EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

GPU-based rendering to a multiview display

Verburg, E.I.

Award date:
2006

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/12e9b74f-6804-4e13-9d78-62059d4dd50b

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

GPU-based Rendering to a
Multiview Display

By
E.I. Verburg

Supervisors:

dr. C. Huizing (TU/e)
ir. G.T.G. Volleberg (Philips)

Eindhoven, June 2006

-

Abstract

This thesis is the result of a project on rendering to a nine-view lenticular display device of two
megapixels. We successfully implemented a render engine on a personal computer equipped with a
programmable video card.

The render algorithm is based on a technique called micropolygon displacement mapping, which is
suitable for generating mutually disparate views. The solution allows for real-time playback of disk-
streamed RGBD video sequences. These sources contain both color and depth information at a
standard definition resolution.

3.

(This page intentionally contains only one sentence.)

4.

Summary

This thesis presents a method for real-time rendering to a multiview display device given a 2D video
source with depth information. Although the method is suitable for various types of multiview
displays, this project specifically targets a nine-view lenticular display. Our implementation uses a
personal computer equipped with a programmable graphics programming unit (GPU).

The conversion process from the before mentioned source format to a video sequence that is suitable
for a lenticular display can be divided in two steps. First a set of mutually disparate views needs to be
generated based on depth, and second, these views have to be merged by multiplexing the
appropriate subpixels.

Regarding the first step we adopt a rendering technique called micropolygon displacement mapping
to create eight additional views. Traditionally this technique enables feature manipulation of 3D
rendered objects. However, we exploit it to generate views which simulate a virtual array of cameras.
With respect to the point of view provided by the input video, four cameras represent distinct
positions on the left side and the other four represent positions on the right side. The views
corresponding to each side are computed in a single rendering pass as follows. First, the vertices of a
highly tessellated planar triangle grid are manipulated in z-direction based on the depth map. Each
quadrant of this grid is manipulated by a different amount, but receives the same color frame as
texture map. A specific orthogonal projection of this textured geometry results in four distinct views
with horizontal disparity. This pass mainly involves the vertex shader hardware of a GPU.

The next step is to multiplex the subpixels of these preprocessed views into a single lenticular image.
This step can be mapped conveniently on pixel shader hardware. For each output pixel we determine
the view number of the red, the green and the blue subpixel. Given this number we then fetch the
appropriate color values from the textures in video memory.

The engine that implements this algorithm for nine-view rendering has been tested on a system with
NVIDIA’s 7800 GTX graphics processor. It enables a throughput of 25 frames per second at 1920 X
1080 output resolution when using a triangle grid of 692 x 520 cells. The number of cells determines
the quality of the perceived depth impression. Ideally this grid would contain twice the number of
pixels of an input frame, but the current GPUs are not yet capable of processing larger amounts of
data. This undersampling of the depth map does not harm the depth impression much. Occlusions
are supported, but de-occlusion areas are only handled by linearly interpolating the colors of the
surrounding pixels. Future GPUs will enable higher frame rates or better quality and are likely to
support even a higher number of views.

-5.

(This page intentionally contains only one sentence.)

-6-

Table of Contents

Abstract
Summary
Table of Contents

1 Introduction

1.1 Project and Assignment
1.2 Document Structure

2 PC and GPU Analysis

2.1 PC Architecture

2.2 Video Cards

2.3 Brand Specific Technologies
24 Summary

3 Algorithms

3.1 Project Specifics

3.2 Overview

3.3 Basic Algorithms

3.4 Compound Algorithms

3.5 Geometry Manipulation and Projections
3.6 Lenticular Rendering

3.7 Image Filtering

3.8 Summary

4 Concepts and Design

4.1 Introduction

4.2 Detailed Design

4.3 Ray-Tracing Shader

4.4 Micropolygon Based Shader
4.5 Improved Displacement Shader

5 Implementation

5.1 Software Selection

5.2 Shader Models

5.3 Shader Languages

5.4 General Framework
6 Results

6.1 Vertex Processing

6.2 Pixel Shading Performance
6.3 Image Filtering
6.4 Ray-Tracing Results

7-

11

11
12

13

13
20
33
34

35

35
36
37
41
45
51
52
58

59

59
63
65
67
68

70

70
71
72
74

79

79
80
81
82

oo

G m = O 0O =% »

Conclusion
Recommendations

ATI Specifications

Matrox Specifications
NVIDIA Specifications
Shader Models

Tabularized Test Results
YC,C, to RGB Conversion

References

83

85

86

87

88

89

90

91

92

Acknowledgement

Hereby, I thank the people who helped me during my graduation in one way or another, especially
my mentor Guido Volleberg, who gave me this tremendous opportunity to do a project at Philips
Applied Technologies. His continuous enthusiasm and sincerity, I will never forget. I also thank Kees
Huizing, Bettina Speckmann and Jack van Wik from the Eindhoven University of Technology for
their time and effort.

And not least of all, let me express my appreciation to my family, friends and colleagues for their
support; with whom I got to spend a lovely time and had many invaluable discussions, both
professionally and socially. It has been a great experience to work in the field of video processing and
even write my first paper in addition to this thesis.

