? = {item, pay}
A (POS || CUST) \ {notice, pay, change} sat REQ}.

Notice that the problem is to find a POS to satify the above formula. However, Lai’s
quotient can not directly allow us to calculate POS. As do Lai and Sanders [101], we
therefore introduce the above missing events into a more detailed requirement statement
which we call REQC.

We construct REQC in a way that relates to CUST’s behaviour, meanwhile still

satisfying RE() after hiding events notice, pay and change, as follows:
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REQC relates to CUST in the following way:

e REQC correspondsto CUST: REQC’s item.i maps to CUST’s item!i; REQC’s
notice.i maps to CUST’s notice?i; REQC’s component REQCPAY maps to
CUST’s component PAY; both of them share the same event sequence and bind-

ing on value i;

e REQCPAY corresponds to PAY: REQCPAY’s pay.p maps to PAY’s pay!p;
REQCPAY ’s internal choice operator 'l corresponds to CUST"s external choice
operator [J - the difference is because the choice on whether to perform change or
notice is made by the POS, which is external to PAY but internal to REQCPAY';
REQCPAY’s change.c maps to PAY’s change?c; REQCPAY ’s receipt.i maps
to PAY’s receipt?i; REQCPAY’s STOPyrggc maps to PAY’s STOP,cust;
REQCPAY’s notice.n maps to PAY’s notice?n; both of them share the same

event sequence and binding on value p.

Based on the above correspondence, we begin by constructing an abstract REQCjy,
from which REQC will be derived, as follows:
REQC, = rlie{1,...,100} item.i — notice.i — REQCPAY,, where
REQCPAY , = |—|p€{1,2,5,10} paylp — (change?c — receipt?i — STOPqcust

M notice? remain — REQCPAY ).
To determine the value of remain, and to resolve the internal choice, we will intro-

duce conditional expression “if ... then ... else”, to give the concrete REQC. This means
we must define a concrete REQCPAY as a function with two parameters REQCPAY (3, 1)
in the following way:

Assume that the pay events lead to n coins of values pj, ps, ps, ..., pn being ex-
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changed.

n
> P
=1

is then the total amount exchanged after n payment events.

e The first parameter i is a constant used for passing the item cost ¢ to the receipt

event;

The second parameter ¢ is a variable whose initial value is the same as the item
cost %, after which its value is substituted by
n—-1
remain = i — sz ~

z=1

which will change as z increases from 1 to n — 1 (n is the subscript/index for
the last payment, after which no further payment is needed), which is used for
passing values to the notice event, which keeps displaying updated information

on the remaining payment needed;

Once the payment is sufficient, a value of

n
> =i
z=1

will be passed to the change event, after which receipt.i will be issued to the

customer.

Notice that, by combining the above, we get

n-1 n
pr <i< sz-
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From abstract process REQCy4, we may now construct a concrete version:

REQCPAY (i, remain) =

[Moet1,2,5,10) Pay-p —
if p < remain
then (notice.(remain — p) — REQCPAY (i, remain — p))
else (change.(p — remain)

— receipt.i — STOP,rEqC)

Applying the hiding operator \ to REQC, we get

REQC \ {notice, pay, change}

= ([iequ,.... 100} tt€M.i — notice.i — REQCPAY (i,1)) \ {notice, pay, change}
= [Nieqa,.... 100 item.i — (REQCPAY (i, i) \ {notice, pay, change})

=[] ie{1,..,100} t€m.i — receipt.i — STOP¢item,receipt}

sat REQ).

(The validity of the above formula can also be checked by the FDR tool, which we
do in a later section.)

Thus, if POS is such that

(POS || CUST) sat REQC,

then

(POS || CUST)\{notice, pay, change} sat REQC\{notice, pay, change} sat REQ.

From the properties of Lai’s quotient, any POS sat CUST \\ REQC will solve the

problem, though in general Lai’s quotient may not always lead to a process [101].
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4.5.2 Solving the Problem Using Lai’s Quotient

In this particular problem, CUST and POS synchronise on all their communication
channels, namely, item, notice, pay, change, receipt. Recall that in Lai’s definition of
the quotient, set A is the alphabet of chosen communication channels between the two
sub-processes X and P. In a general case, X and P may have other communication
channels that are not shared (i.e., in parallel composition X || P, X only needs to
synchronise with P via their shared communications, while X’s other communications
can be performed independently), thus in this particular example, CUST \\ REQC"s
alphabet should be calculated as (¢! REQC \ aCUST) U A.

We choose the entire alphabet of CUST as the set A because it is assumed that all
of CUST’s alphabet are synchronised communications with POS, and is constrained
or referred to by REQC. In our model, we ignore any other irrelevant behaviours of

CUST in this formal analysis. Therefore, in this example,
A = {iitem, notice, pay, change, receipt }
aREQC = {item, notice, pay, change, receipt},
aCUST = {item, notice, pay, change, receipt},
a(CUST\ REQC) = («REQC \ aCUST) U A
= {item, notice, pay, change, receipt}.

We will solve the problem by constructing:

POS = (CUST \ REQC).

The predicate expressions for CUST and REQC, as needed in Lai’s quotient, are
derived according to the predicative semantics introduced earlier. For ease of presenta-

tion, we express their predicate expressions in the tabular form, as shown below.
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Predicates on CUST’s tr and accept (its meaning is given below) expressed in a tabular
form:

trace length ! | 0 1 2 3 4 2n +1 2n 42 2n+3
1% () id n.i p.p1 n.(i -p1) ... P.Pn c.(S2_1ps ~ 1)

element of tr T.i
{3 {n} {p} A{ein} {r} {ein} {r} {1

accept

Predicates on REQC’s tr and accept expressed in a tabular form:

tracelengthi | O 1 2 3 4 veo 2n+1 2n 4+ 2 2n+3
T element of tr {) i.i n.i p.p1 n.({ — p1) P.Pn e.(EF_;pz — 1) r.i
accept | {i} {n} {r} {n},{c} {r} {n},{c} {r} {3

In the above tables, in which, for brevity, we have abbreviated events to their first
letters, we show all possible behaviours of CUST and REQC that are associated with
an item that costs ¢. An item of cost ¢ will lead to a trace of no longer than 27 + 3 events:
each time the customer pays, it must be with a coin of value greater than 1 pence, so
that the amount remaining is at most one less. As 1 is finite, this ensures a11v traces of the
system are finite.

The first row of the table shows a trace of length [ (0 < I < 2n + 3). In the second
row of the table we give the events of the trace; in the third row, we indicate the refusal
set after that trace. We name this set accept to represent those entries that the process
cannot refuse. For example, in the first table, the entry for [ = 3 is p.p1, {¢, n}, indicat-
ing that the failure is ({7.7, n.7, p.p1), @ CUST \ {¢, n}) (We use accept to stand for the
intuitive meaning of acceptance, rather than a strictly formal meaning of acceptance, as
in [137].).

We can check that the representation of the table interpreted in this way provide the

predicative semantics for the represented terms. For example, in CUST"s table, from

CUST = [lieqa,.. 100y item!i — notice?s — PAY, where

PAY = Hpe{1,2,5,10} pay'p — (change?c — receipt?i — STOPycusT
O notice? n — PAY).
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we give the following explanations of two representative entries in the table:

e When the trace length is 0, which means ¢r = (), then according to the semantics
of event prefix in section 4.3.3, item.i can not be refused, item.i ¢ ref < ref C
aCUST \ {item.i}, that is, accept = {i}; also according to the semantics, the
next event in ¢r must be the head of CUST which is item.i whose shorthand is

1.7 in the table;

e CUST’s refusal set after the trace (4.4, n.7, p.p;) is derived according to the se-

mantics of external choice in section 4.3.3, as follows:

before (change?c — receipt?i — STOP,cyst O notice? n — PAY) is exe-

cuted, that is, its trace is empty, its behaviour is defined to be

(change?c — receipt?i — STOPycust)(tr, ref) A (notice? n — PAY)(tr, ref),
again, according to the semantics of event prefix, change.c ¢ ref Anotice.n ¢ ref
holds, which means ref C aCUST \ {change, notice}, which explains the entry
accept = {¢,n} (notice the shorthand) in CUST’s table.

The rest of the entry can be similarly derived according to the predicative semantics
in section 4.3.3.

We also give an explanation for a representative entry in REQC’s table:

Different from CUST, the choice is internal after the trace (i.i, n.7, p.p1), i.e.,

(change?c — receipt?i — STOPygrrgc M notice? n — REQCPAY)

REQC’s refusal set after the trace (i., n.4, p.p;) is derived according to the seman-
tics of internal choice in section 4.3.3, as follows:

the above internal choice’s behaviour is defined to be

(change?c — receipt?i — STOPygpqc)(tr, ref) V(notice? n — REQCPAY )(tr, ref)
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according to the semantics of event prefix, change.c ¢ ref V notice.n ¢ ref holds,
which means ref C aCUST \ {change}, {notice}, which explains the entry accept =
{c},{n} in REQC’s table. Note that we use “,” to represent “exclusive or”, which
means that REQC can refuse either c or n, but not both.

Deriving/Constructing POS'’s Table Entries Using Lai’s Quotient

Lai’s quotient is defined as:

CUST\ REQC (tr,ref) =
Vur : traces(REQC) Y rep C aCUST o [tr = ur [ o (CUST \\ REQC)
A CUST(ur | a«CUST, rep) = REQC (ur, rep U ref)]
(since aREQC = aCUST = a(CUST \ REQC), thus tr = ur)
& Vrep C aCUST o [CUST(tr, rep) = REQC (tr, rep U ref)]

From the above step of derivation based on Lai’s quotient definition, we know that
tr = ur, which means POS = CUST \\ REQC"’s trace tr is always equal to that
of REQC, due to the fact that «aREQC = aCUST = a(CUST \\ REQC) holds.
Therefore, all the entries of trace events in POS’s table is exactly the same as those in
CUST’s table.

Next, let us look at the accept entries in POS’s tables. We derive some representa-
tive accept entries in POS’s table from the given entries in CUST and REQC"s tables.

In the first trace event, given that CUST ({), {n, p, ¢, 7}) and REQC({), {n,p, ¢, })

are true (it is a fact, as shown in the tables),

CUST\ REQC((), ref)
=Vrep C {i,n,p, c,r} o [CUST((), rep) = REQC((), rep U ref)]
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That rep = {i} contradicts with the fact CUST((), {n, p, ¢, r}) holds. When rep C
{n,p, c, 7}, we know for a fact that the antecedent is always true, and in order to make
the consequent true so that the entire predicate holds, {n, p, c,r} U ref = {n,p, c, 7}
must hold, therefore we can derive that ref C {n, p, ¢, 7}, which means ref C aPOS'\
{i}, which allows us to derive the accept entry in POS’s table as {i}.

As another example, in the fourth trace event, given that CUST ((i.1, n.i, p.p1), {¢, p, T'})
is true, and that REQC ({3.i, n.i, p.p1), {i,p, ¢, 7}V {i,n,p,r}) is true (it is a fact, as

shown in the tables),

CUST \ REQC({(i.i,n.5,p.;m), ref) =
< Vrep C {i,n,p,c,r} o [CUST((i.i, n.i, p.p1), rep)
= REQC((i.i,n.i,p.p1), rep U ref)]

That rep = {¢c, n} contradicts with the fact CUST ((i.3, n.%, p.p1), {4, p, 7}) is true.
When rep C {i,p, r}, we know for a fact that the antecedent is always true, and in
order to make the consequent ¢rue so that the entire predicate holds, either {i, p, 7} U
ref = {i,n,p,r} or {i,p,7} Uref = {i,c,p,r} must hold (but not both), therefore
we can derive that ref C {i,n,p,r} or ref C {3, ¢, p, 7} (but not both), which means
ref C aPOS \ {c} or ref C aPOS \ {n} (but not both), which allows us to derive the
accept entry in POS’s table as {c}, {n}.

The derivations of the other entries in POS’s table are similar.

The constructed table shows POS’s behaviour in terms of ¢r and accept:

tracelength i | O 1 2 3 4 2n 41 2n 42 2n+43
1% clementof tr | () i n(i—-p1) .. P.Pn c(Z7_1pz — 1) r.i

n.i p.py
accept | {¢} {n} {p} {nh{c} {r} {n}.{c} {r} {}

Note that entries in POS’s table correspond to REQC's entries, which leads us to
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derive POS’s expression in a process form based on the correspondence, as follows:
POS =ieqa,....100 item?i — notice!i — POSPAY (i, i), where
POSPAY (i, remain) =
ﬂp€{1,2,5,10} pay?p — if p < remain then (notice!(remain — p)
— POSPAY (i, remain — p)) else (change!(p — remain)

— receipt!i — STOP,pos)
Note that POSPAY involves the communication of at least two values, value ¢ for

the first receipt event, and a variable value remain for later notice event representing
the remaining amount of payment needed; the choice is chosen by a conditional: if
the payment remain < p, then a change and a receipt will be given out by POS; if
p < remain then a notice for the need of further payment will be given by POS. These
elaborated details can be implemented quite easily in a programming language as a
function with two parameters, which will be shown in our FDR script later.

With this derivation of POS, we have solved the problem constructively.

4.5.3 Using SKIP instead of STOP

In the original theory of CSP [67], Hoare points out that “the process STOP is defined
as one that never engages in any action. It is not a useful process, and probably results
from a deadlock or other design error, rather than a deliberate choice of the designer”.
He suggests that in order to describe a process that terminates successfully, i.e., a pro-
cess that accomplishes everything that it was designed to do and it should do nothing
niore, a different notation SKIP should be used. He proposes to represent a successful
termination as a special event, denoted by the symbol +/.

According to [67], the first and only action of the process SKIP is successful ter-

mination, so it has only two traces traces(SKIP) = {(), (1/}}. Lai and Sanders [101]
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have not given the predicative semantics to SKIP. However, we can give the following
predicative semantics to SKIP:

SKIP,(tr,ref) £ (tr = () A (ref € A\{V})-

In computer programming, the explicit distinction between STOP and SKIP is
fully justified when they are used in describing the behaviour of computer programs,
and proving freedom from deadlock is usually an important task and good practice in
program design. Therefore, if we want to construct a machine that is deadlock-free, then
we could have made the speciﬁcatidn stronger by replacing STOP,pps with SKIP,pos,
like the following:

POSstronger = Hie{l,...,lOO} item?i — notice!i — POSPAY (i,1), where

POSPAY (i, remain) =
I_|p€{1,2,5,10} pay?p — if p < remain then (notice!(remain — p)
— POSPAY (i, remain — p)) else (change!(p — remain)

— receipt!i — SKIPoPOS,yonger)
However, in this thesis, we regard the above replacement as a decision of the pro-

grammer, rather than an obligation of our derivation. Indeed, our derivation based on
Lai’s quotient only leads to the weakest specification, i.e., POSsronger is stronger than

POS.

4.5.4 Validating the Derived Specification Using FDR

We have adapted the process expressions of CUST, REQ), REQC and POS to FDR
scripts, as shown in Figure 4.6 (next page).

In the FDR script, we have allowed the value of the items ¢ to range from 1 to
100, and the allowable payment to be any one of 1, 2, 5, and 10. FDR check confirms

the calculated machine specification POS in parallel with CUST does refine the orig-
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-- The self-help POS problem

-- Using FDR to check that the solution machine POS is correct

-- (to satisfy the requirement REQ) when placed in parallel with the
-- customer domain CUST

-- First, the set of values to be communicated, of Money type
--i, p, c and r are in Sterling (pence)

-- Channel declarations, specifying that the values communicated over them are of Money or Display type
channel item, pay, receipt, change, notice, leave : {0..100}

-- Describing the customer domain as a process CUST
CUST=I~i :{1..100} @ item!li -> notice?i > PAY

-- Describing the payment process as PAY so that CUST can be defined easily
PAY=l~ p : {l1, 2, 5, 101} @ pay!p -> (change?c -> receipt?i -> STOP[]notice?n -> PAY)

-- Describing the requirement REQ
-- REQ only specifies what is required, that is, a success scenario "r=i", so "pay", "change" and "notice"

-- are hidden; other scenarios should be ignored, or a warning display should be issued.
REQ= I~ i: {1..100} @ item.i -> receipt.i -> STOP

-- The derived solution POS (should be the same as that calculated using Lai's quotient)
-- Note first i in POSPAY(i,i) does not change; while second i keeps changing to reflect the remaining

-- payment needed
POS=I~1i:{1..100} @ item?i -> noticeli -> POSPAY(i,i)

-- Since it's a card payment, "r==p" is the condition under which the machine issues a receipt; otherwise a
-- warning display should be issued to the customer

POSPAY(i,remain) =l~ p : {I1, 2, 5, 10l} @ pay?p ~> if p<remain then (notice!(remain-p)

-> POSPAY (i,remain-p)) else (change!(p-remain) -> receiptli -> STOP)

-- REQ by concealing {notice, pay, change}

REQC=I~l i: {1..100} @ item.i => notice.i -> REQCPAY(j,i)

REQCPAY(i,remain) = I~ p : {I1, 2, 5, 10l} @ pay.p -> if p<remain then (notice.(remain-p)
-> REQCPAY(i,remain-p)) else (change.(p-remain) -> receipt.i -> STOP)

-- checking if CUST Il POS refines/satisfies REQC
IMPL1=CUST[Klitem, pay, notice, change, receiptl}]]POS

-- checking if CUST Il POS refines/satisfies REQ
IMPL2=(CUST][Klitem, pay, notice, change, receiptl}]POS)XIpay, change, noticel}

Fig. 4.6: Model-checking the derived machine specification for the POS problem, using FDR
developed by Formal Systems Europe Ltd.
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inal requirement REQC, thatis IMPL] = CUST\\POS refines REQC, as shown in
Figure 4.7. Likewise, POS in parallel with OUST (by hiding events present(pay),

present [change] and present (notice)) does refine the original requirement REQ, as

shown in Figure 4.8.

File Assert Process Options Inti

Refinement® Deadlock | Livelock | Determinism

IMPL1

v' REQC [F= IMPLI

FDR2 session: /Users/DB/Desktop/PhD.Thesis/FDR.Scripts/POSresultl .csp

Fig. 4.7: Model-checking the derived machine specification for POS problem, checking if
IMPLI refines/satisfies REQC
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JQIIf: X HR2-R

File Assert Process Options

| Refinement | Deadlock 1 Livelock | Determinism I Ev;

Refinement:
Specification Model
I'/\lpEQ 11 Failures -

Check Add |

‘>/ REQ [F= IMPL2 2

PM . - !

