40 research outputs found

    Per-Pixel Extrusion Mapping with Correct Silhouette

    Get PDF
    Per-pixel extrusion mapping consists of creating a virtual geometry stored in a texture over a polygon model without increasing its density. There are four types of extrusion mapping, namely, basic extrusion, outward extrusion, beveled extrusion, and chamfered extrusion. These different techniques produce satisfactory results in the case of plane surfaces, but when it is about the curved surfaces, the silhouette is not visible at the edges of the extruded forms on the 3D surface geometry because they not take into account the curvature of the 3D meshes. In this paper, we presented an improvement that consists of using a curved ray-tracing to correct the silhouette problem by combining the per-pixel extrusion mapping techniques and the quadratic approximation computed at each vertex of the 3D mesh

    Merging Cellular Automata for Simulating Surface Effects

    Get PDF
    International audienceThis paper describes a model of three-dimensional cellular automata allowing to simulate different phenomena in the fields of com- puter graphics and image processing, and to combine them together in order to produce complex effects such as automatic multitexturing, sur- face imperfections, or biological retina multi-layer cellular behaviours. Our cellular automaton model is defined as a network of connected cells arranged in a natural and dynamic way, which affords multi-behavior ca- pabilities. Based on cheap and widespread computing systems, real-time performance can be reached for simulations involving up to a hundred thousand cells. Our approach efficiency is illustrated through a set of CA related to computer graphics –e.g. erosion, sedimentation, or vegetal growing processes– and image analysis –e.g. pipeline retina simulation

    Visualização em tempo real de um modelo esparso de mistura paramétrica para síntese da BTF

    Get PDF
    As funções de textura bidirecionais (Bidirectional Texture Functions - BTF) permitem visualizações de alta qualidade de materiais reais, que exibem detalhes complexos na sua aparência, e que não podem ser fielmente representados por funções paramétricas mais simples. Representações fíeis deste tipo de materiais requerem grandes quantidades de dados, dificultando a sua visualização em tempo real. A compressão de BTFs constitui um compromisso entre qualidade visual e tempo de síntese. Este artigo apresenta um visualizador a correr integralmente no GPU, usando um motor de ray tracing, de uma representação recente para BTFs, o Modelo Esparso de Mistura Paramétrica (Sparse Parametric Mixture Model - SPMM). A escalabilidade com o número de BTFs e o número de luzes é também estudado.Fundação para a Ciência e Tecnologi

    PARALLEL √3-SUBDIVISION with ANIMATION in CONSIDERATION of GEOMETRIC COMPLEXITY

    Get PDF
    We look at the broader field of geometric subdivision and the emerging field of parallel computing for the purpose of creating higher visual fidelity at an efficient pace. Primarily, we present a parallel algorithm for √3-Subdivision. When considering animation, we find that it is possible to do subdivision by providing only one variable input, with the rest being considered static. This reduces the amount of data transfer required to continually update a subdividing mesh. We can support recursive subdivision by applying the technique in passes. As a basis for analysis, we look at performance in an OpenCL implementation that utilizes a local graphics processing unit (GPU) and a parallel CPU. By overcoming current hardware limitations, we present an environment where general GPU computation of √3-Subdivision can be practical

    Interactive real-time three-dimensional visualisation of virtual textiles

    Get PDF
    Virtual textile databases provide a cost-efficient alternative to the use of existing hardcover sample catalogues. By taking advantage of the high performance features offered by the latest generation of programmable graphics accelerator boards, it is possible to combine photometric stereo methods with 3D visualisation methods to implement a virtual textile database. In this thesis, we investigate and combine rotation invariant texture retrieval with interactive visualisation techniques. We use a 3D surface representation that is a generic data representation that allows us to combine real-time interactive 3D visualisation methods with present day texture retrieval methods. We begin by investigating the most suitable data format for the 3D surface representation and identify relief-mapping combined with Bézier surfaces as the most suitable 3D surface representations for our needs, and go on to describe how these representation can be combined for real-time rendering. We then investigate ten different methods of implementing rotation invariant texture retrieval using feature vectors. These results show that first order statistics in the form of histogram data are very effective for discriminating colour albedo information, while rotation invariant gradient maps are effective for distinguishing between different types of micro-geometry using either first or second order statistics.Engineering and physical Sciences Research (EPSRC

    Interactive high fidelity visualization of complex materials on the GPU

    Get PDF
    Documento submetido para revisão pelos pares. A publicar em Computers & Graphics. ISSN 0097-8493. 37:7 (nov. 2013) p. 809–819High fidelity interactive rendering is of major importance for footwear designers, since it allows experimenting with virtual prototypes of new products, rather than producing expensive physical mock-ups. This requires capturing the appearance of complex materials by resorting to image based approaches, such as the Bidirectional Texture Function (BTF), to allow subsequent interactive visualization, while still maintaining the capability to edit the materials' appearance. However, interactive global illumination rendering of compressed editable BTFs with ordinary computing resources remains to be demonstrated. In this paper we demonstrate interactive global illumination by using a GPU ray tracing engine and the Sparse Parametric Mixture Model representation of BTFs, which is particularly well suited for BTF editing. We propose a rendering pipeline and data layout which allow for interactive frame rates and provide a scalability analysis with respect to the scene's complexity. We also include soft shadows from area light sources and approximate global illumination with ambient occlusion by resorting to progressive refinement, which quickly converges to an high quality image while maintaining interactive frame rates by limiting the number of rays shot per frame. Acceptable performance is also demonstrated under dynamic settings, including camera movements, changing lighting conditions and dynamic geometry.Work partially funded by QREN project nbr. 13114 TOPICShoe and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within projectPEst-OE/EEI/UI0752/2011
    corecore