9.

(This page intentionally contains only one sentence.)

-10-

| Introduction

1.1 Project and Assignment

Multiview display devices are emerging, but suitable media sources are still scarce as broadcasters
continue to deliver two-dimensional (2D) video. Various conversion algorithms are now being
developed in order to provide a three-dimensional (3D) experience from different kinds of media.

On the other hand, programmable graphics processing units (GPUs) have evolved into powerful
image processing devices over the last few years. These devices for personal computer (PC) platforms
can be used to aid the before mentioned conversion.

A lenticular display is a specific type of multiview display device. Its name originates from the small
lenses contained on the surface of the screen. These lenses redirect each view in such a way that it
enables stereoscopic vision without the use of 3D glasses or other headgear.

Currently, one operational set-up is built from a personal computer (PC), a Field-Programmable Gate
Array (FPGA) and a lenticular display. An FPGA is a programmable logic chip. It is programmed to
convert an input signal (RGBD) to an output signal (RGB), which is fed into the lenticular display.
RGBD denotes a video stream composed of the colors red, green and blue, and a depth channel. This
depth channel stores the relative distances between the camera and the objects being captured, as
shown in figure 1.

Due to recent developments in computer graphics hardware the graduation project ‘GPU-based
rendering to a multiview display’ was initiated. A GPU is the primary processor of video cards found
in PCs. We designed an algorithm for multiview rendering to a lenticular display and implemented it
on such a graphics processor. The resulting application is able to process video in real-time as
required. This helps the future development of 2D video to RGBD conversion by enabling faster
prototyping of the produced sequences.

GPU N Multiview Display

I——‘—‘—I

720 x 576 1920 x 1080

Figure 1. A programmable GPU processes a video stream containing color and depth
information to drive a multiview display device.

1.2 Document Structure
The remainder of this document is organized as follows.

In chapter 2 we describe the parts of the common architecture of both PC and video card that are
relevant to our use case. For each component the minimal requirements to sustain real-time video
playback are defined.

In chapter 3 we provide an overview of traditional 3D rendering techniques related to texture
mapping. The focus is on how these candidate techniques can alter surface details of virtual objects.
The discussed techniques form a prerequisite for the design concepts discussed in the next chapter.
Chapter 4 first presents the specifics of multiview rendering. Thereafter two adapted algorithms are
presented for multiview rendering; both tailored to the architecture of a programmable GPU. We also

propose a method, which enables the detection of the inherent artifacts of the first algorithm.

Chapter 5 discusses topics on GPU programming, such as shader models and shader languages, and
describes the software implementation details of our render engine.

The project results are presented in chapter 6 and conclusions are drawn in chapter 7.

Reference material on GPUs, as well as a list of literature, is included in the collection of appendices.

-12-

2 PC and GPU Analysis

The primary goal of this project is to get a 3D video impression out of a multiview display. Our video
sequence only contains frames that describe a single point of view, as captured by a single camera.
These input images need to be processed, not just streamed to the display device. This processing
results in new images. The creation of such computer images or video frames is commonly called
rendering.

This chapter discusses the hardware needed for real-time multiview rendering. Our focus is on
personal computers equipped with programmable GPUs.

2.1 PC Architecture

2.1.1 Essential Components

A personal computer (PC) consists of three essential components, which are interconnected as is
depicted in figure 2. The essential components are the central processing unit (CPU), volatile
memory — also referred to as main memory or system memory — and the video card. The CPU and
memory modules are placed on a printed circuit board (PCB) called mainboard or motherboard.
Sometimes the video controller is also integrated on this same board.

Computer programs are executed on the CPU and perform calculations on data. Both programs and
data are held by main memory. The video card enables visible output. In addition all desktop PCs
generally have at least one hard disk, which serves as non-volatile memory. This is where programs
and data can be stored (more) permanently.

These PC components are controlled by two additional processors, which are commonly called ‘the
chipset’. The chipset consists of a Northbridge chip and a Southbridge chip. The Northbridge
connects the CPU, main memory and video card(s). The Southbridge masters system input and
output (I/O), such as disk drives, and other system buses, for example the Peripheral Component
Interconnect (PCI) bus.

Just like the CPU and system memory, the chipset is located on the motherboard. Although playback
of video streams involves all of the before mentioned components, we are particularly interested in
the data paths between these parts.

North bridge
(Memory hub)

II I e

South bridge
(O hub)

Figure 2. The architecture of a personal computer consists of functional components and
communication buses.

In order to display a video stored on disk, video data must pass various buses and components.
During this process video (and audio) data is continuously read from the hard disk. The data passes
both South- and Northbridge on its way to main memory.

The CPU generally performs processing on this data. The executed program determines what data is
moved to and from the CPU.

Finally, the buffered data is moved from main memory to the video card, which drives a display
device. The application software running on the CPU controls the playback process.

Each system part must be able to sustain this relatively large data transfer. The next paragraph defines
the bandwidth requirements for playback of such data streams. The subsequent sections discuss the
primary tasks and limits of each PC component in detail.