>R2 session: IUsers/DB/Desktop/PhD.Thesis/FDR.Scripts/POSresult2.csp 4

Fig. 4.8: Model-checking the derived machine specification for POS problem, checking if
IMPL?2 refines/satisfies REQ

4.6 Discussion on our Formal Approach to Problem Progression

4.6.1 Complexity

We have shown the derivation of a solution to a problem, using a formal approach to
problem progression. Even though the problem was simple, its formal solution required
a complex process of formalisation and associated manipulations. For any problem of
realistic complexity, it is unlikely that the approach will be tractable, even with tool
support. Moreover, requirements engineering involves activities and communication
amongst many non-technical stakeholders, and we can not assume that practitioners
have knowledge of CSP and the predicate calculus. Therefore, other ways of making
our techniques transparent to a general audience are needed. Although slightly disap-

pointing, it is by no means unexpected. Many sources relate the difficulties of applying
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formalism in the real world [157].

4.6.2 Weakening Problem Descriptions

As shown previously, in the same specification space Spec, logical implication = (in-
formally interpreted as “stronger than”) is equivalent to satisfaction sat in terms of a set
of traces ¢r and refusals ref (in other words, under the stable failures model in CSP).
This is the context where the notion of weaker or stronger is defined. It is concerned
with the implication or satisfaction ordering on predicates [101]. The terms stronger
and weaker provide a way to express the relative relationships between specifications
in the Spec space or between processes in the Proc space. The formal semantics of “A
is stronger than B” can be interpreted formally as A sat B, or A = B if A and B are
specifications.

Based on the notion of implication ordering, deriving the weakest sub-component
process from the whole process and the other sub-component process using Lai’s quo-
tient operator may provide a useful theoretical tool to reason in the Spec space about
CSP descriptions: for example, in the PF semantics formula, let S stands for the ma-
chine specification, K for the whole domain description, and R for the overall require-
ment. Since S || K sat R holds, we know that the solution K \\ R is the weakest solu-
tion - in the Spec space, anything stronger than it is a solution to the problem; anything
weaker is not, in other words, if the actual designed machine specification Sgesigneq is
stronger than K \| R, then we have the grounds to argue that it is a solution; otherwise,
it is not a solution.

As shown in the previous section, for many non-trivial software development prob-
lems, a fully formal description of domains and requirements can not be easily obtained.

This concerns the difference between modelling and reality - most of the time, the in-
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formal domain and requirement descriptions are not strong enough for making useful
formal argument. Therefore, in order to address a wider variety of problems, we need

less formal approaches to deal with informal descriptions.

4.7 Summary

In this chapter we have proposed a formal technique for problem progression based on
CSP and in the context of the denotational semantics of problem diagrams defined by
Hall et al. [63]. The technique was applied to an example, and formal descriptions were
verified through the FDR tool.

There are many technical issues we have not discussed: for instance, we have not
modelled divergent behaviours. If a process P performs internal transitions forever,
never reaching a stable state nor performing any external event, then it is said to be
divergent, denoted as PT [146].

From an outside observer of a process P, we can only reason about its guaranteed
external behaviour when it is stable. As Schneider [146] points out, the stable failures
model completely ignores any divergent behaviour that a process might have (page 221).
This is the assumption of the failures model in CSP - its primary focus is on guaran-
teed behaviour rather than divergent behaviour, and from the PF perspective, this is a
linﬁtétion that might be treated informally, e.g., the standard concerns (e.g., reliability
concerns) in problem frames [83] take into account possiblev divergent behaviours of a
domain (process), and the state-machine diagram in PF can semi-formally express an
unknown/broken state of a domain by using a box that contains a question mark [83].

Whereas we expect technical solutions to these issues to exist, it is unlikely that

addressing them will move us any closer to a practical approach to problem progression.
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Thus they remain unexplored. In the next chapter we look to define more practical

approaches.



5. A SEMI-FORMAL APPROACH TO PROBLEM PROGRESSION

This chapter introduces a less-formal approach to problem progression than the previous
one. It takes causality as its foundation. By relaxing some of the restrictions imposed
by the CSP language, we demonstrate that causality can give us more widely-applicable
techniques for problem progression without resorting to a fully formal description lan-
guage.

The chapter gives a working definition of causality and demonstrates how some
derived notations and techniques can help underpin problem progression in a systematic
way. The main contribution of this chapter is a set of rules for the practical achievement
of problem progression. They will be applied in a number of case studies in the next
chapter.

In order to illustrate causality and associated concepts and techniques for problem
progression, we will use the following two examples. The first example is the heating
control problem of Chapter 3 whose problem diagram we recall here for convenience

(Figure 3.1 in Chapter 3 recalled here as Figure 5.1).

is-on and is-off states
of Heating devices

1

——————
- -~

Heating | HC! fon, off} Heating ‘{7_3'_0_":_"_5'_0_@_{" Heating \\,

controller devices ‘.. regime

---------

Fig. 5.1: A simple heating control problem, with added annotations for internal phenomena
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The second example is a variant of the POS problem of Chapter 4, which represents
a more traditional POS system. The problem diagram is given in Figure 5.2. We will

return to this problem in Chapter 6, where we will provide further details.

————

POS! k CA!j curi i s N
Controller POS Cashier Customer |#---- Purchase
co!l POS! m CAIn n \\ ’,'
i {present(item), present(payment)} I:  {generate(receipt.info)}
j: {enter(item.info), enter(payment.info)} m: {print(receipt.info)}
k: {transfer(item.info), transfer(payment.info)} n: {present(receipt)}

Fig. 5.2: The POS problem diagram

5.1 Causality

According to the Oxford English Dictionary, the word “causality” generally refers to
“the relationship between cause and effect”. This general meaning of causality is ubiq-
uitous in our everyday life, and it is shared among various branches of social and natural
sciences, such as philosophy, logic, physics, and psychology, etc. For example, Hopkins
[74] points out that the ﬁotion of causality was first studied and researched in philos-
ophy by Aristotle. Then in the 17th century, Francis Bacon (1561-1626) introduced
causality into science by establishing that causality could be open to empirical investi-
gation. In the 18th century, David Hume (1711-1776) shifted the study of causality from
logic to psychology and established his defining characteristics of causality. However,
Hume’s theoretical characterisation was challenged by John Stuart Mill (1806-1873)
with his notion of multiple causation in contrast to the simple, linear causality adopted

by Hume. As summarised by Hopkins, Mill’s notion of causation “was something that
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occurred through the grace of multiple intersections of interweaving causal lines and
none of which on their own brought about an effect” [74].

Moffett et al. [111] observe that causal reasoning is a useful tool for describing
mechanisms, problems and solutions. They propose a formal causal language for re-
quirements specification to fill the gap between natural language and formal reasoning
in RE.

For the purpose of this thesis (e.g., underpinning problem progression) and in line
with the work of Moffett et al. [111], we define causality (or causation) as the rela-
tionship between cause and effect, which we formalise as a relation between pairs of
events. By focusing on events, we have a working definition capable of describing the

behaviour of problem domains.

5.1.1 Basic Notation

From Moffett et al.’s work [111], we adopt the following basic concepts and notations

to be used for problem progression:

e we distinguish between an event and an occurrence of an event; for instance, the
single event occurrence “bell rings” can typically occur many times in the lifetime

of the bell.

e we regard cause as a relationship between events which induces a relationship

between occurrences of those events. Notationally, we use:

—~ ~ to indicate direct cause: given two events ev; and evy, ev; ~ evy indi-
cates that an occurrence of ev; is the immediate cause of an occurrence of

evy; and
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- ~»* to indicate the transitive closure of ~»: given two events ev; and evs,
ev; ~71 ew, indicates that an occurrence of ev; eventually leads to an occur-

rence of evy, possibly through a chain of other event occurrences.

The causal relationship “button pressed” ~ “signal sent” is an example of the first
form; “button pressed” ~»* “bell rings” is an example of the second form, where
“button pressed” ~~ “signal sent” and “signal sent” ~» “bell rings”. In this way,

causality is an irreflexive transitive relation between events.

Of course, the distinction between the two forms of causality depends on the level
of granularity in the analysis: if we abstract away the “signal sent” event, then

“button pressed” ~~ “bell rings”.

e Like Moffet et al. [111], we make a clear distinction between sufficient and nec-
essary cause. The difference between sufficient cause and necessary cause is that
the former is expressed in a positive statement while the latter is expressed in a
double negative statement: if ev; is a sufficient cause for ev,, then the occurrence
of ev; is inevitably followed by the occurrence of ev, (this is a positive state-
ment); if ev; is a necessary cause for evy, then given the presence of its enabling
conditions, if ev; does not occur then evs will not occur (this is a double negative
statement). Moffet et al. observe that it is easiest to think in terms of sufficient
cause when working with practical examples, instead of double negations of ne-

cessity. Throughout this thesis, the word “cause” refers to sufficient cause.

To represent state changing events, the following notation is used: given a state st
of a domain D, the event corresponding to D entering the state st is denoted by 7st.
In this thesis, behaviours that involve sequences of event occurrences are repre-

sented as traces. For convenience, we label an event occurrence with the name of the
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event. For example, we use the following notations to describe a simple heating device’s
behaviours:
(switch_on, Tworking)

(switch—_off , Tstopped).

5.1.2  Types of Causality

In order to adapt causality to a variety of problems, we distinguish between the follow-
ing types of causality (see how they are used in later examples):

Simple causality: An occurrence of one event is the cause of an occurrence of an-
other event. For example, “pressing button i in the lift will make the lift cabin arrive
on floor i” expresses a simple causality. Formally, we can express this simple causal-
ity as pressButton(i) ~» cabinArrivesOnFloor(i). In RE practice, simple causality
is useful for communicating intuitive knowledge about causal aspects of events among
stakeholders.

Conditional causality: An occurrence of one event e, is the cause of another event
evy, guarded by some condition g. In other words, the causal relation holds only when
some condition is true. We use the following notation to express conditional causality:
(g9) : em ~~ ewp, where g is a Boolean condition (g will be omitted when it is always
true). For example, at a lower level of abstraction, the event “pressing button i in the lift”
causes the event “the lift cabin arrives on floor i” only when some Boolean condition
such as “proper mechanical operations of cables, motors and correct electrical signal
transmission” is true. The causal relation can be described precisely as follows (A is
logical conjunction):

(button(ok) A electricalSignal(ok) A controller(ok) A motor(ok) A cable(ok)) :

pressButton(t) ~» cabinArrivesOnFloor(i).
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Please note that when the guard is‘trivially true, conditional causality is reduced to
simple causality, in which case the guard g is omitted.

Timed causality: An occurrence of one event ev; is the cause of another event e,
separated by a time duration AT. We use the following notation to express timed
causality: ey 2 evy. Timed causality is useful in the analysis of real-time systems
where timing issues are critical. For instance, whenever a lift user presses the emergency
button, the lift cabin must be stopped within a very short time (for example 0.5 second).
This causal relation can be described precisely as:

pressButton(emergency) o liftCabin(stopped).

Please note that when time can be ignored, timed causality is reduced to simple
causality, in which case the time duration A T is omitted.

Biddable causality: Biddable causality is a relationship we introduce to describe and
reason about the behaviour of people. Biddable causality is not true causality in that
there is no physical law that allows us to establish the relationship between cause and
effect, however it is a relationship between cause and effect that can be expected, e.g.,
by training: although a human being may have free will or exhibit random behaviour,
we can still manage to constrain their behaviour to a certain extent by training. We use
the following notation to express biddable causality: ev, "™ ev,. In the POS example
(see Figure 5.2), we have good reasons to expect the Cashier domain to behave like a
causal domain because he or she has received training in processing customer’s items
and payment. Therefore, we can expect that whenever a cashier is presented an item of
product, he or she should faithfully enter the item’s information into the POS domain.
In other words, we can expect the following causal relation:

present(item) b enter(item.info).
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5.2 Causality in Problem Description

In this section, we apply the notion of causality to two important aspects in problem
description - describing causal behaviours of different types of domains and associating
causality with control of phenomena. Furthermore, we introduce the notion of a causal
chain that allows us to reason through chains of behaviour in a problem description.
In the next section we will argue that enhancing problem descriptions with causality

provides a basis for problem progression.

5.2.1 Using Causality to Describe Domain Behaviour

Describing the causal aspects of a domain plays an important part in reasoning about its
properties and behaviours, which is one of the crucial activities in problem progression.
For this purpose, we need to consider the nature of a domain. Jackson [83] distinguishes
the following two types:

A causal domain is one whose properties include predictable causal relationships
among its phenomena. For instance, in the POS example, the POS domain is considered
as a causal domain: whenever the item’s information is entered, the POS domain will
transfer the item’s information to the Controller domain, that is, enter(item.info) ~»
transfer(item.info). (Of course, it is assumed that the POS domain operates reliably.)

A biddable domain usually consists of people, who lack predictable internal causal-
ity. As argued in the previous section, a biddable domain can be bidden, but not forced
to do something. So generally speaking, causality cannot be claimed for a biddable do-
main; still there is a possibility that some causal relationship between its events can be
assumed with reasonable justifications (e.g., through training).

For completeness, Jackson [83] also introduces lexical domains which are physical
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representations of data. Since causal properties allow the data to be read and written,

we can always treat lexical domains as causal in problem progression.

5.2.2 Realtionship between Control and Causality of Phenomena

In the PF framework, domains interact with each other through shared phenomena. The
sharing of phenomena is something that all sharing participants are part of simultane-

- ously, as Jackson states in [83]:

“The participation in a shared event is like a hammer hitting a nail: there’s
only one event, and the hammer and the nail both take part in it simultane-

ously”.

Sharing is not always limited to two participant domains (an example can be found
on page 52 in [83]). For a shared phenomenon, all sharing participants have access to it.
We can see in Figure 5.2 how shared phenomena are represented in a problem diagram
as annotated arcs linking domains.

Phenomena which are not shared are private (thus hidden inside boxes). For in-
stance, in Figure 5.2 we can imagine there are scan(item.info) (the item’s barcode is
scanned into an optical signal information) and convert(item.info) (the item’s optical
information is transferred to electrical information) events private to the POS domain.
All private phenomena of a domain are, by default, controlled by that domain.

For a shared phenomenon, only one shaﬁﬁg domain has control. The notion of
control has slightly different interpretations depending on the type of phenomenon. For
example, if the phenomenon is an event ev, “domain D controls ev” means that D
initiates an occurrence of event ev and that if ev is shared between domains D and D’,

only D can initiate its occurrence; if the phenomenon is a state st of domain D shared
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with domain D’, then “D controls st” means that only D can change the state, although
the change is visible to D’.

Although the notions of control and causality are related, their focus is different:
identifying shared phenomena and which domain controls them allows us to reason
about interactions among domains; while identifying causal relations within a domain
allows us to reason through the behaviour of the domain. We argue that by exploiting the
two notions together, we can reason about chains of behaviour in a problem description
so that a systematic way of problem progression can be achieved.

Let us look at Figure 5.2. As we will see later on (next chapter), to achieve problem
progression, in addition to relying on control annotations in the diagram we also need
causal notations to elaborate and reason about domain properties.

Here is an example of the chain of causal events in domain POS along which the
item’s information is read by a barcode reader and the optical signal is converted into
electrical signal, and finally the electrical signal is transferred into the Controller do-

main:

o firstly whenever the cashier enters the item’s information, the barcode reader

scans the information on the item, so enter(item.info) ~» scan(item.info);

e then whenever the item’s information is correctly scanned, the optical-to-electrical
unit converts the optical signal into electrical signal, so scan(item.info) ~

convert(item.info);

e finally whenever the signal is converted, it is then allowed to be transferred onto

the computer, so convert(item.info) ~» transfer(item.info).

By combing the above three causal relations, we obtain:

enter(item.info) ~» scan(item.info) ~ convert(item.info) ~» transfer(item.info).
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At a higher level of abstraction, we can simplify and represent the above set of causal
relations as:

enter(item.info) ~»* transfer(item.info)

From above, we can see that the same causal relation can be folded into a single ~»*
notation or unfolded into a long chain of causal relations connected by the ~~ notation.

‘We name this unfolded expression of causality as a causal chain.

5.3 Progressing Problems Based on Graph Grammar

This section introduces a semi-formal technique for achieving problem progression.
It is based on a set of rules adapted from a general framework of problem orienta-
tion by Hall et al. [64]. Hall et al. [64] have given a formal conceptual framework
for problem-oriented software engineering, where problem progression is one of many
problem transformation classes. In that framework, problem progression consists of
two steps - removing shared phenomena and removing domains from a problem context.
The notion of a problem in that framework is represented as a sequent in a Gentzen-style
calculus [95]. The sequent is cast in the general form of W, S - R, where W represents
the problem world (given domain description), S represents the solution (specification
statement), and R represents the requirement (statement).

Departing from Hall et al.’s work in [64], we provide an interpretation of those
rules in the context of problem frames. The results are three classes of constructive
rules for problem progression based on the notion of causality. To this end this thesis
makes use of an algebraic approach to graph representation and transformation using
graph grammars [11, 48]. This is motivated by our observation that the manipulation

of problem diagrams in problem progression can be regarded as graph transformation
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following some constraining graph grammar rules.

This section gives an introduction to the relevant concepts and definitions of graph
grammars, which are used in our rule-based approach to problem progression. We then
define three classes of rules in the next section and show that they are applicable to

progressing a variety of problems.

5.3.1 Graph Grammars

Graph grammars provide a formal foundation for the manipulation of graph structures.
They have been used widely in computing [33], for example, the algebraic approach of
graph grammars [46, 48] has lead to useful results in parallelism analysis [98, 99], eval-
uation of functional expressions and logic programs [117, 34], synchronisation mecha-

nisms [15], distributed systems [47, 145], and object-oriented systems [96].

Basic Concept and Definition

A graph consists of a set of vertices V (sometimes called nodes or points) and a set of
edges E (sometimes called arcs or lines), and each edge e in E has a source vertex s(e)
in V and a target vertex t(e) in V [11]. A directed graph is a graph in which every
edge has a distinguished start vertex (its source) and end vertex (its target) [48].