2.1.2 Video Playback Requirements

The playback of video puts a relatively high strain on a computer system. Table 1 summarizes the raw
throughput requirements for a few common television standards [1] in megabytes per second (MB/s).
The images displayed on a television or computer monitor consist of small colored dots. Such a dot
is called a pixel, which is a contraction of the words ‘picture element’.

Active lines Width Pixel FPS 4:4:4 4:4:4:4 4:2:0 4:2:0:4
count (all in MB/s)
480p (VGA) 640 307200 30 ~27 ~36 ~14 ~22
540p 720 388800 25 ~28 ~38 ~14 ~24
576p 720 414720 25 ~30 ~40 ~15 ~25
720p (HDTV) 1280 921600 25 ~66 ~88 ~33 ~55
1080p (HDTV) 1920 2073600 25 ~149 ~198 ~75 ~124

Table 1. The more pixels each video frame hold, the more bandwidth it requires for both
storage and transfer. Active lines are the number of visible pixel rows. FPS denotes frames
per second, which is the playback rate of motion video.

-14-

It is important to distinguish RGB data from RGBD in real-time solutions. The depth channel could
be added along the path between disk and video card. It is the responsibility of a component called a
depth estimator. Instead, we will be streaming pre-processed video sources that already carry depth
information. Our source files use the 720 x 576p format, where ‘p’ denotes progressive scanning [2].
The final output of the video card is again a RGB signal without a depth channel, though the pixel
count likely differs.

In practice video systems always use some form of subsampling. Technicians do not regard
subsampling as a compression technique like for example MPEG-1. Over the years various MPEG
standards for ‘lossy’ video compression have been defined by the Moving Picture Experts Group.
This project does not consider these compression techniques.

Subsampling saves bandwidth. For example 4:2:2 subsampling packs the luma and chroma channels
of each 2 x 2 pixel array into 8 bytes instead of 12 bytes. 4:2:0 uses only 6 bytes for each 2 x 2 array.
For subsampled RGBD this results in a lower raw bandwidth requirement of

(6 /12 x 3) + 1 bytes/pixel x (2 x 10%) pixels x 25 FPS =~ 124 MB/s.

It halves the number of bytes needed for both luma and chroma of the 2D video. The depth
information still takes a single byte per pixel. Depth information can be stored in similar way as is
often done for the alpha (transparency) channel. In this case the last digit of 4:2:0:4 denotes the
sampling of depth in relation to luma sampling instead of alpha.

2.1.3 Hard disk performance

We opt for the highest possible picture quality, thus not using compression or subsampling.
Neglecting the fact that we will perform multiview rendering for the moment, a hard disk has to read
(2 x 10%) x 25 x 3 = 149 MB/s.

When discussing hard disk performance we need to distinguish internal from external speed. Internal
speed is related to physical properties and mechanics of the drive. To be more precise: hard disks read
and write using a small local memory buffer to optimize throughput by scheduling. Buffer sizes range
from 1 to 8 MB nowadays.

The external speed is subject to the I/O technology used. There exist a few standards on hard disk
/O, which are ATA/ATAPI’, SCSI" and serial ATA. The interface types determine the maximum
throughput between the hard disk cache and system memory. The tables 2 and 3 list the maximum
theoretical throughput for existing SCSI interfaces and ATA-varieties.

Name Standard Throughput (MB/s)
SCSI SCSI-1 5

Fast SCSI SCSI-2 10

(Fast &)Wide SCSI SCSI-2 20

Ultra SCSI SCSI-3 40

LVD SCSI Ultra-2 80

Ultra-160 SCSI Ultra-3 160

Ultra-320 SCSI Ultra-320 320

Fast-320 SCSI Ultra-640 640

Table 2. This table lists the maximum theoretical throughputs for existing SCSI interfaces.

" Advanced Technology Attachment Packet Interface
T Small Computer System Interface

Name Standard Throughput (MB/s)
UDMA Mode 0 ATA/ATAPI-4 16.7
UDMA Mode 1 ATA/ATAPI-4 25.0
UDMA Mode 2 ATA/ATAPI-4 33.3
UDMA Mode 3 ATA/ATAPI-5 44.4
UDMA Mode 4 ATA/ATAPI-5 66.7
UDMA Mode 5 ATA/ATAPI-6 100
UDMA Mode 6 ATA/ATAPI-6 133
SATA SATA 150
SATA SATA 300

Table 3. This table lists the maximum theoretical throughputs for existing ATA interfaces.
The figure for UDMA Mode 6 was based on a finishing technical standard (see
http://www.serialata.org/).

The first serial ATA standard, which is the successor of the (parallel) ATA standard, specifies a
maximum theoretical throughput of 150 MB/s. This probably won’t suffice for non-subsampled

1080p video streams. However, when settling for less video quality this throughput will do. The same
holds for Ultra-160 SCSI.

When video streams are subsampled the bandwidth requirements somewhat lower and some of the
picture quality is lost. With a small investment in hardware (e.g. additional drives in a RAID
configuration) we can overcome the problem of bottlenecking full quality streaming.