In an algebraic style [48], a graph can be represented as G = (V, E, s, t), where
V is a (finite) set of vertices and E is a (finite) set of edges such that VN E = {;
s,t : E — V are the source and target functions, respectively (see below). A subgraph

of a graph G is a graph whose vertex and edge sets are subsets of those of G.

A
E—/—V
t
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For example, an algebraic representation of Figure 5.3 is G = (V, E, s, t), where
V = {u,v,z,y} is the vertex set, E = {a, b} is the edge set, with source function s :

E — V :s(a) = u, s(b) = u, and target function ¢ : E — V : t(a) = v, t(b) = v.

u0<z:;ov

xe o)

Fig. 5.3: A graph example, adapted from [48]

Graph morphism: Given graphs Gi, Gp with G; = (V;, E;, s;,t;) for i = 1,2, a
graph vmorphism f: Gi — Gs, f = (fv,fr) consists of two functions fy : V3 — Vs
and fg : F; — E, which preserve the source and target functions, thatis, fyos; = s;0fg
and fy oty = & o fg [48] (the symbol o is the function composition operator), as shown

in the commutative diagram below (adapted from [48]):
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For example, Figure 5.4 shows a graph morphism between two graphs G; and G,

where:

-

® -

R DU A

o[ P

Fig. 5.4: A graph morphism example, adapted from [48]

G = ({v,v,z,9},{a, b}, s1,t1),

with 51(a) = u, $1(b) = u; ti(a) = v, t1(b) = v; and

Gz = ({p, ¢}, {c}, 52, 2),

with so(¢) = p, t2(c) = q.

The graph morphism is f : G1 — G2 = (fv, fz),

with fy : Vi = Va i fy(v) = p, fr(z) = p, fv(v) = ¢, fr(y) = ¢, and

fe 1 Bi— By fp(a) = ¢, fg(b) = c.

A graph morphism f is injective if both fy and fg functions are injective - in discrete
mathematics [121], the function (mapping) f : A — B is injective, if f(z1) = f(22)
only when z; = 1, where 1,7, € A and f(z;),f(22) € B. The sets A and B are

known as the domain of f and the codomain of f, respectively.
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For example, Figure 5.5 shows an injective graph morphism from G; to Ga, where
every edge in G; maps to one distinct edge in Gs. Also every vertex in G; maps to one

distinct vertex in Ga.

-
-
b = e e e -

* 1]
p.—'.-e—>0q
G2 \‘f/
xe oy

Fig. 5.5: An injective graph morphism example adapted from [48]

Formally:

G = ({u,v},{a, b}, s,1), and

with s1(a) = u, 81(b) = u; t1(a) = v, t1(b) = v, and

Gy = ({p, &, 7,9}, {e,f}, 2, 2)s

with sy(e) = p, s2(f) = p; ta(e) = ¢, 2(f) = q.

The graph morphism f : G; — G» = (fv, fg) is injective, because

fv: V1= Vo fy(u) = p, fv(v) = ¢ is injective (the fact that vertices z and y in
V» have no pre-image in V; does not prevent fiy from being injective), and fz : E; —
E; : fe(a) = e, fg(b) = f is injective.

A labelled graph (also known as a coloured graph [32]) G = (V,E, s, t,ly,lg)
consists of an underlying graph G° = (V, E, s, t) together with two label functions
ly: V> Lyand lg : E — Lg, where Ly and Lg are alphabet sets of vertex labels

and edge labels, respectively [48].
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LE<LE-E:‘S__’_>V—I-V—> Ly
t

For example, Figure 5.6 shows a labelled graph G, which is obtained by adding

labels to all the vertices and edges in Figure 5.3.

u: lu/a:la
o Hoev:l,

b1,

Fig. 5.6: A labelled graph example

IR

We follow the conventions in [32] to use “:” to separate the vertex/edge name from
its label. Although sometimes we omit these labels to avoid making the diagram over-
crowded, we always express these labels in an algebraic style, that is:

G = ({u,v,z,y},{a, b},s,t,lv,Ig), where

s(a) = u, s(b) = u, t(a) = v, t(b) = v;

ly(u) =L, ly(v) =L, ly(z) =L, ly(y) = ;3

lg(a) =l lg(b) = L.

A labelled graph morphism f : G — G is a graph morphism f : G — GY
between the underlying graphs which is compatible with the label functions, that is,
by ofy =h,vand b g o fge = l g [48], as shown in Figure 5.7 (next page).

In graph theory, a labelled graph morphism is defined to preserve the following three

kinds of mapping relationships between two labelled graphs:

1. mapping relationships between vertices are preserved, by fy : V3 — Va;
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fv\
/

Li

-

e
\E

2

Ll

Fig. 5.7: A labelled graph morphism, taken from [48]
2. mapping relationships between edges are preserved, by fz : By — FEs;

3. mapping relationships between labels are preserved, by b v o fy = I,y
and lZ,E OfE = ll,E-

A graph production (also known as a rule) p = (L LK R) consists of graphs
L, K, and R, called the left-hand side, the gluing graph or interface, and the right-hand
side, respectively, and two injective graph morphisms [ : K — Land r : K — R [48].

Because of the injective morphisms, the interface graph K remains the common
structure shared between L and R. In other words, graph K represents the subgraph
which is common to both L and R under the graph production rule, while other graph
structures (those represented by the sets L\ K and R\ K - “left-over” structures due to
the injective functions - the codomain of an injective function may have extra elements
that are not mapped by the function) represent those structures which are different.

Production rules are the basis for the definition of graph transformation. Suppose
that we have a graph G and a production rule p = (L LKL R); transforming G by

using p means the following:

e identifying a subgraph in G which matches the structure of L. Formally we do

this through a graph morphism m : L — G called “match”; and
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e transforming m (L) according to p. This has the effect of replacing the subgraph
m(L) in G with a subgraph whose structure is defined through p, which leads to

anew graph H.

Such a transformation is represented by G 22 H!,
Here is an example (for brevity in this thesis we adopt the following convention in
representing a graph transformation: we use the same names for elements which remain

invariant through the transformation, for instance, v;, ¥, v3 in Figure 5.8).

p = [ K r__. PR

A

Fig. 5.8: An example of graph transformation G 2% H based on a production rule p and an
injective match m

Figure 5.8 illustrates a graph transformation from G to H based on a production rule

! For our purposes, this is all we need to know about graph transformation. For a more detailed and
fully formal treatment, please see [48].



5. A Semi-Formal Approach to Problem Progression 113

p=(L L x5 R) (the darkened straight arrow represents injective graph morphism;

while the bent darkened arrow represents graph transformation), where:

1: K — L:1l(v) =uv,l(w)=vw,l(v)=uv,1(lL) = b, (L) = L,
l(l‘vs) = lvs’ l(el) = €1, l(eZ) = €2, l(le1) = lela l(leg) = leg;

and

r: K — R:r(v) =uv,r(v) =v,1r(v) =uvs,1r(l,) =, (L) = L,

r(lvs) = lyz, 7'(61) = €1, 7‘(62) = éy, 7"(lel) = lgy, r(lez) = lez;
and

m:L— G:m(v) = v, m(n) = v, m(v) = v}, m(vy) = vy,
m(l,) = Ly, m(ly,) = Lus,s m(ly,) = L, m(ly,) = L, m(e) = e,

m(e2) = e, m(e3) = ez, M(ley) = leg, m(ley) = Loy, m(leg) = ey

The production rule p specifies that the “left-overs” elements in L, i.e., e3, v4, lg;,
and [,,, are deleted, and that the “left-overs” elements in R, i.e., e4 and [,,, are added.

According to rule p, we need to delete e, vy, I, and ; from G, and add e} and I,
to derive H, which is shown in the bottom right corner of Figure 5.8.

In this thesis, we want to restrict the way we can manipulate a problem diagram
in problem progression - some elements of a graph are allowed to be changed under
some conditions and some remain unchanged. A graph transformation through graph
production rules matches this purpose nicely.

A graph grammar is defined to be a pair GG = (Gy, P), where Gy represents the
starting graph, and P represents a set of graph productions rules [48]. In our work, we

essentially define graph transformation by using production rules. A graph grammar
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gives us a system in which we have an initial graph and a set of production rules that

allow us to implement graph transformations.

5.3.2 Interpreting Problem Diagrams as Directed Labelled Graphs

Given the characteristics of a problem diagram and the definition of a graph, we propose
to relate them in the following way.

We can regard problem diagrams as labelled graphs: boxes representing domains are
vertices; dashed ovals representing requirements are also vertices; arcs linking domains
are edges; dashed arcs linking domains and requirements are edges as well. The descrip-
tions of domains, requirements and phenomena are labels. Since PF do not prescribe
which language to use to describe the problem, these labels can be in either natural
language or some formal language.

More precisely, we represent a problem diagram as a labelled graph (examples will

follow immediately afterwards) as follows:

1. Domains and requirements as vertices: if n > 1 is the total number of domains

plus the requirement, then we represent them as vertices {v1, ..., vn };

. 2. Phenomena sets as directed edges (or directed arcs): if m > 1 is the total number
of phenomena sets (including shared phenomena between domains, requirement
phenomena, or relevant internal phenomena of domains - part of the domain prop-
erties), then we represent them as edges {ey, ..., e, }. The direction of the edges

is represented through the source and target functions, based on the following:

(a) Controlling domain or constraining requirement as source of an edge: if

a domain or a requirement represented by vertex v; controls or constrains
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phenomena set e;, then v; is the source of the directed arc (the end without

the arrowhead);

(b) Observing domain or referencing requirement as target of an edge: if a
domain or requirement represented by vertex v; observes or refers to phe-
nomenon e;, then v; is the target of the directed arc (the end with the arrow-

head);

Note that with this convention, problem diagrams can be represented as directed
graphs so that each individual phenomenon and associated control-and-observe

information is captured as a directed arc in the graph.

3. Domain and requirement descriptions through the vertex label function ly as
the mapping Iy : V — Types X Names X Descriptions, where: Types =
{Machine, Designed, Given, Requirement}; Names is a set of names for do-
mains and requirement; Descriptions is a set of descriptions, for domains and

requirement, in any formal, semi-formal or informal description language;

4. Phenomena descriptions through the edge label function lg as the mapping Iz :
E — P(phenomena), where P(phenomena) is the power set of all phenomena

in the problem diagram.

Let us revisit the simple heating control example of Chapter 3 whose problem dia-
gram is re-drawn as Figure 5.1 (the dog-eared box indicates the internal phenomena of
Heating devices). The problem diagram can be interpreted as the graph in Figure 5.9,

encoding our formalisation (internal phenomena are represented as a reflexive arc e3),
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€3
Vi ;Vz;; V3
[ —0
el e2

Fig. 5.9: Heat control problem diagram in Figure 3.4 represented as a directed graph - labels are
omitted

where:

ly(v) = (Machine, Heating controller, “the solution to be found”)

lv(v2) = (Given, Heating devices, “devices that can be in either the is-on state
or the is-off state. Pulse events on and off can effect state changing events in the
devices, thus this domain is a causal domain. The heating devices have a mechanism
to maintain the temperature”)

lv (vs) = (Requirement, Heating regime, “the heating devices should be switched
on at 8 : 45 am and switched off at 4 : 45 pm every day”)

ig(e1) = {on, off }

lg(e) = {is — on,is — off }

le(e3) = {is — on, is — off }.

As further illustration, let us look at another example of the mapping between prob-
lem diagrams and labelled graphs. The following occasional sluice gate control prob-

lem is taken from [83].

“A small sluice, with a rising and falling gate, is used in a simple irrigation
system. A computer system is needed to raise and lower the sluice gate in

response to the commands of an operator.

The gate is opened and closed by rotating vertical screws. The screws are
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driven by a small motor, which can be controlled by clockwise, anticlock-
wise, on and off pulses. There are sensors at the top and bottom of the
gate travel; at the top it’s fully open, at the bottom it’s fully shut. The con-
nection to the computer consists of four pulse lines for motor control, two
status lines for the gate sensors, and a status line for each class of operator

command.”

Figure 5.10 shows the problem diagram based on that given by Jackson in [83].

Open, Shut, Rising
Falling states of the
gate and motor

‘
I
1

Gate &

/a/ motor [y b
Sluice \}"/ Raise & ™,
controller A, lowergate /
c Siice | c
operator
a : SC! {Clockw, Anti, On, Off} b : {Open, Shut, Rising, Falling}
GM! {Top, Bottom} ¢ : {Raise, Lower, Stop}

Fig. 5.10: Occasional sluice gate: problem diagrarh, adapted from [83]

The diagram can be interpreted as the graph in Figure 5.11, where:

Fig. 5.11: Occasional sluice gate problem diagram in Figure 5.10 represented as a directed graph
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lv (v1) = (Machine, Sluice controller, “the solution to be found”)

lv(v2) = (Given, Gate & motor, “The gate is opened and closed by rotating
vertical screws. The screws are driven by a small motor, which can be controlled by
clockwise, anticlockwise, on and off pulses. There are sensors at the top and bottom
of the gate travel; at the top it's fully open, at the bottom it's fully shut. The
connection to the computer consists of four pulse lines for motor control, two status
lines for the gate sensors”)

lv (vs) = (Given, Sluice operator, “A person who sends out operating commands.
Its connection to the computer consists of a status line for each class of operator
command.”)

lv(w) = (Requirement, Raise & lower gate, “A computer system is needed to
raise and lower the sluice gate in response to the commands_ of an operator.”)

Iz(e1) = {Clockw, Anti, On, Off }

lg(es) = {Top, Bottom}

Ig(e3) = { Open, Shut, Rising, Falling}

Iz (es) = { Open, Shut, Rising, Falling}

Ig(es) = {Raise, Lower, Stop}

Iz(es) = {Raise, Lower, Stop}.

From the above two examples, we can see that representing a problem diagram as a
labelled graph allows us to describe systematically the problem diagram as a mathemat-
ical object, which includes all relevant elements of the problem, that is, the topology of
domain and shared phenomena plus all their descriptions.

To summarise, the motivation for regarding problem diagrams as directed labelled
graphs is that we can apply production rules for their manipulations. Problem progres-

sion can then be regarded as a form of graph transformation, in which some graph arte-
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facts such as vertices, edges or labels are removed or added under some defined graph
production rules. For the purpose of representing progression rules and the application
of such rules to a particular problem diagram, the pictorial style of graph representation
gives us the intuition for matching the rules to a part of the problem diagram; while the
algebraic style of graph representation provides the vehicle for rigourous manipulation

during proBlem progression.

5.3.3 Interpreting Problem Progression as Rule-Based Graph Transformation

Having represented problem diagrams as directed labelled graphs, we aim at capturing
problem progression through graph transformations.
Let us look at an example - the automatic heating control problem of Chapter 3 and

its problem progression (Figure 3.8 is re-drawn here as Figure 5.12).

i is-on and is-o
(Zi?:(l),;/ger states of Heating |  ____________ _____
devi ) e ~
evices Heating | fon, of} _ ,“"Controller ™,
HC! fon, ofp ==~ controller \..command_.'
Heating | fis-on, is-0f] ;” Heating ™,
devices \_fregime ./

Fig. 5.12: Heating control problem progression diagram

The problem diagram progression of Figure 5.12 can be expressed as the graph
transformation of Figure 5.13 under our interpretation of problem diagrams as directed
labelled graphs.

In the figure, for graph Gi:

lv,(v) = (Machine, Heating controller, “the solution to be found”)

lv,(w) = (Given, Heating devices, “devices that can be in either the is-on state
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€3
Vi V3
o——&e————.
€] Vo €2
G; G,

Fig. 5.13: Heating control problem progression diagram in Figure 5.12 as graph transformation
- labels are omitted

or the is-off state. Pulse events on and off can effect state changing events in the
devices, thus this domain is a causal domain. The heating devices have a mechanism
to maintain the temperature”)

lv, (v3) = (Requirement, Heating regime, “the heating devices should be
switched on at 8 : 45 am and switched off at 4 : 45 pm every day”)

Ig, (e1) = {on, off }

Ig, (€2) = {is — on, is — off }

I (e3) = {is — on,is — off };

For graph Gj:

lv,(v1) = (Machine, Heating controller, “the solution to be found”)

lv,(w) = (Requirement, Controller command, “the heating controller should
issue the on command at 8 : 45 am and the off command at 4 : 45 pm every day”)

Ig,(e4) = {on, off }. |

In order to transform graph G into graph G», we need to define a set of basic
production rules. We will demonstrate that the above transformation can be achieved
through a particular combination of these rules. In the next section we will define a set

of basic rules for problem progression, which are based on the notion of causality.
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5.4 Causality-Based Rules for Problem Progression

In this section, we will define three separate classes of basic production rules which we

use for progressing problems. They are:

1. the Reducing through Cause and Effect rule class: rules in this class generate a
new requirement statement by replacing effects with causes, or causes with ef-
fects, based on the causal relations identified among events in domain descrip-
tions. This rule class allows us to reason through the properties (behaviours) of a
domain, thus allowing the requirement constraint or reference to be restated based

on causal chains within domain descriptions.

2. the Changing Viewpoint rule class: rules in this class generate a new require-
ment statement based on the differing perspectives of domains sharing an event:
switching from the perspective of a domain controlling the event to that of a do-
main observing the event, and vice versa. This rule class allows us to reason

through the shared phenomena among domains.

3. the Removing Domain rule class: rules in this class are used to simplify problem
diagrams, allowing us to remove a domain from consideration in the analysis, as
long as corresponding assumptions are explicitly stated in the rewritten require-
ment. This rule class allows us to remove a domain and its shared phenomena in

order to simplify further analysis.

As we will show, we can progress problems through a combination of the above
rules. For instance, we can regard the transformation in Figure 5.12 as the result of

applying the above rules in three steps:
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1. applying the Reducing through Cause and Effect rule: from the effects, i.e., events
Tis — on and Tis — off, the original requirement statement is re-expressed as
Command received: “the heating devices should receive the following commands
from the heating controller: the on pulse command at 8:45 am and the off pulse
command at 4:45 pm everyday”, which is described in terms of their causes, i.e.,

events on and off .

Intemal events Tis—on and|is-off
are caused by on and off

- - commands received, respectively.

Heating Heating >

controller s controller Lo

Intemal events 'Tis-an and'|is-off
are caused by on and off
commands received, respectively.

HC!{on, off} .*” HC! {on, off}.*”

s -
7 eemm—al

‘. , TTTTNS - e ~
Heating | {s:0n, /s " Heating ™, Heating [ fon, o/~ Command ™,
devices \_regime_,’ devices ‘. received _-'

.............

Fig. 5.14: Stepl - applying the Reducing through Cause and Effect rule

This rule can be applied because domain Heating devices’ properties contain a
causal relationship: “Internal events is — on and Tis — off are caused by on
and off commands received, respectively”, which is represented in a dog-eared

box in Figure 5.14.

2. applying the Changing Viewpoint rule: switching the viewpoint on the shared
events on and off from the observer domain Heating devices to the controller
domain Heating controller, the requirement is re-expressed in the heating con-
troller’s perspective (in Figure 5.15), i.e., Controller command: “the heating

controller should issue the on command at 8:45 am and the off command at 4:45

pm every day”.
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Heating
controller

HC!{on, offy _.-~

Heating
devices

Intenal events 't‘is—cn and’tis-oﬂ'
are caused by on and off
commands received, respectively.

- -
-7 emmT Tl

~

+~ Command *,
-t . ’
{on, off} ‘«_ received _-

Il TSRS g

. L=l T T~ ~
Heating |_{om ™ ,»~ Controller
controller *..command__-'

HC! {on, off}
Intemal events 't‘is-on an
. fis—oﬂ are caused by on
Heating | ___] and off commands
devices received, respectively.

Fig. 5.15: Step 2 - applying the Changing Viewpoint rule

3. applying the Removing Domain rule: assuming the Heating devices’ domain

properties (that is, assuming that on and off commands will cause Tis — on and

Tis — off respectively), the domain Heating devices and its shared phenomena are

removed from the diagram (in Figure 5.16), resulting in the transformed problem

diagram in Figure 5.12. The re-expressed requirement Controller command’ be-

comes: “assuming that the Heating devices’ domain properties hold, the heating

controller should issue the on command at 8:45 am and the off command at 4:45

pm every day”.

Heating |_%°m 9 .+ Controller
controller

HC! {on, off}

Iftemal events 'Tis-on an

: is-off are caused by on
Hea.tmg _____ and off commands
devices received, respectively.

Heating
controller

_______
.

el DY S

Fig. 5.16: Step 3 - applying the Removing Domain rule

The above is only a simple exercise to show that any controller that satisfies the spec-

ification Controller command’ will satisfy the original requirement Heating regime.



5. A Semi-Formal Approach to Problem Progression 124

The next section will present these basic progression rules in more detail.

5.4.1 The Reducing through Cause and Effect Rule Class

We call the first progression rule class Reducing through Cause and Effect. Rules in
this class generate a new requirement statement by replacing effects with causes, or
causes with effects, based on the causal relations identified among events in domain
descriptions. We specialise this rule class into two sﬁb-classes, namely the effect-to-

cause (ETC) class and the cause-to-effect (CTE) class.

5.4.1.1 The Effect-to-Cause (ETC) Rule Class

Let us look at the effect-to-cause rule class first. The basis for this class of progression
rules is that a causal relationship exists in a domain D’s description, i.e., (g) : ¢ ~ e,
where ¢ and e are events of D, g is a Boolean condition that is part of the domain
properties of D (g will be omitted when trivially true). To capture patterns of causality
in natural language descriptions, we denote by “ev occurs” any part of a requirement
statement that implies an occurrence of event ev, and by “g holds” the fact that g is
true at that occurrence. Under this rule class, the requirement is rewritten so that any
occurrence of an effect, say event “... e occurs .., is replaced by an occurrence of its

guarded cause, say “... ¢ occurs and g holds ...”.

Analysing Different Cases of Problem Topology

Because e and ¢ can be internal to D, shared and controlled, or shared and observed by
D, there are nine different cases in which the ETC rule class may apply. Each of these
cases is characterised by a unique combination of topological relationships among e, ¢

and D (including control and causal relationships), as shown in Table 5.1.
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Admissible - .
|
Case (yes /o) Description / Explanation
(1
p— (E)’ (c)_._ yes Both effect e and cause ¢ are internal to D.
@ &
ot p™ yes Effect e is internal to D, cause c is shared and controlled by D.
3 .
.fm) DI{e {e} Effect e is internal to D, cause c is shared and observed by D (c is controlled by another
o p - yes .
N domain).
@ ¢} |pr
—_1| p¥|ee yes Effect e is shared and controlled by D, cause c is internal to D.
(5) Effect e is shared and observed by D (e is controlled by another domain), and cause cis
€} |not DI {e} no internal to D. This case is not admissible because e can only be controlled by one domain, and

— ° cisinternal to D, so ¢ cannot cause e which contradicts that (g) : ¢ ~= e is a domain property
of D.

6) ,

o, D) yes Both effect e and cause ¢ are shared and controlled by D.
@) .
notoife)f ,  |Dife} yes Effect e is shared and controlled by D, and cause c is shared and observed by D (cis
- controlled by another domain).

® Effect e is shared and observed by D (e is controlled by another domain), and cause cis
shared and controlled by D. This case is not admissible because:

Dielf ,  |notDi{e} no a. if D shares e and ¢ with different domains, then this is not possible (similar argument to (5));
b. if D shares e and c with the same domain, then the case is similar to (7), except that e and ¢
swap places with each other.

© y , Both effect e and cause ¢ are shared and observed (e and ¢ are controlled by other domain(s)).

notDI{cl p, [notDI{e} no This case is not admissible because if D only observes e and c, then (g) : ¢ ~+ eisnota
domain property of D,

Tab. 5.1: Analysis of all possible cases for the ETC rule class

In the table, the case column represents all possible topological relationships among
e, ¢, and D in a problem diagram. However, not all cases are compatible with the fact
that (g) : ¢ ~ e must be a property of D, which is indicated under the admissible col-
umn. The description / explanation column gives a brief description of the relationships,
with some explanation for those incompatible cases, i.e., (5), (8) and (9).

To summarise Table 5.1, all the cases that are admissible have the following in com-
mon: e is either internal to D or shared and controlled by D. This is a condition for

application of this rule class.
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Defining Rules Based on Problem Topology

We define our set of ETC rules based on the above admissible cases. Here we present
and formalise one of these rules and apply it to the simple heating control example. The
other rules can be similarly defined after necessary changes. For the complete set of
ETC rules, please refer to the Appendix B. We will apply some of those rules to the

case studies in the next chapter.

ETC(3)a
K e intemal e internal , e intemal
D toD D' [|toD 7 D toD
/‘ ccauses e l /] c causes e /¢ causes e
Di{c)| / [wheng J/ [when g D01 [/ [whene
’ ) ! ———
D D D |« R
/ r
ETC(3)a = L = K > R
VJ:ZVI V;:lv, v1:lv1
el | gle ! Ll ecle, T, eqle| gile
Ilel./t> vl e Gile) &le oy GilelSTe
vz. Ve ez:lez Vz.lvz vz.l% e4:le4

Fig. 5.17: Rule ETC(3)a, derived from admissible case (3) in Table 5.1

We adopt the following convention in uniquely identifying the rules: the name con-
sists of three parts; the first part is the sub-rule acronym in capital letters; the second
part is the case number of problem topology to which the rule applies; the third part is
either the letter “a”, when the requirement is a constraint, or the letter “b”, when the
requirement is a reference. For instance, the rule in Figure 5.17 is named “ETC(3)a”:
where “ETC” indicates that it is an effect-to-cause rule; “(3)” indicates that it is derived
from case (3) (in Table 5.1); and “a” indicates that the requirement is a constraint.

In Figure 5.17, rule ETC(3)a is derived from admissible case (3) because the prob-
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lem topology of e, ¢ and D (including control and causal relationships) exactly matches
that of case (3) in Table 5.1. Under this rule, domains D’, D, shared phenomenon c
and internal phenomenon are not changed; while requirement R and the requirement
phenomenon e are replaced with requirement R’ and the requirement phenomenon c.
The description in the dog-eared box remains part of the domain properties of D.

More formally, rule ETC(3)a can be represented as a graph production rule (the

bottom diagram in Figure 5.17), where the application conditions are:

1. the type of v; and v, is either Machine, Designed or Given;
2. the type of v3 and v, is Requirement;
3. the description of v3 includes occurrence(s) of “... e occurs ...”;

4. the description of vy is derived from that of v3 by replacing “... e occurs ...” with

“... ¢ occurs when g holds ...”;

5. the description of e3 must contain statements of causality, e.g., there should be
a statement like “e internal to D, c causes e when g” as part of domain D’s

properties (internal phenomena as reflexive arc e3);

6. the time elapsed between the occurrence of the cause ¢ and that of the effect e is
short enough to be ignored (if the requirement statement R explicitly or implicitly
sets time limits for its satisfaction, e.g., real-time systems, then timed causality
should be used, i.e., in the form of ¢ %Z" e, where AT should be within those

limits).

The justification of the above rule (which is similar to all cause and effect rules) is

as follows:
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e statements in R on phenomena other than event e are untouched by this rule,
and remain the same in the derived requirement R’; thus all the constraints on
such phenomena are the same in both R and R’ and are satisfied under the same

conditions;

e because (g) : ¢ ~ e, a statement of sufficient causality, is part of the behaviour
of D, occurrences of “... e occurs ...” are always the effect of “... ¢ occurs when

g holds ..’; thus behaviours that satisfy R will also satisfy R’, and vice versa;

e that the timing of the system is not compromised by focusing on event c instead of
e means that care has already been taken in considering the time elapsed between
the occurrence of ¢ and that of its effect e, so that replacing R with R’ does not

affect the order of event occurrence in behaviours.

Applying Rule ETC(3)a to an Example

We can now demonstrate in Figure 5.18 how the above rule, ETC(3)a, is applied in step
1 of problem progression in the heating control example:

In the top part of Figure 5.18, [ and r represent two injective mapping functions
which ensure that domains D’, D, shared phenomenon ¢ (including the control infor-
mation) and internal phenomena (represented by the dog-eared box with “e internal to
D, c causes e when g” remain invariant during the application of this rule.

Firstly, rule ETC(3)a can be applied to the bottom-left problem diagram in Fig-

ure 5.18 because there exists an injective mapping function m such that:

e m(D’) = Heating controller;

o m(D''{c}) = HC'{on, off } (at the event level, m(c) = on and m(c) = off);
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ETC(3)a
, eintemal e internal X e intemal
D toD D' ||toD D toD
,/ ¢ causes e 1| € causes e r ’/ ¢ causes e
D¢} // when g when g m DI {c} /, when g
L L. N emm=o
cy -~ s
D p |+ R J
, Internal events Tis-on andTis-aﬁ . Intemal events Tis-on andis-ol
Heating are caused by on and off Heating are caused by on and off
controller commands received, respectively. controller commands received, respectively.

/"
-

HC!{on, offy  __.--~

-~ -
—_————

HC!{on, offy _.-=~

- . - RS B |-~ - ~
Heating | {s-on. is-of} ;” Heating ™, Heating | fon, of ;" Command ™
devices \ regime ./ devices . _received -

............

Fig. 5.18: Applying effect-to-cause rule ETC(3)a to the heating control problem diagram
e m(D) = Heating devices;

e m({e}) = {is — on, is — off } (at the event level, m(e) = is — on and m(e) =

is — off);
e m(R) = Heating regime;

e the function m also matches the dog-eared box with “e internal to D, c causes e
when g” to the dog-eared box with “Internal events 1is — on and Tis — off are

caused by on and off commands received, respectively”.

Secondly, in addition to the match m, the application conditions of rule ETC(3)a are

met as follows:

o the type of Heating controller is Machine; the type of Heating devices is Given;

e the type of Heating regime and Command received is Requirement;
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e the description of Heating regime is “the heating devices should be switched on
[i.e., is — on state] at 8:45 am and switched off [i.e., is — off state] at 4:45 pm
every day”, which matches the pattern “... switched on [e occurs] ... switched off

[e occurs] ...”;

e the description of Command received is derived from that of Heating regime
- “the heating devices should receive on pulse command [replacing its effect
is — on state] at 8:45 am and off pulse command [replacing its effect is — off
state] at 4:45 pm everyday”, which matches the pattern “... on pulse command
[c occurs when g holds] ... off pulse command [c¢ occurs when g holds] ..”,

where g (domain property of Heating devices) is trivially true;

e part of the domain properties of Heating devices expresses causality, i.e., its in-
ternal phenomenon “Internal events Tis — on and Tis — off can be caused by on

[pulse] and off [pulse] commands received”;

o the time elapsed between the occurrence of ... receive on pulse command ... and
off pulse command ...”, and that of their effects “... should be switched on [i.e.,
is — on state] ... and switched off [i.e., is — off state]” is short enough to be

ignored.

Finally, the bottom-right part of Figure 5.18 (the transformed problem diagram) is

derived by following the production rule in the top part of the figure:

o since {e} is replaced by { ¢} in the production rule, {is — on, is — off } is replaced

by {on, off };

e since R is replaced by R’ in the production rule, Heating regime is replaced by
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Command received whose description is derived by following the application

conditions of rule ETC(3)a;

e since other graphical elements are untouched by the production rule, other parts

of the problem diagram remain invariant.

5.4.1.2 The Cause-to-Effect (CTE) Rule Class

Let us look at the cause-to-effect rule class. Similarly, under this rule class, the require-
ment is rewritten so that any occurrence of a cause, say event “...c occurs...”, is replaced
by an occurrence of its guarded effect, say “e occurs and g holds”. These rules are de-
fined based on causal behaviours of domain D at the event level, rather than phenomena

which are represented as sets of events in a problem diagram.

Analysing Different Cases of Problem Topology

Because events ¢ and e can be internal to D, shared and controlled, or shared and
observed by domain D, there are nine different cases in which the CTE rule class may
apply. Like our analysis of the ETC rules, we consider each of them and discard those
cases that are not admissible. Table 5.2 summaries the result of the analysis:

There are three cases that are not admissible in Table 5.2. The analysis and the
argument why they are not admissible are similar to those of the ETC rules, thus omitted.
Again as a rule of thumb, in all the cases that are admissible, e is either internal to D or

shared and controlled by D. This is a condition for application of this rule class.
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Case

Admissible
(yes / no)

Description / Explanation

(1)

{e}, {c}]
D

yes

Both effect e and cause ¢ are internal to D.

@

{e}

yes

Effect e is internal to D, cause c¢ is shared and controlled
by D.

3

not D! {c}

{e}

yes

Effect e is internal to D, cause c¢ is shared and observed
by D (c is controlled by another domain).

4

© |pi{ey

yes

Effect e is shared and controlled by D, cause c is internal
to D.

®)

{c} not D! {e}

no

Effect e is shared and observed by D (e is controlled by
another domain), and cause c is internal to D. This case is
not admissible because e can only be controlled by one
domain, and c is internal to D, so ¢ cannot cause e which
contradicts that (g) : ¢ A~ e is a domain property of D.

G

RIIC)

yes

Both effect e and cause ¢ are shared and controlled by D.

@

not D! {c}

pre)

yes

Effect e is shared and controlled by D, and cause cis
shared and observed by D (c is controlled by another
domain).

8

not D! {e}

no

Effect e is shared and observed by D (e is controlled by
another domain), and cause c is shared and controlled by
D. This case is not admissible because:

a. if D shares e and ¢ with different domains, then this is
not possible (similar argument to (5));

b. if D shares e and ¢ with the same domain, then the case
is the same as (7), except that e and ¢ swap places.

(©)

not D! {c}

not D! {e}

no

Both effect e and cause c are shared and observed (e and
¢ are controlled by other domain(s)). This case is not
admissible because if D only observes e and ¢, then

(9) : ¢ ~> e is not a domain property of D.

Tab. 5.2: Analysis of all possible cases for the CTE rule class
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Defining Rules Based on Problem Topology

We define our set of CTE rules based on the admissible cases in Table 5.2. The repre-
sentation and justification of these rules are similar to those of ETC rules, thus omitted

here. Please refer to the Appendix B for details of these rules.

5.4.2 The Changing Viewpoint Rule Class

We call the second progression rule class Changing Viewpoint. Rules in this class gener-
ate a new requirement statement based on the differing perspectives of domains sharing
an event: switching from the perspective of a domain controlling the event to that of
a domain observing the event, and vice versa. We specialise this rule class into two

sub-classes, namely the observe-to-issue (OTI) class and issue-to-observe (ITO) class.

5.4.2.1 The Observe-to-Issue (OTI) Rule Class

Let us look at the the observe-to-issue rule class first. Under this rule class, the require-
ment is rewritten so that any description of a shared event, say ev, is switched from
the viewpoint of its “observer” domain, say D’, to that of its “controller” domain, say
D. To capture patterns of control in natural language descriptions, we denote by “...
D issues ev ...” any part of a requirement statement that implies an occurrence of event
ev controlled by D, and by “... D’ observes ev ...” any part of a requirement statement

that implies an occurrence of event ev observed by D’'.

Defining Rules Based on Problem Topology

Unlike the reducing through cause and effect, this rule class focuses on two domains D

and D’ and the event they share ev. So there is only one admissible case in terms of
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topological relationships among D, D’ and ev that we need to consider. Therefore, we
omit the case number in naming them. From this admissible case, we derive two rules,
depending on whether the requirement is expressed in terms of a constraint on ev or a

reference to ev, as shown in Figure 5.19:
e event ev is constrained by the requirements, thus this rule is called OTIa;

e event ev is referred to by the requirements, thus this rule is called OTIb.

p L TRy
pi{ey ]

D

p |- ':,R’ \:,‘.
prey

o

Fig. 5.19: Observe-to-issue rules OTIa and OTIb

In Figure 5.19, OTIa represents the case where an event ev is shared between do-
mains D and D’, and controlled by D. Under this rule, domains D, D’ and their shared
event ev are not changed; while the requirement R expressed from the viewpoint of the
observer D' and its constraint on ev are removed, which is compensated by the addi-
tion of a new requirement R’ expressed from the viewpoint of the controller D and its
constraint on ev which is attached to D.

More formally, OTIa can be represented as a graph production rule (the bottom

diagram in Figure 5.20), where the application conditions of the rule are:

1. the type of v; and v, is either Machine, Designed or Given;
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Fig. 5.20: Observe-to-issue rule OTIa represented as a graph production rule
2. the type of v3 and vy is Requirement;

3. the description of vs includes occurrence(s) of “... D’ observes ev ...”, which is

expressed from the viewpoint of wv;

4. the description of v, is derived from that of v3 by replacing each “... D’ observes

ev ..” with “... D issues ev ...”, which is expressed from the viewpoint of v;.