For the input stream the PAL standard was suggested. The frame dimensions of PAL video are 720 X
576 pixels. This is sufficient for multiview rendering because 9 x 720 x 576 is spread over 1920 X
1080. The purpose of this project is not to investigate how to perform real-time streaming, thus we
assume it is possible to stream sequences of this quality, based on the above information. In the
FPGA set-up a resolution of 720 x 540 was chosen because height of 540 pixels scales more easily to
the 1080 pixels of the lenticular display device.

Our test case will be based on a set of 576p25 source videos. These videos will consume up to 30
MB/s bandwidth, which requires at least UDMA-2. This is no problem because UDMA-5 capable
drives are now commonplace. A SCSI-based test system should use at least an Ultra SCSI I/0
controller.

It is often suggested that hard disk performance is limited by external factors. It is true that the
interface must provide sufficient bandwidth to transfer data to and from the drive. In computer sales
the hard disk interface is often stated as ATA/100, ATA/133 or SATA300. These labels are not
technically correct according to the specification [3]. ATA (without the number) is the name of the
interface standard on parallel communication. The appended number just gives the potential buyer
an indication of the maximum throughput. ATA drives are sometimes referred to as EIDE; a term
once introduced by hard disk manufacturer Quantum. The specifications are correctly stated as ATA-
5, ATA-6 and SATA respectively, but it gives less of a clue. In fact, the external interface does not tell
us what the real transfer rates will be. Hard disk performance could as well be limited by internal
factors.

For video streams it is important to have seamless playback, e.g. exactly 25 frames per second. This
means we are interested in the sustained transfer rate of hard disks. However for desktop systems,
which traditionally use less expensive ATA drives, such guarantees cannot be given. Most hard disk
manufacturers do provide typical data transfer rates for their ATA products, as is listed in table 4.

" A redundant array of independent drives (RAID) improves performance and/or reliability.

T These lists are compiled from various technical papers and are available upon request.
-16-

http://www.serialata.org/

Manufacturers Model Interface Typical Transfer to/from Media

Fujitsu MPG3204AH ATA-5 29.6 / 50.8 MB/s
Hitachi/IBM HDS725050KLA360 SATA 31/64.8 MB/s
Samsung SP2504C SATA ?/ 121 MB/s
Seagate ST-380023AS SATA 27 / 44 MB/s
Western Digital WD2500SK SATA <93 MB/s

Table 4. This short list shows typical transfer rates for modern hard disks.

More expensive SCSI drive configurations are common in server environments. Drives, like the ones
listed in table 5, often perform better and are considered to be more reliable. Because of the
differences between SCSI and ATA, the former interface allows multiple drives to operate
independently even when connected to the same bus. This improves performance for disk arrays, or
state fully redundant array of independent disks (RAIDs). Today, also RAIDs exist based on ATA
drives.

Manufacturers Model Interface Sustained Data Rate
Fujitsu MAU3147NC/NP SCSI 147 MB/s
Hitachi/IBM HUS151414VL3800 SCSI 93.3 MB/s
Maxtor/Quantum Atlas 15K I SCSI 98 MB/s

Seagate ST936701 SCSI 63 MB/s

Western Digital WD740GD SATA 72 MB/s

Table 5. These best-of-class of hard disks are more likely encountered in server
environments.

Most ATA-6 drives are able to stream subsampled video at SDTV resolution under optimal
conditions. However, operating systems are likely to interrupt disk reading from time to time to allow
other processes to access this shared resource. Uninterrupted playback also depends on a streaming-
friendly file format, which will keep disk seeks low.

System characteristics such as time sharing and the sharing of hardware resources are not available to
the public. This makes it difficult or even impossible to predict whether a system can prevent frame
drops while playing a video. An actual PC is needed to prove that a real-time application will perform
as expected. Even internal hard disk characteristics matter. By design, not all sectors of a hard disk
can be read equally fast. It is wise to use some performance margin. Margins of 25% or 50% are not
uncommon.

The listed hard disks read at speeds of at least 27 MB/s. When the system is dedicated to play and
process video streams and the operating systems intervenes as little as possible, there’s a good chance
that the modern PC is able to sustain the playback at 576p (4:2:0 subsampled).

For HDTV most single disk configurations are currently insufficient. A RAID can be used to increase
the data throughput. More disks can be added to the communication channel until its bandwidth is
saturated. 720p requires two or three disks for both SATA and SCSI systems. Each drive must be able
to transfer 17 MB of data per second. 1080p requires at least an array of three fast drives, each of
which is able to sustain 25 MB/s. Most drives will be suitable, even with a reasonable performance
overhead.

We can play a subsampled 576p video stream using a single drive. This is the configuration that we
initially chose. We conclude that it is possible to assemble a disk array, which is able to handle
broader streams. It is not our primary concern to put this to the test, as long as we know it does not
limit our rendering tests.

2.1.4 System Bus: North- and Southbridge

The Northbridge and Southbridge make up the core logic chipset on the motherboard. The
Northbridge chip typically handles communication between CPU, system memory and the video
card. Whereas the Southbridge handles the system 1/0O.