The justification of the above rule (which is similar to all changing viewpoint rules)

is as follows:

e statements in R on phenomena other than event ev are untouched by this rule, and
remain the same in the derived requirement; thus all constraints on such phenom-

ena remain the same in both R and R’, and are satisfied under the same conditions;

e because ev is shared between D and D’, the occurrence of ev that D’ observes
is exactly the same as that D issues (controls); thus behaviours satisfying R also

satisfy R’, and vice versa.
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Applying Rule OTla to an Example

We can now demonstrate in Figure 5.21 how the above rule, OTla, is applied in step 2

of problem progression in the heating example:

Olla
D! fev}
m
Heaﬁng ps-offare caused by on \ n‘dl’g Controller
controller and off commands | controller \ command
received, respectively.

. Internal events*is-on am
Heating . / Command Heating ps-offare caused by on
devices (on, received” devices and offcommands

received, respectively.

Fig. 5.21: Applying the observe-to-issue rule OTlIa to the heating control problem diagram

In the top part of Figure 5.21, 7 and r represent two injective mapping functions
which ensure that domains D', D, shared phenomenon ev (including the control infor-
mation) remain invariant during the application of this rule.

Firstly, rule OTla can be applied to the bottom-left problem diagram in Figure 5.21

because there exists an injective mapping function m such that:

m(D') = Heating devices;

* m(D\{ev}) —HC\{on, off} (atthe eventlevel, m(ev) = on and m(ev) = off)\
* m(D) = Heating controller,

* m({ev}) = {on, off} (atthe eventlevel, m(ev) = on and m(ev) = off),

e m(R) = Command received.
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Note that in Figure 5.21, the darkened area on the left of the bent arrow indicates
those parts that match the left-hand side of the rule - the images of the match m function;
the darkened area on the right of the bent arrow indicates those parts that have been
derived by following the rule above, which imitates the right-hand side of the rule.
Throughout this thesis, we follow this convention when presenting an application of a
rule.

Secondly, in addition to the match m, the application conditions of rule OTIa are

met as follows:
e the type of Heating controller is Machine; the type of Heating devices is Given;
e the type of Command received and Controller command is Requirement;

e the description of Command received includes statement: “the heating devices
should receive on pulse command at 8:45 am and off pulse command at 4:45 pm
everyday”, which is expressed from the viewpoint of the Heating devices - the
observer domain of on and off, which matches the pattern “... heating devices

should receive on ... and off ... [D' observes ev] ...”;

o the description of Controller command is derived from that of Command received:
“the heating controller should issue the on command at 8:45 am and the off
command at 4:45 pm every day”, which is expressed from the viewpoint of the
Heating controller - the controller domain of on and off, which matches the pat-

tern “... heating controller should issue the on ... and the off ... [D issues ev]

»
. .

Finally, the bottom-right part of Figure 5.21 (the transformed problem diagram) is

derived by following the production rule in the top part of the figure:
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e since requirement R and its constraint on phenomenon ev are removed from do-
main D’ in the production rule, requirement Command received and its constraint
on phenomena {on, off } are removed from Heating devices in the problem dia-

gram;

e since R’ and its constraint on phenomenon ev are added to domain D in the pro-
duction rule, Controller command and its constraint on phenomena {on, off }
are added to domain Heating controller in the problem diagram. The description
of Controller command is derived by following the application conditions of rule

OTIa (shown previously);

e since other graphical elements are untouched by the production rule, other parts

of the problem diagram remain invariant.

5.4.2.2 The Issue-to-Observe (ITO) Rule Class

Let us look at the issue-to-observe rule class. Similarly, under this rule class, the re-
quirement is rewritten so that any description of a shared event is switched from the
viewpoint of the “controller’” domain to that of the “observer” domain. In other words,
for domains D, D' and event ev shared by them and controlled by D’, a requirement

statement like “... D’ issues ev ...” is replaced by “... D observes ev ...

Defining Rules Based on Problem Topology

Like the observe-to-issue rule class, there is only one admissible case in terms of topo-
logical relationships among D, D' and ev to be considered. Again we omit the case
number in naming them. We derive two working rules, depending on whether the re-

quirement is expressed in terms of a constraint on ev or a reference to ev, as shown in
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Figure 5.22:
D’ D'
D' {ev} D' {ev} i
D p L2 r )
D’ D’
D'l {ev} D'l {ev}
D D p -2 RS

Fig. 5.22: Issue-to-observe rule ITOa and ITOb

e event ev is constrained by the requirements, thus this rule is called ITOa;

e event ev is referred to by the requirements, thus this rule is called ITOb.

The justification of this rule class is similar to that of observe-to-issue rule class,

thus omitted. Examples of applying this rule class can be found in the next chapter.

5.4.3 The Removing Domain Rule Class

We call the third progression rule class Removing Domain. Rules in this class are used to
simplify problem diagrams, allowing us to remove a domain, say domain D’, from con-
sideration in the analysis, as long as corresponding assumptions are explicitly stated in
the rewritten requirement, that is, expressed by the following pattern in natural language

13
.

description: “... assuming D' .., which is a shorthand for ... under the assumption

that necessary causal relationships exist as part of the domain properties of D' ...”.
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Defining Rules Based on Problem Topology

This rule class focuses on two domains D and D’. Domain D is attached to the require-
ment R; while D’ is the domain to be removed, as shown in Figure 5.23. Depending on
whether the requirement constrains or refers to the event they share or other events that

do not belong to D’, there are six possible cases:

e event ev is constrained by the requirement R, and controlled by D, thus this rule

is called RD(1)a;

e event ev is referred to by the requirement R, and controlled by D, thus this rule

is called RD(1)b;

e ecvent ev is constrained by the requirement R, and controlled by D’, thus this rule

is called RD(2)a;

e cvent ev is referred to by the requirement R, and controlled by D', thus this rule

is called RD(2)a.

e event ev is constrained by the requirement R, and does not belong D', thus this

rule is called RD(3)a;

e event ev is referred to by the requirement R, and does not belong D’, thus this

rule is called RD(3)b.

All of the above cases are admissible, from which six rules are derived.

In Figure 5.23, RD(1)a represents the situation where event ev is shared between
domains D and D’, and controlled by D. Under this rule, domain D remain unchanged,
while domain D’ and its constraint on ev are removed away from D, which is compen-

sated by adding a rewritten requirement statement R’ and its constraint on ev which is
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Fig. 5.23: Removing domain rule RD(1)a, RD(1)b, RD(2)a, RD(2)b, RD(3)a and RD(3)b
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attached to D. The rewritten requirement statement R’ is derived from R,iby adding
assumptions about the removed domain D', i.e., in the general form of “... assuming D',
[a repetition of R]”.

More formally, RD(1)a can be represented as a graph production rule (the bottom

diagram in Figure 5.24), where the application conditions of the rule are:

1. the type of v; and v, is either Machine, Designed or Given;

2. the type of v3 and vy is Requirement;
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Fig. 5.24: Removing domain rule RD (a) represented as a graph production rule
3. the event that v5 constrains, i.e., ev is the same event shared between v; and vy;

4. with the exception of ev, no more events that belong to v, are constrained or
referred to by v3; and with the exception of v, no other domain is significant to

V3.

Note that we only apply this rule when R does not constrain phenomena of D’
(except D"’s shared event ev with D), in other words, no more events that belong to D’
are constrained by R, therefore, we have the following justification of the rule (which is

similar to all removing domain rules):

e statements in R on phenomena other than event ev are untouched by this rule, and
remain the same in the derived requirement; since R’s only constraint on domain
D' is ev (R may constrain or refer to some internal phenomena that belong to D
or D’s shared phenomena with other domains), removing D’ does not touch any
phenomena in R, and since R’s constraint on ev is still kept within the rewritten
requirement, i.e., R’ repeats what is stated in R, thus all constraints or references

on such phenomena remain the same in both R and R'.
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Applying Rule RD(1)a to an Example

We can now demonstrate in Figure 5.25 how rule RD(l)a is applied in step 3 of problem

progression in the heating example:

RD(1)a
m
Heating {on, offf Controller- - Heating  ffffCOlj' Controller
controller \ command J controlle! | command’]
1id [on, ofr
Internal events\is-on an
. ps-offare caused by on
Heating and offcommands
devices received, respectively.

Fig. 5.25: Applying removing domain rule RD(l)a to the heating control problem diagram

In the top part of Figure 5.25, [ and r represent two injective mapping functions
which ensure that domain D remain invariant during the application of this rule.
Firstly, rule RD(l)a can be applied to the bottom-left problem diagram in Figure 5.25

because there exists an injective mapping function m such that:
* m(D') = Heating devices;
* m(D\{ev}) = HC\{on, off} (atthe eventlevel, m(ev) = on and m{ev) = off)/,
* m(D) = Heating controller
e m({ev}) = {on,off} (at the event level, m{ev) = on and m(ev) = off)’

e m(R) = Controller command.
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Secondly, in addition to the match m, the application conditions of rule RD(1)a are

met as follows:

o the type of Heating devices is Given; the type of Heating controller is Machine;
e the type of Controller command and Controller command’ is Requirement;

e the events that the requirement Controller command constrains, i.e., on and off

are the same events shared between Heating devices and Heating controller;

e with the exception of on and off, no more phenomena that belong to domain
Heating devices are constrained or referred to by the Controller command; and
with the exception of domain Heating controller, no other domain is significant

to Controller command.

Finally, the bottom-right part of Figure 5.25 (the transformed problem diagram) is

derived by following the production rule in the top part of the figure:

e since requirement R and its constraint on phenomenon ev are removed from do-
main D in the production rule, requirement Controller command and its con-
straint on phenomena on and off are removed from Heating controller in the

problem diagram;

e since R’ and its constraint on phenomenon ev are added to domain D in the pro-
duction rule, Controller command’ and its constraint on phenomena on and off
are added to domain Heating controller in the problem diagram. The description
of Controller command' is derived by following the application condition of rule
RD(1)a: “... assuming the proper operation of Heating devices, the heating con-

troller should issue the on command at 8:45 am and the off command at 4:45
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pm every day”, which matches the pattern “... assuming the proper operation of

Heating devices [assuming D'] ... [a repetition of Controller command]”;

¢ since the dog-eared box is part of Heating devices’ domain properties, thus it

should be removed when domain Heating devices is removed.

5.5 Discussion on Heuristics for Applying the Transformation Rules

In previous sections, we have defined three classes of graph production rules that aim
at transforming problem diagrams with arbitrary problem topologies. For example, the

cause-to-effect rule class and effect-to-cause rule class cover all possible cases.

ETC(3)a
N e internal ]| € intemal R e internal
D toD D' [[wD D' | jtoD
+| Ccauses e /| ccauses e r /| C causes e
D1{c) when g 5 D'{c) /, when g
’
(C} I"' :‘\\
D R R I
N Internal events Tis-on and[is-o N Internal events |is-on and’jis-o
Heating are caused by on and off Heating are caused by on and off
controller commands received, respectively. p controller received, resp y
HC! {on, off} 7 3 HC!{on, ofy .=~
Heating Heating | Jon, ot ;*"Command ™,
devices devices ‘.. _received ./
!
CTE(3)a

e internal
l toD
/| ccauses e

m D{c} /', wheng

ffff

einternal
toD
/| ¢ causes e

D) / ‘wheng
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toD
C causes €

~
E

.......

Fig. 5.26: An example of applying effect-to-cause rule ETC(3)a or cause-to-effect rule CTE(3)a
to the same problem diagram

Let us investigate what is needed to achieve the goal of problem progression. Let
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us take the problem diagram in Figure 5.18 for example, which we recall here in Fig-
ure 5.26.

In Figure 5.26, we can find at least two graph production rules that match the same
problem diagram (the CTE(3)a rule has been flipped horizontally for the match). If we
apply the rules randomly, say rule CTE(3)a, we may end up with an undesired problem
diagram (which is the problem diagram on the left-hand side of the bent arrows) after
graph transformation p’. Without any heuristics, this kind of undesired transformation
can not be prevented.

There is one heuristic that can help us progress problems: problem progression is
about transforming problem diagrams in a way that only specification phenomena are
described, in other words, we should aim at “moving (the requirement) closer to the
machine ”. With this heuristic, we should chose rule ETC(3)a, and arrive at the right-
hand side of the bent arrows after graph transformation p, instead of p’. The case studies
in the next chapter will be based on this heuristic.

We have also defined that our progression rules have to be matched injectively before
they can be applied in problem progression. This is an important rule application con-
dition that aims at guaranteeing the convergence of graph transformation process: the
formal works by Habel ez al. [57] have proved that there are many theoretical advantages
of injective matching of production rules in graph transformation - the transformation
is more likely to terminate and different paths of graph transformation are more likely
to converge. Their results provide a formal basis for mechanising our techniques, thus

a promising direction for future work.
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5.6 Summary

In this chapter, we have introduced a working definition of causality that focuses on
cause-and-effect relationships between events. We have given a taxonomy of causality
that aims at dealing with more complex domain properties for the purpose of problem
progression. For example, conditional causality and timed causality allow us to deal
with more elaborate problem descriptions; likewise, biddable causality allows us to
express the expected behaviour of a biddable domain.

We have defined a set of causality-based rules for problem progression and illus-
trated how they can be used for manipulating problem diagrams - problem progression
based on these rules can be formalised as graph transformation based on graph pro-
duction rules. The purpose of this semi-formal approach is not to achieve a complete
formalisation of problem progression but to extend the applicability of problem progres-
sion based on these rules. The reason for adopting a semi-formal approach rather than
a fully formal one is because of the informal nature of problem analysis in early RE:
customer requirements start with informal descriptions usually in natural language, so a
completely formal treatment is not feasible in the general case; descriptions of complex
domain behaviours (e.g., those involving human behaviours) are often too rich to be
usefully described by formal models for problem progression. Examples in this chapter
have shown that the matching of a rule to part of a problem diagram not only relies
on the matching of graphical structures, but also involves finding and matching a fixed
pattern of informal expressions in requirement and domain descriptions.

In this chapter, we have applied our causality-based rules for problem progression
in a very simple example - the automatic heating control problem. We have demon-

strated that the derived specification of the Heating controller, i.e., description of
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Controller command does indeed satisfy the original requirement Heating regime be-
cause our causality-based rules can guarantee that the graphical transformation is per-
formed in a solution-preserving way. The simplicity of the problem allows us to have
thorough analysis and presentation of our techniques. In order to evaluate the applica-
bility or scalability of our progression rules in a more realistic setting, we will apply our

techniques to more complex case studies in the next chapter.




6. CASE STUDIES

This chapter applies the rules in the previous chapter to two case studies adapted from
the literature. The first one is the problem of developing software for a point-of-sale
(POS) system to help cashiers process purchases in a retail shop environment, which
we have also used in Chapter 5. The second one is a package router problem where a
computer is required to control the routing of packages to their proper destination bins

based on their delivery addresses.

6.1 The Point-of-Sale (POS) Problem

Point-of-sale systems are a popular subject for case studies in software engineering,
such as in teaching object-orientation and the unified process [104], in industrial expe-
rience reports [13], and in software testing [49].

In this case study we assume the following problem statement [128]:

“We consider the development of a point-of-sale (POS) system for a shop.
The new POS software system is to be used to process all sales within the
shop. The system is to include a controller, to be designed, and some hard-
ware, purchased from a third party. The new POS hardware includes a
barcode reader, a credit card reader, a keyboard and display, and a cash

drawer.”
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The problem is to develop software for the POS system so that cashiers can
help customers pay for items they wish to purchase before leaving the shop

with a valid receipt.

Figure 6.1 shows the problem diagram.

e ——

POS! k CAlj culi i/ A
Controller POS Cashier Customer |&---- Ry )
co!l POS!m CA!n n N S
i;  {present(item), present(payment)} I:  {generate(receipt.info)}
j: {enter(item.info), enter(payment.info)} m: {print(receipt.info)}
k: {transfer(item.info), transfer(payment.info)} n: {present(receipt)}

Fig. 6.1: The POS problem diagram

Table 6.1 shows the identified domains and their descriptions.

Name Description
Customer A person who wants to buy an item from the shop.
Cashier - A shop employee who is authorised to perform sales.

The new POS hardware which includes a barcode reader, a credit card

POS reader, a keyboard and display, and a cash drawer.

Controller (machine) The solution to be designed.

Tab. 6.1: Domains and their descriptions

Table 6.2 shows problem phenomena and their designations.
We will progress the requirement through to the specification, that is, repeatedly
transform it until the requirement is expressed only in terms of the specification phe-

nomena. The requirement R, is as follows:
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Name Type Designation

The exchange of an item between the Customer and the Cashier.

proseont(item) event This event is initiated and controlled by the Customer.

The exchange of a payment between the Customer and the
Cashier. This event is initiated and controlled by the Customer.

The action of the Cashier entering item information into the POS,
enter(item.info) event |e.g., scanning the items' barcode using the barcode reader. This
event is controlled by the Cashier.

The action of the Cashier entering payment information into the
enter(payment.info) event | POS, e.g., swiping a credit card or manually keying in the amount of
cash payment into the POS. This event is controlled by the Cashier.

present(payment) event

The action of the POS transferring item information to the Controller.
This event is controlled by the POS.

The action of the POS transferring payment information to the
Controller. This event is controlled by the POS.

transfer(item.info) event

transfer(payment.info) | event

. The action of the Controller making receipt information available to
generate(receiptinfo) | event |y,."555 This event is controlled by the POS.

print{receipt.info) event ;Lt;e :géon of the POS printing receipt. This event is controlled by

The exchange of a receipt (including due change if cash payment)
present(receipt) event |between the Customer and the Cashier. This event is controlled by
the Cashier.

Tab. 6.2: Phenomena and their designations

Ry =“When the Customer issues a number of present(item), followed
by one present(payment), if payment is for the correct amount, then the

Customer should observe present(receipt).”.

Note that R; relates a number of present(item), followed by present(payment),
which are referred to by R;, and present(receipt) which is constrained by R;. This as-
sociation should be achieved by the combined interactions among domains Customer,

Cashier, POS, and Controller.
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6.1.1 First Step of Progression

In the first step, we apply the issue-to-observe rule ITODb twice, and switch from the
Customer to the Cashier, as they shared events present (item) and present (payment).