These two chips are separated because of design and fabrication complexity. These two parts could as
well be integrated in future designs. For now, the chips are linked by a high-speed interconnect. All
video data from disk is passed over this communication path. On older chipsets this link formed a
bottleneck, especially in application of high definition video sourced from disk or another PCI
peripheral. Today’s chipset bandwidth of 1 gigabyte per second (GB/s) exceeds this bandwidth
requirement by far.

2.1.5 System Memory Speeds and Bandw:idth

The set of available memory types has exploded over the last years. This makes it harder for
consumers to select the right parts. Today, DRAM modules exist in various speeds denoted as for
example PC2700, PC3200 for SDRAM and PC-800 for RDRAM. The latest memory technologies
include double data-rate (DDR) and Rambus’, the latter that Intel licensed in late 1996 for its
motherboards. We won’t go into the details of these memory types and technologies, but we are
interested in its bandwidth characteristics.

At the moment of investigating the hardware, we did not know exactly what the bandwidth
requirements are for depth estimation and its rendering. A precise specification of memory read and
writes is needed for that. But we can estimate the order of magnitude for this requirement.
Depending on the number of (sequential) processing steps on each video frame, one, two, three or
perhaps ten read-writes are needed in system memory, before the data is passed on to the graphics
card. Luckily, (cache) memory speeds already go up to about 35 GB/s. However, a relatively high
locality or reference is assumed. It means that caches are only suitable in the situation where memory
addressing is highly coherent.

Let’s assume video processing perform one hundred processing steps on complete high definition
video. This will consume a lean 100 x 2 x 2 =400 MB/s of bandwidth. The peak bandwidth for the
older PC2100 DDR memory is 266 MHz x 8 bytes = 2.1 GB/s. Thus, very inefficient video
processing on the CPU is unlikely to be limited by the speed of system memory. Table 6 lists other
relevant memory bandwidths in different parts of computer systems.

Component Bandwidth
GPU Memory Interface 35 GB/s
PCI Express Bus (x16) 8 GB/s
CPU Memory Interface (800 MHz FSB) 6.4 GB/s

Table 6. This table, taken from GPU Gems 2 by Matt Pharr et al., ch. 30, p. 472, lists
typical bandwidths of PC components.

2.1.6 CPU and the FSB

The front side bus (FSB) is the data bus that connects the CPU to the rest of the system. The
frequency of the FSB determines the external speed of the CPU. Modern motherboards feature a 166
or 200 MHz FSB and the communication is double or quad pumped. This technique exploits the
both rising and falling edges of the base clock signal. The tightened timing allows for twice or four
times the data rate.

" More on the memory interfaces of Rambus Inc. is available at http://www.rambus.com/
-18-

http://www.rambus.com/

CPUs often use an internal clock multiplier to run the processor at the right speed. L.e. an Intel P4
660 processor runs at 4 (pumped) x 200 (FSB) x 8 (internal clock) = 3,600 MHz.

2.1.7 Video Buses

During playback a video stream is normally passed to a graphics cards once. The data again passes the
memory bus twice — the second time in reversed direction — and then passes the video bus. Today,
most motherboards either contain an accelerated graphics port (AGP) or PCI Express (PCle) bus [4].
In case of an older PCI video card the data is passed back over the North- and Southbridge, instead
of using the designated video link.

Before dedicated video buses were designed PCs were limited in graphics performance. Buses like
VESA" local bus (VLB) and PCI could not deliver high-resolution video or complex 3D graphics
without latency or frame drop. PCI is based on a 66 MHz clock. The inferior VLB was clocked at 33
MHz and 32-bit wide.

Since the Intel Pentium II generation, motherboards were designed with a single accelerated graphics
port (AGP). This bus allowed faster reads from and writes to main memory, which was typically
exploited to extend the video memory of graphics boards.

PCle is the successor of the AGP. It is a new serial I/O technology, compatible with the current PCI
software environment. The open industry standard exists since 2004 and is managed by the special
interest group PCI-SIGT, which was formed 1992 and became non-profit in the year 2000. PCI-SIG is
also responsible for the conventional PCI and PCI-X standards.

The initial PCle documentation consisted of two parts; the base specification and the card
electromechanical specification. Version 1.0 of these specifications was released in July 2002. In June
2003, after a period of enablement, compliance and PCI-SIG member reviews, the mini card
electromechanical specification became available. A low-power addendum was released in September
of that year to support the mobile (graphics) industry.

According to the base specification the PCle (x16) peripheral connector should be colored black or
at least a color different from PCI, which should be white. Still, the PCle slots can be recognized
because are positioned farther off the edge of the main board than PCI slots do.

In table 7 and 8, we summarize the bandwidth properties of the AGP and PCI Express interface. All
speeds are expressed in MB/s.

AGP Multiplier MHz: Theoretical Bandwidth Actual Peaking
1x 66 266 264

2% 133 533 528

4x 266 1066 1056

8x 533 2133 2112

Table 7. Both the maximum theoretical and the actual bus speeds depend on the AGP
multiplier. This multiplier determines the clock frequency of the communication bus.

" The Video Electronics Standards Association website is located at http://www.vesa.org/
T The PCI-SIG industry organization website is located at http://www.pcisig.com/
-19-

http://www.vesa.org/
http://www.pcisig.com/

PCle Lanes Theoretical Bandwidth Actual Peaking

x1 250 237
x16 4000 3800
x32 8000 7600

Table 8. PCI Express connections can use one or more lanes. This table lists the
bandwidth properties for a few exemplary lanes configurations.