The rule application is shown in Figure 6.2 and results in the rewritten requirement:

R2 =“When the Cashier observes a number of present (item), followed
by one present (payment), if payment isfor the correct amount, then the

Customer should observe present (receipt) .
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Fig. 6.2: Point-of-sale problem progression step 1: applying the issue-to-observe rule ITOb
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6.1.2 Second Step ofProgression

In the second step, we apply the observe-to-issue rule OTIa, and switch from the Customer

to the Cashier, as they share event present(receipt). The rule application is shown in

Figure 6.3 and results in the rewritten requirement:

= “When the Cashier observes a number of present (item), followed

by one present(payment), if payment isfor the correct amount, then the

Cashier should issue present(receipt) .
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CUii
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Fig. 6.3: Point-of-sale problem progression step 2: applying the observe-to-issue rule OTla

CU!'i  CAlforesent(receipt)}

Customer
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6.1.3 Third Step of Progression

154

In the third step, Cashier is expected to have the following domain properties (causal

relations)

present(item) B fn enter (item, info), and

present(payment) W fn enter (payment, info),

which allow us to apply the cause-to-effect rule CTE(7)b to replace present(item)

and present (payment) with enter (item, info) and enter (payment, info) respectively,

as shown in Figure 6.4.
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Fig. 6.4: Point-of-sale problem progression step 3: applying the cause-to-effect rule CTE(7)b
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By applying the rule, we arrive at the rewritten requirement:

174 = “When the Cashier issues a number of enter {item.info), followed by

one enter {payment, info), if payment isfor the correct amount, then the

Cashier should issue present {receipt).”.

6.1.4 Fourth Step ofProgression
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Fig. 6.5: Point-of-sale problem progression step 4: applying the effect-to-cause rule ETC(7)a

In the fourth step, Cashier is expected to have the following domain property (causal

relation)
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print (receipt, info) K npresent(receipt),

which allows us to apply the effec-to-cause rule ETC(7)a to replace present (receipt)

with print (receipt, info), as shown in Figure 6.5.

By applying the rule, we arrive at the rewritten requirement:

= “When the Cashier issues a number of enter (item.info), followed by

one enter (payment.info), if payment isfor the correct amount, then the

Cashier should observe print (receipt, info).”.

6.1.5 Fifth Step ofProgression
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Fig. 6.6: Point-of-sale problem progression step 5: applying the rules RD(3)a and RD(3)b
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In the fifth step, by applying the removing domain rules RD(3)a and RD(3)b respec-

tively as shown in Figure 6.6, we arrive at the rewritten requirement:

RO = “Assuming Customerk behaviour, when the Cashier issues a number

of enter (item.info), followed by one enter (payment, info), if payment is

for the correct amount, then the Cashier should observe print (receipt, info)."”.

Application of these rules is justified by the fact that statements in R5 do not con-

strain or refer to Customer’s behaviour anymore, hence removing the Customer do-

main from the diagram does not touch any phenomena in R 5.

6.1.6 Sixth Step ofProgression
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Fig. 6.7: Point-of-sale problem progression step 6: applying the issue-to-observe rule ITOb
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In the sixth step, we apply the issue-to-observe rule ITOb and switch from the

Cashier to the POS, as they share event enter (item, info) and enter (payment, info).

The rule application is shown in Figure 6.7 and results in the rewritten requirement:

R7 = "Assuming Customer’s behaviour, when the POS observes a number

of enter (item, info), followed by one enter (payment.info), ifpayment is

for the correct amount, then the Cashier should observe print (receipt, info).”.

6.1.7 Seventh Step ofProgression
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Fig. 6.8: Point-of-sale problem progression step 7: applying the observe-to-issue rule OTla

In the seventh step, we apply the observe-to-issue rule OTIla and switch from the

Cashier to the POS, as they share event print (receipt, info). The rule application is
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shown in Figure 6.8 and results in the rewritten requirement:

Rs = “Assuming Customer’ behaviour, when the POS observes a number

of enter (item.info), followed by one enter(payment.info), ifpayment is

12

for the correct amount, then the POS should issue print (receipt, info).

6.1.8 Eighth Step ofProgression
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Fig. 6.9: Point-of-sale problem progression step 8: applying the cause-to-effect rule CTE(7)b

In the eighth step, POS has the following domain properties (causal relations)

enter (item, info) ™ transfer (item, info), and
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enter (paymerit, info) "~ transfer (payment, info),

which allow us to apply the cause-to-effect rule CTE(7)b to replace enter (item, info)

and enter (payment, info) with transfer (item, info) and transfer (payment,info) re-

spectively, as shown in Figure 6.9.

By applying the rule, we arrive at the rewritten requirement:

RO = “Assuming Customer’s behaviour, when the POS issues a number of
transfer (item, info), followed by one transfer (payment, info), ifpayment

isfor the correct amount, then the POS should issue print (receipt, info).”.

6.1.9 Ninth Step of Progression
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Fig. 6.10: Point-of-sale problem progression step 9: applying the effect-to-cause rule ETC(7)a
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In the ninth step, POS has the following domain property (causal relation)
generate (receipt.info)  print(receipt, info),
which allows us to apply the effec-to-cause rule ETC(7)a to replace print (receipt, info)
with generate(receipt.info), as shown in Figure 6.10.

By applying the rule, we arrive at the rewritten requirement:

R 10 = “Assuming Customer s behaviour, when the POS issues a number of
transfer (item.info), followed by one transfer (payment, info), ifpayment

isfor the correct amount, then the POS should observe print (receipt, info).”.

6.1.10 Tenth Step of Progression
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Fig. 6.11: Point-of-sale problem progression step 10: applying the rules RD(3)a and RD(3)b
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In the tenth step, by applying the removing domain rules RD(3)a and RD(3)b re-

spectively as shown in Figure 6.11, we arrive at the rewritten requirement:

Ry, =“Assuming Customer’s and Cashier’s behaviour, when the POS is-
sues a number of transfer(item.info), followed by one transfer (payment.info),
if payment is for the correct amount, then the POS should observe

generate(receipt.info).”.

Application of these rules is justified by the fact that statements in ;¢ do not con-
strain or refer to Cashier’s behaviour anymore, hence removing the Cashier domain
from the diagram does not touch any phenomena in R;o. The dog-eared box indicating
that events transfer(item.info), transfer(payment.info) and generate(receipt.info)
do not belong to Cashier is also removed. All dog-eared boxes that are attached to

Cashier describe its domain properties, hence they are removed together with the do-

main.

6.1.11 Eleventh Step of Progression

In the eleventh step, we apply the issue-to-observe rule ITOb and switch from the POS
to the Controller, as they share event transfer(item.info) and transfer(payment.info).

The rule application is shown in Figure 6.12 and results in the rewritten requirement:

Ry =“Assuming Customer’s and Cashier’s behaviour, when the Controller
observes a number of transfer(item.info), followed by one
transfer(payment.info), if payment is for the correct amount, then the
POS should observe

print(receipt.info).”.
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Fig. 6.12: Point-of-sale problem progression step 11: applying the issue-to-observe rule ITOb
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6.1.12  Twelfth Step of Progression
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Fig. 6.13: Point-of-sale problem progression step 12: applying the observe-to-issue rule OTla

In the twelfth step, we apply the observe-to-issue rule OTIa and switch from the

POS to the Controller, as they share event generate (receipt, info). The rule application

is shown in Figure 6.13 and results in the rewritten requirement:
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Rtf = “Assuming Customers and Cashiers behaviour, when the Controller
observes a number of transfer {item.info), followed by one

transfer {payment, info), if payment isfor the correct amount, then the

Controller should issue print {receipt, info)."”

6.1.13  Thirteenth Step of Progression
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Fig. 6.14: Point-of-sale problem progression step 13: applying the removing domain rules
RD(2)b and RD(1)a respectively

In the thirteenth step, by applying the removing domain rule RD(2)b and RD(1)a

respectively as shown in Figure 6.14, we arrive at the rewritten requirement:

= Assuming Customer’s, Cashiers and POS behaviour, when the
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Controller observes a number of transfer(item.info), followed by one
transfer (payment.info), if payment is for the correct amount, then the

Controller should issue print(receipt.info).”.
Notice the following:

e All the dog-eared boxes are part of the domain POS, hence they are removed

together with the domain.

e The R;4 expresses a conditional causality (we regard the combination of sev-
eral transfer(item.info) events and one transfer (payment.info) event as a single

event, which we name receive(info) by abstraction):
(payment is correct amount) : receive(info) ~~ generate(receipt.info).

This conditional is usually achieved by Controller comparing the total value of
items via event transfer(item.info) with the total value of payment via event
transfer(payment.info), and if the latter is greater than or equal to the former,

then generate(receipt.info) event should happen.

That completes all the steps of problem progression as the requirement statement
R,4 is expressed only in terms of specification phenomena - the Controller domain’s

behaviour. Figure 6.15 shows the final problem diagram after the problem progression.

mm——————
- =~

{transfer(item.info)} - <
Controller | {transferpayment.info)} ~ { Ry, )

Fig. 6.15: Point-of-sale problem: final problem diagram after problem progression

Table 6.3 summarises the development of the requirement statements throughout the

entire process of problem progression (next page).
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Name Description
R When the Customer issues a number of present(item), followed by one present(payment), if
! payment is for the correct amount, then the Customer should observe present(receipf).
R, When the Cashier observes a number of present(item), followed by one present(payment), if
(by rule ITOb) payment is for the correct amount, then the Customer should observe present(receipt).
R, When the Cashier observes a number of present(item), followed by one present(payment), if
(by rule OTla) payment is for the correct amount, then the Cashier should issue present(receipt).
R, When the Cashier issues a number of enter(item.info), followed by one enter(payment.info), if
(by rule CTE(7)b) payment is for the correct amount, then the Cashier should issue present(receipf).
Rs When the Cashier issues a number of enter{item.info), followed by one enter(payment.info), if
(by rule ETC(7)a) payment is for the correct amount, then the Cashier should observe print(receipt.info).
R Assuming Customer's behaviour, when the Cashier issues a number of enter{item.info),
(b‘ rules RD(3)a & b) followed by one enter(payment.info), if payment is for the correct amount, then the Cashier
Y should observe print(receipt.info).
R Assuming Customer's behaviour, when the POS observes a number of enter{(item.info),
(b7 rule ITOb) followed by one enter(payment.info), if payment is for the correct amount, then the Cashier
Y should observe print(receipt.info).
R Assuming Customer's behaviour, when the POS observes a number of enter{item.info),
(b" rule OTla) followed by one enter(payment.info), if payment is for the correct amount, then the POS should
y issue print(receipt.info).
R Assuming Customer's behaviour, when the POS issues a number of transfer{item.info),
(b9 rule CTE(7)b) followed by one transfer(payment.info), if payment is for the correct amount, then the POS
4 should issue print(receipt.info).
R Assuming Customer’s behaviour, when the POS issues a number of transfer{item.info),
(b"’ rule ETC(7)a) followed by one transfer{payment.info), if payment is for the correct amount, then the POS
y should observe print{receipt.info).
R Assuming Customer's and Cashier's behaviour, when the POS issues a number of transfer
(b" rules RD(3)a & b) (item.info), followed by one transfer{payment.info), if payment is for the correct amount, then
Y the POS should observe generate(receipt.info).
R Assuming Customer's and Cashier's behaviour, when the Controller observes a number of
(t132 rule ITOb) transfer(item.info), followed by one transfer(payment.info), if payment is for the correct amount,
y then the POS should observe print(receipt.info).
R Assuming Customer's and Cashier's behaviour, when the Controlfer observes a number of
1;3 rule OTla) transfer(item.info), followed by one transfer(payment.info), if payment is for the correct amount,
byru then the Controller should issue prinf(receipt.info).
R Assuming Customer's, Cashier's and POS behaviour, when the Controller observes a number
b r’l‘“ es RD(2)b & (1)a) of transfer(item.info), followed by one transfer(payment.info), if payment is for the correct
Y amount, then the Controller should issue print(receipt.info).

Tab. 6.3: Requirements transformations in the point-of-sale problem progression
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6.2 The Package Router Problem

The second case study is a package router problem. It has been used as an example
problem in [156, 10, 80, 83, 125], and originates from [73]. The problem statement is
as follows [125]:

“A package router is a large machine used by delivery companies to sort
packages into bins according to bar-coded destination labels affixed to the
packages. Each bin corresponds to a regional area. Packages slide by grav-
ity through a tree of pipes and binary switches. The bins are at the leaves of

this tree.

The problem is to control the operation of the package router so that pack-
ages are routed to their appropriate bins, obeying the operator’s commands

to start and stop the conveyor, and reporting any misrouted packages.”

Figure 6.16 is a schematic of the package router, and Figure 6.17 shows details of

the pipes and switches.

mizr'ou|ting conveyor 5 zomputtel;i is
i motor \ OO icplay
' buttons,
operator Q :‘;‘;‘éﬁl‘;’g
\ station,
sensors &

switches

control

computer
conveyor (which
On/oﬁ: we l:ﬂUSt
buttons build) L oou (M}

Fig. 6.16: Schematic of the package router problem taken from [125] (based on [83]), unmodi-
fied
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—_— e conveyor -
] O 77 . label reading station
— O T package sensors

---------

e

pipe (for sliding down)

switch (not to be flipped
unless empty)

 bin (corresponding to one
g or more destinations)

I I I B L
Fig. 6.17: Pipes and switches taken from [125] (based on [83]), unmodified

The analysis in [83] shows that this problem can be decomposed into the following

subproblems:

P, =“The problem is to control the operation of the package router so that

packages are routed to their appropriate bins.”

P, =“The problem is to let the operation obey the operator’s commands to

start and stop the conveyor.”
P3; =“The problem is to report any misrouted packages.”

Although each of them could be addressed through problem progression, for brevity
we will focus on P;, which is the most complex of the three subproblems.

The problem statement does not tell us how many switches and bins are in the prob-
lem. For simplicity, we consider only two bins in our analysis which represent the
situation in which a switch has two outgoing pipes releasing the package into two bins
(increasing the number of switches does not affect our treatment of progression).

Let us look at the subproblem in more detail. There are five given domains in this

subproblem: the Reading station, the Switch, the Package, the Binl, and the Bin2. There
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is also the Controller machine, which is the solution domain yet to be built. Table 6.4

shows the identified domains and their descriptions.

Name

Description

Package

The physical object (e.g., a mail or parcel) to be sorted to the correct bins for delivery. All packages
carry bar-coded labels, which contain its id and destination pkgDst. In this simplified problem,
pkgDst is either left or right; in a problem with more than two bins, pkgDst is the destination bin
number. They go through the reading station, after which they slide down through pipes and
switches by gravity, and finally stop and arrive at their destination bins.

Bin1, Bin2

The container that the package is finally released. Each bin is dedicated to a group of adjacent
areas (addresses) for delivery.

Reading station

The place through which the package is fed from the conveyor and its id and destination are read.

Switch

Atwo-position device that joins 3 pipes - one incoming pipe, one left pipe and one right pipe. It can
be flipped to the left or to the right so that a package can only slide down one of the connected
pipes (either left pipe or right pipe). The flipping is controlled by the controller to be built.

Controller

The solution machine to be designed. Its wired connection with the reading station allows it to
indirectly access package ids and destinations; its wired connection with the switch allows it to
control the flipping of switches.

Tab. 6.4: Domains and their descriptions

Figure 6.18 shows the problem diagram and Table 6.5 details its phenomena.

Reading
/ station c
\ g ,’ -, ~ \\
Controller Package |d€------- - R, \
\ / . ,I
b Switch d T
e f
Bin1 Bin2
a : RS!{ send(pkgDst) } b : CO! {set(pkgDst) } ¢ : PA!{ share(pkgDst),}inRS }
d:PAI {$inSW} e: PAI{}inBin1} f: PAI{}inBin2} g :{ pkgDst }inRS }
swi {} swState(pkgDst) } {4inBin1,4inBin2}

Fig. 6.18: Problem diagram
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Name

Type

Designation

{send(pkgDst)}

shared
event

The reading station sends the package destination pkgDst to
the controller. The destination pkgDst can be left or right.

{set(pkgDst)}

shared
event

The controller machine sets the switch to left. or right
according to the package destination pkgDst.

{share(pkgDst)NinRS}

shared
event

Once the package arrives at the reading station, i.e.}inRs
event occurs, the package's barcode label is shared with the
reading station, i.e., share(pkgDst) event occurs.

{Yinswy

shared
event

Once the package is inside the switch, event}inSW occurs,
which is shared with the Switch domain, e.g., via optical
SEensors.

{}swState(pkgDst)}

shared
event

Depending on the package's destination (pkgDst = left or
right), the switch is set accordingly, so event{swState(pkgDst)
is shared with the Package domain, which decides whether
the package goes to Bin1 or Bin2.

{binBin1}

shared
event

When the package enters Bin1, event 4inBin1 occurs.

AinBin2}

shared
event

When the package enters Bin2, event 4inBin2 occurs.

{pkgDst }inRS}

internal
state/

shared
event

The package's destination pkgDst namely /eft or right in this
simplified problem diagram, is encoded in the package's label
(barcode). Event 4inRS occurs when the package enters the
reading station.

AinBin1,4inBin2)

shared
event

Once the package enters Bin? or Bin2, the event YinBin1 or
4inBin2 occurs.

Tab. 6.5: Phenomena and their designations

The Package domain is a causal domain with complex behaviours which can be

partially expressed by a state machine diagram [116] (assuming it does not break) in

Figure 6.19 (next page). The timed transitions capture the time duration a package

needs to slide from one part of the routing device to the next.

The following causal relations can be derived from Figure 6.19:

z+y

e TinRS ~~* 1inSW means that the package entering the Reading station will

cause it to enter the Switch after = 4 y seconds.
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inRS

after (x seconds) /

RStoSW \
—

after (y seconds) /

after (z seconds) /
[swState(left)]

after (z seconds) /
[swState(right)]

SWtoBin1 SWtoBin2

after (w seconds) / after w seconds) /

| inBin1 ‘ inBin2 I

Fig. 6.19: Package behaviour described as a state machine adapted from [127], modified

z4w
o (swState(left)) : 1inSW ~»* TinBinl means that if the Switch is set to the left,
then the package entering the the Switch will cause it to enter Binl after z + w

seconds.

z4+w
o (swState(right)) : 1inSW ~~* 1inBin2 means that if the Switch is set to the
right, then the package entering the the Swirch will cause it to enter Bin2 after

z + w seconds.

However, the following phenomena (including shared and internal ones) are not

explicitly described in Figure 6.19:

e the internal phenomena that every package has a unique id (may be useful for
other subproblems, e.g., tracking/displaying/reporting misrouted package) and

destination pkgDst, which, for this simplified problem, is a state with two val-
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ues: either pkgDst = left or pkgDst = right (for problems with more than two

bins, pkgDst should be the target bin number);

e the package shares phenomenon shared(pkgDst) with the Reading station, where
pkgDst represents package destination: either pkgDst = left or pkgDst = right.

It is controlled by the Package domain. There are the following causal relations:
(pkgDst = left) : T1inRS ~ share(left), and

(pkgDst = right) : TinRS ~» share(right);

o the Switch’s state swState(left) or swState(right) is shared between the Switch
domain and the Package domain, and it is controlled by the former. These shared
phenomena determine whether the package goes to the left bin Binl or the right

bin Bin2 (as captured by the causal relations in the package description earlier

on).

Binl and Bin2 are simple causal domains with sensors at their entrances. Their
shared phenomena with the Package domain, namely TinBinl and TinBin2 will allow
the package into them.

The Reading station domain is causal, with the following causal relation:

shared(pkgDst) ~ send(pkgDst), where pkgDst € {left, right},
which means that the bar-code for the package’s destination pkgDst, namely left or
right, is shared with (or scanned by) the reading station, which will cause the reading
station to send the package’s destination information to the Controller domain.

The Switch domain is causal, with the following causal relation:

set(pkgDst) ~ 1swState(pkgDst), where pkgDst € {left, right},

which means that the Controller issuing set(left) will cause the switch’s state swState to
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become left, and the Controller issuing set(right) will cause the switch’s state swState

to become right.

The requirement, R, can be stated as follows:

R, =“Ifthe package’s destination is pkgDst, with pkgDst = left or pkgDst =
right, and the package enters the reading station (i.e.,TinRS occurs), then
the package should enter the appropriate bin (i.e., either TinBinl or TinBin2

occurs) after x + y + z + w seconds.”.

Notice that we have expressed the requirement in terms of the identified problem
phenomena. This will allow us to progress it through to specification by repeately trans-
forming it until the requirement is expressed only in terms of the specification phenom-
ena.

The above requirement statement R; relates two separate sets of phenomena, namely
those that R; refers to, i.e.,{ pkgDst, 1inRS}, and those that R; constrains, i.e.,{TinBin1,
1inBin2}. As causality is timed in this problem, a time constraint is also expressed by
R; on the total travelling time of the package through the router. This relation should be
achieved by the entire routing device including the Reading station and the Switch do-
mains, which are directly connected to the Package domain, and the Controller domain,

which is indirectly connected to Package.

6.2.1 First Step of Progression

Let us look at pkgDst, which is internal to Package, and TinRS, which is shared between
Package and Reading station. Recall that the following causal relations exist:

(pkgDst = left) : 1inRS ~~ share(left), and
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CTE(6)b ccauses e :’/ \\‘ ccauses e ccauses & ,"‘ N
when g { R } when g when g (‘ R' ,'-
\ / \ /

r (O
DI (o} DI}
b o P b o) P

1 {send(pkgDshy)

Controller Controller

Bin2 1] Bin2
Switch CO! {set(pkgDst)} Switch TO! {set(pkgDsh)

Fig. 6.20: Appropriate package routing progression step 1: applying the cause-to-effect rule
CET(6)b
(pkgDst = right) : TinRS ~~» share(right),
which allow us to apply the cause-to-effect rule CTE(6)b to replace event {inRS with
event share(pkgDst), as shown in Figure 6.20.

By applying the rule, we arrive at the following requirement statement:

R, =“Ifthe package’s destination is pkgDst, with pkgDst = left or pkgDst =
right, and the package shares pkgDst with the reading station (i.e.,share(pkgDst)
occurs), then the package should enter the appropriate bin (i.e., either

TinBinl or TinBin2 occurs) after = + y + z + w seconds.”.

6.2.2 Second Step of Progression

In the second step, we apply the issue-to-observe rule ITOb, and switch from the Package

to the Reading station, as they share event share(pkgDst), as shown in Figure 6.21.
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ITOb

D"

vxl‘nRS causes share{pkgDst)
en pkgDst=left or pkg=right

Controller Controller

Bin2 ! (sef{phg Bin2 k f
swicn | CO/ setphaDst} switch | CO! setlokaDs0)

Fig. 6.21: Appropriate package routing progression step 2: applying the issue-to-observe rule
ITOb

By applying the rule, we arrive at the following requirement statement:

R3 =“Ifthe package’s destination is pkgDst, with pkgDst = left or pkgDst =
right, and the reading station reads pkgDst (i.e.,share(pkgDst) occurs),
then the package should enter the appropriate bin (i.e., either TinBinl or

TinBin2 occurs) after ¢ + y + z + w seconds.”.

6.2.3 Third Step of Progression

In the third step, Reading station has the following domain properties (causal relations):
shared(pkgDst) ~~ send(pkgDst), where pkgDst € {left, right},

which allow us to apply the cause-to-effect rule CTE(7)b to replace share(pkgDst) with

send(pkgDst), as shown in Figure 6.22.

By applying the rule, we arrive at the following requirement statement:
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CTE(7)b

= | I =
ccauses e ccauses & ccauses e
when g when g when ¢

/ D" el
; hid
b ID./{e)ID'I | b IDl{e}lD I

vilinRs causes share(pkgDsf)
en pkgDst=left or pkg=right

ié

"

wSlale(pkgDst)

CO! {set(pkgDst)} TO! {set(pkgDst)}

Bin2 Switch Bin2 Switch

Fig. 6.22: Appropriate package routing progression step 3: applying the cause-to-effect rule
CTE(7)b
Ry =“Ifthe package’s destination is pkgDst, with pkgDst = left or pkgDst =
right, and the reading station sends pkgDst to the controller (i.e., send(pkgDst)
occurs), then the package should enter the appropriate bin (i.e., either

TinBinl or TinBin2 occurs) after z + y + z + w seconds.”.

6.2.4 Fourth Step of Progression

In the fourth step, we apply the issue-to-observe rule ITOb, and switch from the Reading
station to the Controller, as they share send(pkgDst), as shown in Figure 6.23.

By applying the rule, we arrive at the following requirement statement:

Ry =“Ifthe package’s destination is pkgDst, with pkgDst = left or pkgDst =

right, and the controller receives pkgDst (i.e.,send(pkgDst) occurs), then
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ITOb
o D' 7 D
D! D' {ev} D'1{ev}
{e} o777 .
D b D [eeeeseee- + R}
inRS causes share(pkgDsf) share(pkgDsf) causes inRS causes share(pkgDs share(pkgDst) causes
o e ) | sondipkoDsy | N pkaDstcleft or phg=right send(pkgDs)

Bin1
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Package

VPA! {share{pkgDst})
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7/ PAIM‘\
swidl Ds)

Bin2 Switch

CO! {set(pkgDst} CO! {set(pkgDst)}

Fig. 6.23: Appropriate package routing progression step 4: applying the issue-to-observe rule
ITOb

the package should enter the appropriate bin (i.e., either TinBinl or TinBin2

occurs) after ¢ + y + z + w seconds.”.

From progression step 1 through to step 4, we have partially progressed the original
requirement statement R; to Rs, by rewriting the first half of the statement each time.

Next we will progress the second half of the statement.

6.2.5 Fifth Step of Progression

In the fifth step, Package has the following domain properties (causal relations):
(swState(left)) : TinSW i‘){‘i TinBinl, and
(swState(right)) : TinSW iji 1inBin2,

which allow us to apply the effect-to-cause rule ETC(7)a twice to replace TinBinl and

1inBin2 with 1inSW and swState(pkgDst) holds, as shown in Figure 6.24. Note state
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swState(pkgDst) is shared with the Package domain and controlled by Switch domain,

as shown in Figure 6.24. In the figure, for brevity we use event TswState(pkgDst) as a

short form of TswState(left) or TswState(right).

ETC(7)a

\

vﬁnks causes share(pkgDsf)
en pkgDst=left or pkg=right

share(pkgDst) m;ﬁ
send(pkgDsf) -

s
"

share(pkgDst) uwﬁ
send(pkgDst)

vtg

vli:RS causes share(pkgDs)
n pkgDst=left or pkg=right I

Fig. 6.24: Appropriate package routing progression step 5: applying the rule ETC(7)a
By applying the rule twice, we arrive at the following requirement statement:

R¢ =“Ifthe package’s destination is pkgDst, with pkgDst = left or pkgDst =
right, and the controller receives pkgDst (i.e.,send(pkgDst) occurs), then
the package should enter the switch (i.e.,TinSW occurs) with the switch

state appropriately set (i.e., either swState(left) or swState(right)), de-

pending on the value of pkgDst after z + y seconds.”.
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Note that the time z + w of transit of the package from the switch to the bin has been

taken into account in the rewritten RQ.

6.2.6 Sixth Step of Progression

{ev}
RD(3)a
{ev}
0 +-— 1 R
evdoes not
belong to O'
MRS causes share(pkgDst) M share(pkgDst) causes AinRS causes share(pkgDst) ' share{pkgDst)causes
when pkgDst=left or pkgfniight send(pkgDsf) when pkgDst=left ot pkgrriight send(pkgDst)
fewState(left) causes 4swState(left) causes
JjinBin i*SwState(right) " JjinBin 1;AswState(right)
causes linBm2 + / + causesyinBin2
FAeSW 32T < fsat<XphgDH)!
RS! {send{pkgDst)) ‘L Ei 5 RS! {send(pkgDst))
PA! {shara{pkgDaf))  s.alion PA! {share(pkgOst))
PAI<tIBmT,/ | p/ufo,
PA!$nS)

swState(pkgDst) ieRd"s

send(pkgDst <tonot

belong Bin I or Bin2

RD(3)a ‘bb I
R fev}

ev does not
belong to D’

Fig. 6.25: Appropriate package routing progression step 6: applying the rule RD(3)a twice

In the sixth step, we apply the removing domain rule RD(3)a twice to remove Binl

and Bin2 as shown in Figure 6.25, and we arrive at the rewritten requirement:

R? = "Assuming the behaviour of Binl and Bin2, ifthe package’s destina-
tion is pkgDst, with pkgDst = left or pkgDst = right, and the controller
receives pkgDst (i.e.,send(pkgDst) occurs), then the package should enter

the switch (i.e.NinSW occurs) with the switch state appropriately set (i.e.,
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either swState(left) or swState (right)) depending on the value ofpkgDst

after x + y seconds.”.

Application of these rules is justified by the fact that R6 does not constrain or refer

to 5m 1’sor Bin2’s phenomena anymore, hence they can be removed from the diagram.

6.2.7 Seventh Step ofProgression

ITOa
pnftS causes share(pkgDst) | T/nRS causes share(pkgd) 1 share(pkgDsf) causes
when pkgDst=left or pkg=right | when pkgDsi=left or pkg=right send(pkgDsf)
wState(lefy) causdo v £ swS(a(e(/eft) caus&P=»N /
jinBin I'4swState (right) \inBin 14swSlate(right) j
causespnBin2 | / causes*n8/n2 .
ass % sk {send(pkgDst)} s** / J& S {sen(pkgDSR}
e izm
FPANGNRS]  Reading RSt fsend(pkeDst Package PATORS>  peading 1
PM{share(pkgDsy); ~ S14ton PA! {shara(pkgOs) 141" {send{pkgDs)}
PAI&nSV

SWf*mStale(pkgOst)]
UseUpkgDsI)}

Fig. 6.26: Appropriate package routing progression step 7: applying the issue-to-observe rule
ITOa

In the seventh step, we apply the issue-to-observe rule ITOa twice, and switch from
the Package to the Switch, as they share event | inSW, and [swState (pkgDst), as
shown in Figure 6.26.

By applying the rule, we arrive at the following requirement statement:

Rs = “Assuming the behaviour of Binl and Bin2, ifthe packages destina-

tion is pkgDst, with pkgDst = left or pkgDst = right, and the controller
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receives pkgDst (i.e.,send(pkgDst) occurs), then the switch observes the
package entering (i.e.,}inSW occurs), with the switch state appropriately
set (i.e., either swState(left) or suuState(right)), depending on the value of

]

pkgDst after x + y seconds.”.

6.2.8 FEighth Step ofProgression

ETC(7)a

D!{e} Dl{fe)

D" D"

\inRS causes share(pkgDst)
when pkgDst-left or pkg=right

Reading PAINRS)  Regding

Fig. 6.27: Appropriate package routing progression step 8: applying the effect-to-cause rule
ETC(7)a
In the eighth step, Switch has the following domain properties (causal relations):
set(pkgDst) ~ | swState(pkgDst), where pkgDst £ {left, right},
which allow us to apply the effect-to-cause rule ETC(7)a to replace swState(pkgDst)
with set(pkgDst), as shown in Figure 6.27.

By applying the rule, we arrive at the following requirement statement:



RQ = '"Assuming the behaviour of Binl and Bin2, ifthe packages destina-

6. Case Studies

tion is pkgDst, with pkgDst =

receives pkgDst (i.e.,send(pkgDst) occurs), then the switch should receive
commands from the controller to set its state appropriately set (i.e., either

set (left) or set (right) occurs), depending on the value o fpkgDst after x+y

seconds.”.

RD(3)a

£inRS causes share(pkgDst)
when pkgDst=lefi or pkg-right

PA! (share(pkgDst))

not belong to

6.2.9

ev does not
belong to D’

share(pkgDst) causes
send(pkgDst)

set(pkgDsf) causes

\swState{pkgDst)

Fig. 6.28: Appropriate package routing progression step 9: applying the rule RD(3)a

left or pkgDst

Ninth Step ofProgression

right, and the controller

share(pkgDst) cauﬂ)

send{pkgDst)

Reading
station

RS!{setfdipkgus

Switch

set(pkgDst) causes”
fsw State(pkgDst)

Controller

{set(pkgDs1)
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In the ninth step, we apply the removing domain rule RD(3)a to remove Package as

shown in Figure 6.28, and we arrive at the rewritten requirement:

R 10 = “Assuming the behaviour of Binl, Bin2 and Package, if the con-
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troller receives pkgDst (i.e.,send(pkgDst) occurs), with pkgDst = left or
pkgDst = right, then the switch should receive commands from the con-
troller to set its state appropriately set (i.e., either set(left) or set(right)

122

occurs), depending on the value ofpkgDst after x + y seconds.

Application of this rule is justified by the fact that R9 does not constrain or refer to
Package’s phenomena anymore, hence it can be removed from the diagram. Any dog-
eared box that is attached to Package is part of Package’s domain properties, hence is

removed together with Package.

6.2.10 Tenth Step ofProgression

OTla

D! fev} D!{fev) D! {ev}

share(pkgDst) causes
send(pkgDst)

Reading Reading

Fig. 6.29: Appropriate package routing progression step 10: applying the observe-to-issue rule
OTla
In the tenth step, we apply the observe-to-issue rule OTIa, and switch from domain
Switch to the Controller, as they share set(pkgDst), as shown in Figure 6.29.

By applying the rule, we arrive at the following requirement statement:
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Ru =‘4ssuming the behaviour of Binl, Binl and Package, if the con-
troller receives pkgDst (i.e.,send(pkgDst) occurs), with pkgDst = left
or pkgDst = right, then the controller should issue commands to set the
switch state appropriately set (i.e., either set(left) or set(right) occurs),

>

depending on the value ofpkgDst after x + y seconds.”.

6.2.11 Eleventh Step ofProgression

In the eleventh step, we apply the removing domain rule RD(l)a first to remove Switch
(see the Figure 6.30), and then rule RD(2)b to remove Reading station (see Figure 6.31

on the next page),

RD (1)a {evh

{ev}

share(pkgDst) causes share(pkgDst) causes
send(pkgDst) send(pkgDst) 111

set(pkgDst) causes™ i Switch
| swState{pkgDst)

Fig. 6.30: Appropriate package routing progression step 11 (1): applying rule RD(1)a

By applying the rules, we arrive at the following requirement statement:

Ri12 NMAssuming the behaviour ofBinl, Bin2, Package, Switch and Reading
station, ifthe controller receives pkgDst (i.e.,send(pkgDst) occurs), with

pkgDst = left or pkgDst = right, then the controller should issue appro-



6. Case Studies 185

RD(2)b fev}

R J

*rf -

{Set{pk.gC h>\

share{pkgDs) causes Reading
send(pkgDsf)

Controller

Fig. 6.31: Appropriate package routing progression step 11 (2): applying rule RD(2)b

priate commands (i.e., either set(left) or set(right) occurs), depending on

>

the value ofpkgDst after x + y seconds.”.

That completes all the steps of problem progression as the requirement statement
R 12 is expressed only in terms of specification phenomena, i.e., all Controller’s phe-
nomena. Figure 6.32 shows the final problem diagram after the problem progression.
{send(pkgDst)y>

Controller R
12

{set(pkgDsf)}

Fig. 6.32: Final problem diagram after problem progression

Table 6.6 summarises the development of the requirement statements throughout the

entire process of problem progression (next page).
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Name

Description

R4

If the package's destination is pkgDst, with pkgDst=left or pkgDst=right, and the package enters the
reading station (i.e.,}inRS occurs), then the package should enter the appropriate bin (i.e., either
4inBin1 orfinBin2 occurs) after x+y+z+w seconds.

Rz
(by rule CET(6)b)

If the package's destination is pkgDst, with pkgDst=left or pkgDst=right, and the package shares
pkgDst with the reading station (i.e.,share(pkgDsf) occurs), then the package should enter the
appropriate bin (i.e., eithertinBin1 ortinBin2 occurs) after x+y+z+w seconds.

R3
(by rule ITOb)

If the package's destination is pkgDst, with pkgDst=left or pkgDst=right, and the reading station reads
pkgDst (i.e.,share(pkgDst) occurs), then the package should enter the appropriate bin (i.e., either
4inBin1 or}inBin2 occeurs) after x+y+z+w seconds.