AGP’s writing speed was much slower than its reading speed. The newer PCle architecture features a
set of communication lanes. These lanes allow transfers in both directions at similar speed
simultaneously. This is the main reason why this new technology is superior to AGP.

PCle is designed as local point-to-point connection, rather than a shared bus. Its implementation is
based on the same programming concepts and communication standards as the vintage PCI. Board
manufacturers need only change the physical layer of their cards to make them compatible with PCle
[5]. These devices must support single-lane (x1) links. However, to increase throughput over 237
MB/s the device must transmit its data over multiple lanes.

The PCle standard defines x2, x4, x8, x12, x16 and %32 lane configurations, which provides up to
8 GB/s theoretical bandwidth. The physical bus sizes for each lane configuration differ. PCle
provides each device with a dedicated data pipeline, unlike PCI devices that shared their
communication bus.

PCle’s data transmission is interleaved or what is called striped in the specification, which means that
each successive byte is sent down successive lanes. This makes data synchronization more difficult on
the receiving end, but increases throughput.

Like other high-speed serial interconnect systems, PCle does have a significant protocol and
processing overhead. Long continuous unidirectional transfers can approach up to 95% of its raw
data-rate. The actual peaking column for PCle bandwidth, shown in table 8, is calculated using this
percentage.

We conclude this section with the remark that both AGP and PCle suffice for our video application.
It is unlikely that we need to pass back data from video memory for multiview rendering.

2.2 Video Cards

2.2.1 Qverview of Internals and Connectivity

As shown in figure 3, all video cards contain the following essential components: a graphics
processing unit (GPU) - sometimes referred to as video processing unit (VPU) - video memory and at
least one output port, to which a display device is connected. Some video cards have an analog
output such as the analog video graphics array (VGA) output. These require a digital-to-analog
converter (DAC), which repeatedly reads the picture, stored in video memory and converts this data
to the analog video signal.

VIDEO CARD

PCI p DV
AGP —p VPU/GPU
PCI-E —P> DAC — VGA
A
1
1
]
]
Memory ======-— /

Figure 3. The video processing unit (VPU) or graphics processing unit (GPU) receives data
over a communication bus. This processor interacts with onboard video memory and
sends its output to DVI or VGA.

Video cards contain far more features than just writing to video memory and the subsequent 2D
output to an analog or digital display device. In fact, we are particularly interested in the details of
GPUs and memory of video cards. The following paragraphs give insight in what has changed on
these cards over the years.

2.2.2 Graphics Hardware Evolution

Early computer graphics was limited to 2D vector graphics, where lines were drawn one after the
other on the screen using coordinates. Later 2D raster graphics hardware emerged. Raster graphics
allow each element of the screen (pixel) to be written to individually. Most importantly, this enabled
graphical user interfaces.

In the beginning 3D applications used software rendering, which means that all render stages are
mapped onto the CPU. Geometry transformations and lighting are computationally expensive. The
first 3D graphics boards could handle vertex processing. Later boards accelerated rendering by means
of a hardware transform and lighting (T&L) engine. Graphics processing partially moved from the
CPU to the GPU [6]. On August 31, 1999 NVIDIA launched world’s first programmable graphics
unit, the GeForce 256. The GeForce was the first GPU to feature hardware T&L, but processing was
still limited to vertex computing. ATI responded at Microsoft’s WinHEC ™ in April 2000 with their
Radeon chip.

New video cards brought a change to the inflexibility of the fixed-function pipe (explained in
paragraph 2.2.3). In February 2001, during Intel’s Developers Forum in San Jose, NVIDIA introduced
the GeForce 3 for the PC platform [7]. The GeForce 3 included the same core technology as used in
Microsoft’s Xbox game console. It was the first programmable GPU that included a fragment
processor [8]. Combined with Microsoft’s shader model version 1.1 included in DirectX 8, it allowed
customization of the render process by loading small programs — called shader programs - onto the
graphics chip. The first programmable GPUs on the market had a separate fixed-function pipe and
programmable pipe. The current trend is towards a more integrated solution.

In February 2002 the GeForce 4 was introduced, which added a new anti-aliasing technique,
improved occlusion culling, 4:1 Z-buffer compression and better support for multiple displays.

By the end of November 2002, NVIDIA launched the FX series [9]. These GPUs series added vertex
and geometry displacement support and 128-bit color precision; being 32-bits for each component of

" WinHEC is Microsoft’s annual Windows Hardware Engineering Conference.

T The 2x, 4x, Quincunx™ and new 4xS anti-aliasing techniques were marketed as Accuview.
21-

RGBA. The new GPUs were specifically designed for shader model 2.0. Next, the various
components found on these video cards are discussed in order of the graphical rendering pipeline.

2.2.3 Rendering Pipeline

The rendering pipeline is a system that produces computer imagery out of 3D geometry, textures and
other data. Computer graphics artists create virtual worlds called scenes. These scenes typically
include 3D models, light sources and at least one camera. The calculation of the final image as seen
from the camera is a complex task. It is handled by a dedicated system; the rendering pipeline. Figure
4 depicts the various stages of the classic fixed-function rendering pipeline [10].

FIXED-FUNCTION RENDERING PIPELINE

Geomet J Modeling Per-Vertex Projection Perspective Viewport Reretl Scan |m3ge
Transform d Lighting Transform d Division Transform d EIRELE Conversion
World coords Lit world Clip coords Eye coords Screen coords
(normalize device coords) (window coords)

Figure 4. The fixed-function rendering pipeline consists of processing stages which
convert geometry and other graphics data into output images.

In the rendering pipeline all geometry from the 3D scene is converted from model space to world
space, lit, clipped and results in primitives defined by screen coordinates. Objects in 3D scenes are
constructed from a set of points in space called vertices. These vertices determine the surface of the
object. Most often triangles are used. These primitives interconnect exactly three points.

The modeling transform converts all vertex coordinates from modeling space to world space. For
basic illumination one must at least calculate the amount of light that is incident at a triangle. This
concept is called flat shading. Another solution is to determine the light at each vertex. This per-
vertex lighting takes into account the amount of light received from each light source in the scene. It
results in a lit world. (More information on rendering algorithms is found in chapter 3.)

The projection transform limits the 3D space to what is called the viewing frustum. The viewing
frustum is a 3D volume that defines which (parts of) polygons are removed and won’t be visible in
the final 2D picture [11]. The removal is called clipping. Practical bounding volumes are either box-
shaped or a truncated pyramid. Figure 5 shows an example of such a volume.

Y

Eye

Figure 5. The viewing frustum for a perspective projection defines the visible volume of a
scene. The viewing direction is along the z-axis.

-22-

The pyramid shaped volume represents the part of the scene that is visible from the camera’s point of
view. The six clipping planes of the volume are called ‘left’, ‘right’, ‘top’, ‘bottom’, ‘hither’ and ‘yon’.
The hither plane is the perpendicular plane closest to the eye. Yon is the farthest perpendicular plane.
Often the hither plane corresponds to the viewport plane, but this need not be the case [12].

The perspective division makes objects appear smaller when they lie farther away from the viewpoint.
It creates the illusion of depth. Stepping over this computational stage creates an orthogonal view.
Orthogonal views have no point of view, e.g. when viewing the xy-plane from the front, there is no
perspective correction along the z-axis.

The viewport transform converts eye coordinates to screen coordinates. These coordinates still have a
z-component. In the next stage all vertices that lie out of the defined view port are clipped. Clipping
uses linear interpolation to break off triangles at the border of the view port. The remaining triangles
and other primitives are passed on to the scan converter. Figure 6 shows the stages that are part of the
scan conversion process.

SCAN CONVERSION PROCESS

Triangl _pi Image
riangles Primitive » Rasterization Textu-re > Pgr P!xel Visibility g » e bufar
Assembly Mapping Lighting Z-buffer
Fragments Textured Shaded
Fragments Fragments

Figure 6. The stages of the scan conversion process translate triangles and other geometry
into an image which is stored in the frame buffer.

The primitive assembly combines the triangles, lines and points of the scene. The rasterizer creates
one of more fragments from each primitive. Such a fragment can be regarded as a pixel, but fragment
is technically a more correct name as multiple fragments can make up a pixel’s color. For example, a
red and a green fragment can be blended to make up a yellow pixel of a particular frame.

Triangles can have an associated texture map and texture coordinates. The texture mapping stage
performs a texture lookup and assigns the right color in case of such a textured fragment. More
realistic illumination models take the amount of light for each pixel into account, and do not just
depend on the interpolate vertex values from the rasterizer. In a typical 3D scene some parts of the
object’s surface could be in shade. The per-pixel lighting stage performs shading calculations for each
fragment. The visibility stage uses the depth information stored in the Z-buffer to determine whether
or not the fragment must be written to the frame buffer.

In the past these rendering stages were hard-coded. One could send in all data of the 3D scene and
the subsequent processing was managed by the pipe itself. Post-processing the rendered images was
the only enhancement it allowed. Typical post-processing effects in 3D animation include depth-of-
field, glow and motion blur.

2.2.4 Programmable Architecture

Figure 7 is an example of a modern GPU architecture. It gives an overview of the components that
are described next. From top to bottom, it shows the various vertex- and fragment processors,
followed by the raster operators, which write the calculated pixel values to video memory.

-23-

GRAPHICS PROCESSING UNIT ARCHITECTURE

Host

—IEEEHE -

00 S <

Cull / Clip / Setup

v

~N— Z-Cull <>

Shader Instruction Dispatch

A

\4 v

(ERm®

Biaalaln

Texture Cache

5=

\—

Fragment Crossbar

A

\ AR /

v

i

[

(I

iy
L

v

v

v

I
I

.
L

L]

[

]

)

\ J J
¥
Memory Partitioning 4
DRAM DRAM DRAM DRAM

VERTEX PROCESSORS

FRAGMENT PROCESSORS

RASTER OPERATORS

Figure 7. The processing of modern programmable GPUs can be divided in three stages
being vertex processing, fragment processing and raster operations. Each stage consists of
multiple pipelines that execute in parallel.