Ry
(by rule CTE(7)b)

If the package's destination is pkgDst, with pkgDst=left or pkgDst=right, and the reading station
sends pkgDst to the controller (i.e.,send(pkgDst) occurs), then the package should enter the
appropriate bin (i.e., either $inBin1 ordinBin2 occurs) after x+y+z+w seconds.

Rs
(by rule ITOb)

If the package's destination is pkgDst, with pkgDst=left or pkgDst=right, and the controller receives
pkgDst (i.e.,send(pkgDsf) occurs), then the package should enter the appropriate bin (i.e., either
AinBin1 or}inBin2 occurs) after x+y+z+w seconds.

Rg
(by rule ETC(7)a)

If the package's destination is pkgDst, with pkgDst=left or pkgDst=right, and the controller receives
pkgDst (i.e.,send(pkgDst) occurs), then the package should enter the switch (i.e.,}inSW occurs) with
the switch state appropriately set (i.e., either swState(left) or swState(right)), depending on the value
of pkgDst after x+y seconds.

Ry
(by rule RD(3)a)

Assuming the behaviour of Bin1 and Bin2, if the package's destination is pkgDst, with pkgDst=left or
pkgDst=right, and the controller receives pkgDst (i.e.,send(pkgDsf) occurs), then the package should
enter the switch (i.e.,}inSW occurs) with the switch state appropriately set (i.e., either swState(lef) or
swState(right)) depending on the value of pkgDst after x+y seconds.

Rg
(by rule ITOa)

Assuming the behaviour of Bin1 and Bin2, if the package's destination is pkgDst, with pkgDst=left or
pkgDst=right, and the controller receives pkgDst (i.e.,send(pkgDsf) occurs), then the switch observes
the package entering (i.e.,}inSW occurs), with the switch state appropriately set (i.e., either swState
(leff) or swState(right)), depending on the value of pkgDst after x+y seconds.

'Rg
(by rule ETC(7)a)

Assuming the behaviour of Bin1 and Bin2, if the package's destination is pkgDst, with pkgDst=left or
pkgDst=right, and the controller receives pkgDst (i.e.,send(pkgDsf) occurs), then the switch should
receive commands from the controller to set its state appropriately set (i.e., either set(leff) or set(right)
occurs), depending on the value of pkgDst after x+y seconds.

Ryo=
(by rules RD(3)a)

Assuming the behaviour of Bin1, Bin2 and Package, if the controller receives pkgDst (i.e.,send
(pkgDst) occurs), with pkgDst=left or pkgDst=right, then the switch should receive commands from
the controller to set its state appropriately set (i.e., either sef(leff) or set(right) occurs), depending on
the value of pkgDst after x+y seconds.

Ry =
(by rules OTla)

Assuming the behaviour of Bin1, Bin2 and Package, if the controller receives pkgDst (i.e.,send
(pkgDs?) occurs), with pkgDst=left or pkgDst=right, then the controller should issue commands to set
the switch state appropriately set (i.e., either set(leff) or sef(righf) occurs), depending on the value of
pkgDst after x+y seconds.

Ryp=
(by rules RD(1)a&(2)b)

Assuming the behaviour of Bin1, Bin2, Package, Switch and Reading station, if the controller
receives pkgDst (i.e.,send(pkgDsf) occurs), with pkgDst=left or pkgDst=right, then the controller
should issue appropriate commands (i.e., either sef{leff) or set(right) occurs), depending on the value
of pkgDst after x+y seconds. .

Tab. 6.6: Requirements transformations in the package router problem progression
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6.3 Discussions

The POS example has demonstrated the progression of a simple problem: the domains
are linearly arranged; there are no timing issues and causality is not conditional. Pro-
gression rules were applied to a matched part of the problem diagram in a stepwise
manner. In each step, a small portion of the texts was manipulated according to the
templates set out by the application conditions of the rule. Assumptions about the re-
moved domains were explicitly stated in the rewritten requirements, which guaranteed
that the transformation was solution-preserving. In this case study, our progression only
arrives at a high-level behaviour description of the Controller machine, while low-level
software design is left the developer to decide. In comparison, the formal approach in
Chapter 4 applied to a similar problem has forced us to reason more rigourously about
this low-level design, thus leading to more detailed design.

The package router example has addressed more complex causal relations than the
POS problem. In particular, the Package’s domain properties involve time consider-
ations in the causal relation which capture the passage of time as the package travels
through the router. This has required us to add timing constraints in requirement state-
ments.

There are issues in the problem which we have not explored. For instance, it was
not decided whether the routing device should serve one package at one time or multiple
packages. In the latter case, the minimum time lag between two packages would have
to be enforced so that the flipping of the switches can be co-ordinated to avoid conflicts.
This might require the machine to be constantly updated with each package’s position
in the device to achieve maximum efficiency. In this situation, a model domain that

is connected to the sensors reflecting the real time positions of all packages should be
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built. The requirement would be more complex, but the progression should be still

addressable with our techniques.

6.4 Chapter Summary

This chapter has demonstrated how the notion of causality and associated rule-based
techniques can be applied in the context of problem frames to address problem progres-
sion. The case studies illustrated a systematic process of deriving a machine specifica-
tion from the requirement, including cases in which biddable and timed causality should

be considered.



7. DISCUSSIONS, CONCLUSIONS - AND FUTURE WORK

In this chapter, we review the aim of this thesis and assess the extent to which our tech-
niques fulfil this aim. Based on their applications to the case studies, we compare and
evaluate the two different classes of techniques which have been introduced in Chapter
4 and Chapter 5. Finally, conclusions on the work are drawn and an agenda for future

work is proposed.

7.1 Aim of the Thesis and Contribution Evaluation
In the beginning of the thesis, we have set out the following aim of this thesis:

to derive specifications from requirements in a systematic way by defining

practical techniques to implement problem progression.

We presented two contributions of this thesis to fulfil the above aim. The first is a
formal approach incorporating Lai’s quotient operator and other CSP notations for the
derivation of specifications from requirements which can be formally described. The
second is a semi-formal approach incorporating the notion of causality and associated
rule-based techniques for the practical derivation of specifications from requirements in
a wider range of problems.

In this discussion, we will examine both approaches and associated techniques in

terms of the following aspects: whether they provide a systematic solution, the scope of
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their application, and the practicality of their application.

7.1.1 How Systematic Are They?

According to the Oxford English Dictionary [76], the word “systematic” means “ar-
ranged or conducted according to a system, plan, or organized method”. Therefore, the
question is: “Can our techniques and methods be applied in an orderly manner so that
useful results can be achieved?”.

The formal approach is systematic due to the nature of the operatiors defined over
process and specification terms. Within this approach, various CSP operators, particu-
larly Lai’s quotient operator and the parallel composition operator allow us to derive sys-
tematically specifications from requirements. The case study in Chapter 4 demonstrates
how such techniques can be applied systematically to construct a correct specification.
The results were checked rigourously through the FDR tool as a way of validating the
correctness of its construction.

The semi-formal approach is also systematic because our classes of progression
rules give a complete coverage of all possible problem topologies. In other words, for
any valid problem diagram, we can systematically match and find a progression rule to

reason through a domain’s causal behaviours.

7.1.2  Scope of Their Application

The formal approach has limited scope of application in RE. We can only apply the
techniques when we can express domain properties and requirements as CSP expres-
sions. The case study in Chapter 4 suggests that if we can express the domains and

requirements using CSP descriptions, we can construct the solution specification in a
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systematic way. The study also indicates that the formal techniques become very com-
plex and are unlikely to scale up to real-world problems.

The semi-formal approach has a much wider scope of application. We can apply
the progression rules as long as causal relationships can be established about domain
properties, and certain chains of causality can be identified in a problem diagram. Since
the definition and application conditions of the progression rules are based on a fixed
pattern of natural language descriptions, we argue that this approach is more general
for RE. A comparison of the case studies in Chapter 4 and in Chapter 6 shows how the

semi-formal approach can tackle much more complex problems than the formal one.

7.1.3 Practicality of Their Application

Let us evaluate how the techniques can be practically applied in RE.

The formal approach has limited practicality of application in RE. A large amount of
complex formal manipulations is needed for progressing even a very simple problem, as
shown in the case study in Chapter 4. It is not very realistic to expect RE practitioners to
have sufficient knowledge of CSP and the predicate calculus, and the ability to perform
the formal manipulations.

The semi-formal approach is based on causality, and its complexity lies in identify-
ing causal relationships within domain descriptions. However, in this thesis, we have
classified and elaborated the notion of causality in order to facilitate the organisation and
representation of complex causal relationships. This may help in eliciting the required
knowledge from problem stakeholders for the analysis of a particular problem. There-
foré, we argue that our causality-based techniques could fit within many RE practices,

thus having the potential to be adopted by practitioners.
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7.2 Conclusion and Future Work

Reflecting back on our work presented in this thesis, we conclude that our aim of de-
riving specifications from requirements in a systematic way was achieved by our work.
That such aim was worth investigating was justified by the literature survey in Chapter
2, which suggested that the systematic derivation of specifications from requirements
is a challenging but important open problem in software engineering. We have investi-
gated two approaches, one formal and one semi-formal, to address this problem. Here
is a summary of our investigation:

The difference between the formal and semi-formal approaches has been well em-
phasised by the relevant chapters. Formality, whilst appropriate in the most critical of
developmental situations, requires too much work in terms of the production of formal
descriptions and working with them to produce a closed-form solution. Application of
the formal technique outside this scope is less likely to work for the reasons we have
discussed in this thesis. Instead our semi-formal technique has a much wider scope
of application and a better chance of integration in current requirements engineering
practices.

One promising direction for the semi-formal technique is developing tool support.
The problem progression process in Chapter 6 requires many tedious steps. There is
a need for simplifying this process without sacrificing the rigour. As an initial step,
perhaps the tool will allow practitioners to help the identification of causal phenomena,
which will be used for justifying the injective matching of our progression rules, then the
tool will mechanically search and identify all sound instances of graph transformation
convergence, which will be chosen by the requirements engineer.

The solution we have presented is partial: as can be seen from Chapters 4 and 6,
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there are problems that require other problem-solving techniques in addition to those
we have detailed. From requirements to specifications, it may be close to the best we
can do: the application domain will always require the manipulation of informal de-
scriptions, and we have by necessity been limited to the recognition and manipulation
of unambiguous descriptions of causal relations.

For the semi-formal techniques we have proposed, one difficulty we have not ad-
dressed is that in any real-world development context there will typically be many val-
idating stakeholders, such as customers, legislators and regulators, each of whom will
have a different view on what are the important (and obvious) causal relations. This
leads us to consider whether the conceptual basis we have worked with is indeed a com-
plete picture: it may be that, because of the differing views of stakeholders, problems
need to be parameterised for each of them. In this case, it is the intersection of the stake-
holders’ solutions that must be found. Future work may consider how our approach can
be extended to generate a solution within that intersection. One remedy might be to be-
gin with descriptions whose meaning is agreed by all stakeholders before commencing
the solution process we have presented. In this case, the framework we have provided
becomes as general as possible.

Another area for future work is that we have tried, in this thesis, to provide a frame-
work for constructing solutions to problems, ensuring that if we start from a valid prob-
lem description, through transformation the solution will be valid too. We note that a
framework for solution synthesis is much more demanding than a framework for prob-
lem analysis: solution synthesis requires problem analysis as an initial part, as well as
creative steps that generate solutions from problems. We have gone some small way
to show how this can be done with our techniques, but there is still some way to go to

provide tools adequate for computing as engineering.
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A. DETAILS OF DISTINGUISHING “CONTROL” AND
“OBSERVE” IN CSP DESCRIPTIONS

In CSP, a process may appear in any of the following syntax:

P ::= STOP, | CHAOSs | cle > P|c?z - P|P N Q|
POQ|P|[Q|P\c|uX: AF(X),

and only some have the above property. For instance, ¢c?z — STOP || ¢!l —
STOP does not.

In the following, in order to make P! N P? = {} hold, we need to restrict each part
of P, shown below:

(A). According to definition (a) and (b), and the semantics of STOP, (A is its
alphabet),

STOPs! = {d | dlv € STOP4} = {}, and

STOP4? = {d | d?z € STOP,} = {},

Since STOP4! N STOP4? = {}, there is no need to restrict STOP,.

(B). According to definition (a) and (b), and the semantics of CHAOS4 (non-empty
set A is its alphabet),

CHAOS ! = {d | P = CHAOSs ANdlv € A} C A, and

CHAOS,? = {d | P= CHAOS, Nd?z € A} C A.

In this thesis, we do not model a domain as CHAOS.
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(C). According to definition (a) and (b), and the semantics of cle — P,

(cle = P)!={d | dv € a(cle = P)} = {c} U P}, and

(cle = P)?={d | d?z € a(cle — P)} = P?.

Therefore,

(cle = P)In(cle = P)?

= ({c}UP)NP?

= ({c}NP?)U(PINPT?)

= ({e}nPYUY

= {c} N P?.

In order to make it an empty set, { ¢} N P? needs to be empty, in other words, ¢ ¢ P?
is the restriction we need for cle — P.

(D). Similar to (C), ¢ ¢ P! is the restriction we need for c?z — P.

(E). According to definition (a) and (b), and the semantics of P M @,

(PRQ)={d|dvea(PNQ)}=PUQ!,and

(PNn@)?={d|dzea(PNQ)}=P7U Q7.

Therefore,

(PNn)n(PNQ)?

= (Plu@hnN(P?UQ?)

=((Plu@hNP?TU((PlUuQHNQ?)

= (PINPHU(QINPHUPINQRNU(QINQT?)

={Ju(@NPHU(PINQNU{}

=(QINPYHU(PINQ?).

In order to it an empty set, (Q! N P?) = {} A (PN Q?) = {} is the restriction we

need for P I Q).
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(F). Similar to (E), (Q! N P?) = {} A (P! N Q?) = {} is the restriction we need for
POQ.

(G). Similar to (E), (Q!'N P?) = {} A(P'N Q7) = {} is the restriction we need for
Pl e.

(H). According to definition (a) and (b), and the semantics of P \ ¢,

(P\c)!'={d|dv appears in P\ c} = P!\ {c}, and

(P\ ¢)?={d|d?z appears in P \ c} = P?\ {c}.

Therefore (U is the universal set),

(P\e)N(P\e)?

= (P1\ {c})) n(P?\{c})

=PINn(P\)N(P\c)?

= (P'\{ch) n(P7\{c})

=PIn(U\{c)nPTN(U\{c})

=PINPIN(U\{c})

={}n(U\{e})

= {}.

There is no need to restrict P \ c.

(D). According to definition (a) and (b), and the semantics of uX.F(X),

X . FX)!={d|dlv €a(pX.F(X))}=F! and

X .F(X)?={d|d? € a(pX.F(X))} = F?.

Therefore,

(LX.F(X)N(uX.F(X))?

=FINF?

={}.

There is no need to restrict uX.F(X).



B. DETAILS OF PROBLEM PROGRESSION RULES

B.1 The Reducing through Cause and Effect Rule Class

This rule class generates a new requirement statement by replacing effects with causes,
or causes with effect, based on the causal relations identified among events in domain
descriptions. We specialise this rule class into two sub-rule classes, namely the effect-

to-cause rule class and the cause-to-effect rule class.

The Effect-To-Cause (ETC) Rule Class

Under this sub-rule class, the requirement statement is rewritten so that any occurrence
of an effect, say event “... e occurs ...” is replaced by an occurrence of its guarded
cause, say “... ¢ occurs and g holds ...”. This rule class contains nine possible cases de-
pending on whether e and ¢ are internal, shared and controlled, or shared and observed
by domain D, as shown in Table 5.1.

Each individual working rule is derived from one of the admissible cases in Ta-

ble 5.1. These working rules are shown in Figure B.1, Figure B.2 and Figure B.3 below.

Note that in Figure B.2, rule ETC(6)a has two possible problem topologies:

1. domain D shares {e} and {¢} with two different domains, i.e., it shares {c} with

domain D", and {e} with domain D’;

2. domain D shares {e} and {c} with the same domain D’.
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admissible cases (1), (2) and (3) in Table 5.1, respectively

-

Fig. B.1: Rules ETC(1)a, ETC(1)b, ETC(2)a, ETC(2)b, ETC(3)a, and ETC(3)b, derived from
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ETC#)a _
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Fig. B.2: Rules ETC(4)a, ETC(4)b, ETC(6)a, and ETC(6)b, derived from admissible cases (4)
and (6) in Table 5.1, respectively
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Fig. B.3: Rules ETC(7)a and ETC(7)b, derived from admissible cases (7) in Table 5.1
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Since we always draw these diagrams when applying them, there is no need to distin-

guish them using different rule names (we also preserve our naming convention in this

way). For similar reasons, rule ETC(6)b, ETC(7)a and ETC(7)b all have two possible

problem topologies.

The Cause-To-Effect (CTE) Rule Class

Under this sub-rule class, the requirement statement is rewritten so that any occurrence

of a cause and its conditional guard, say event “... ¢ occurs and g holds ...” is replaced
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by an occurrence of its effect, say “... e occurs ...”. This rule class contains nine possible
cases depending on whether ¢ and e are internal, shared and controlled, or shared and
observed by domain D, as shown in Table 5.2.

Each individual working rule is derived from one of the admissible cases in Ta-
ble 5.2. These working rules are shown in Figure B.4, Figure B.5 and Figure B.6.

Note that in Figure B.5, rule CTE(6)a has two possible problem topologies:

1. domain D shares {e} and {c} with two different domains, i.e., it shares {¢} with

domain D", and {e} with domain D’;
2. domain D shares {e} and {c} with the same domain D’.

Since we always draw these diagrams when applying them, there is no need to distin-
guish them using different rule names (we also preserve our naming convention in this

way). For similar reasons, rule CTE(6)b, CTE(7)a and CTE(7)b all have two possible

problem topologies.
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Fig. B.4: Rules CTE (1) a & b, CTE (2) a & b, and CTE (3) a & b, derived from admissible
cases (1), (2) and (3) in Table 5.2, respectively
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Fig. B.5: Rules CTE (4) a & b, and CTE (6) a & b, derived from admissible cases (4) and (6) in

Table 5.2,

respectively
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Fig. B.6: Rules CTE (7) a & b, derived from admissible cases (7) in Table 5.2
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