Two of the most important differences among GPUs are the number of vertex- and pixel units.
Performance depends on the capabilities of these processing units and also depends to a large extent
on processor timings and memory speeds. These units have capabilities conform a specific shader
model, although implementations may differ among brands. Details can be found in appendices A
through C". Shader model requirements are listed in appendix D.

" Core and memory speeds are not included in the appendices because they differ among brands.

.24-

2.2.5 Vertex Buffer

The vertex buffer (VB) stores the geometry of the 3D scene. It holds all 3D coordinates and the index
buffer (IB) determines which vertices belong to each polygon. Traditionally video cards process

polygons as triangles. Triangles are flat surfaces determined by its three corner vertices. This simplifies
design and increases throughput of video cards.

In case more complex geometry is sent down the graphics pipeline, the shape is broken down in
appropriate triangles. This process is called tessellation.

The index buffer is used to compress vertex buffer data. As depicted in figure 8, this list holds three
pointers to locations in the vertex buffer to make up a specific triangle. Without an index buffer the
vertex buffer would have to contain duplicate vertex coordinates for adjacent triangles. This is
undesirable, thus indexing is often used in practice [13].

1B VB
[> (000)
°
2 2 (0,0,1)
]
=
3 (0,1,0)
4 (1,0,0)
N
o
=2 5
@
=
6

Figure 8. The index buffer (IB) lists pointers to data stored in the vertex buffer (VB).

Vertex- and index buffers can be used on all video cards that perform 3D rendering; regardless of
whether it uses a fixed-function or a programmable pipe.

2.2.6 Geometry/Vertex Processor

The first stages of the fixed-function pipeline are part of the geometry processor (figure 9), sometimes
referred to as vertex processor or vertex shader — as it computes vector coordinates and scalars.

Geometry ~ Modeling Per-Vertex | Projection o Perspective o Viewport
Transform Lighting Transform Division Transform g
GEOMETRY PROCESSOR

Figure 9. The rendering stages of a geometry processor handle various transformations
and lighting of vertex data.

The primary task of the geometry processor is transformation and lighting (T&L). The coordinates of
the input geometry are expressed in model space. These coordinates need to be converted in several
steps into projected 2D screen coordinates. The lighting value at each vertex is also computed during
this process. The per-vertex data will be interpolated in the rasterizer stage. The geometry processor
passes its output to the scanline converter.

-25-

Modern video cards do not use scanline conversion. Instead a vertex processor (or vertex shader)
passes its data to a rasterizer. The rasterizer converts all triangles into fragments (pixels). The
following list shows the tasks of a vertex processor [14]:

Vector & scalar processing
Primitive assembly
Backface culling

Clipping

Perspective division
Viewport transform
Triangle setup

Nk wbhe

The first stage converts all coordinates from model space to world space. Not only 3D models can be
sent into the rendering pipeline. Also, basic shapes such as lines and points can be inserted. The
primitive assembly combines these different input entities. The following stages are strictly relevant to
geometry.

Back face culling is the removal of triangles, of which the surface normal points away from the viewer
and need not be rendered. Next, triangles that lie outside of the viewing frustum are clipped.

The viewport transform changes world space coordinates into viewing space coordinates. The triangle
setup combines the coordinates to construct triangles according to the information in the index
buffer. These geometry processor steps result in a set of the visible and lit triangles, ready to be scan-
converted.

Vertex shaders as found on modern GPUs serve the same purpose as the traditional geometry
processors, but allow customization of the processing. Vertex shaders can be loaded with vertex
programs, which specify how transformation and coloring at vertices is done.

The minimal feature set of shader hardware is specified by a shader model. These shader models are
maintained by Microsoft (see appendix D). Newer vertex processors that are ‘shader model 3’ [15]
compliant have the ability to fetch additional data from the texture cache. This feature is called
vertex texture fetch. It enables a larger set of shader constants to be loaded in the vertex processor
using so-called vertex textures. The operation is considered as rather expensive, but it can be used to
implement look-up tables.

Vertex programs of shaders are limited in the number of instructions. Newer GPUs support larger
shader programs. Today’s vertex hardware can process up to 750 million vertices per second.

-26-

I,) Scalar Unit]
. Primitive) Viewport o
Branch Unit Assembly Processing w
P+ Vector Unit
Floating-Point
P Texture
Processor VERTEX PROCESSOR

A

Texture Cache

Figure 10. Modern vertex processors contain a set of dedicated computational units and

have access to video memory via the texture cache. This diagram was based on GPU Gems
2 by Matt Pharr et al., ch. 30, p. 475.

The left-most units, of the vertex processor in figure 10, can perform calculus on specific data types
such as scalars, vectors and texture coordinates. Selection instructions are handled by the branch unit.
The computation for duplicate vertices is only performed once conform the list held by the vertex
buffer. The primitive assembly reconstructs vertices into triangles according to the index buffer.
Finally, all coordinates are converted to screen space including its z-component.

The total instruction count supported by GPUs varies. Minimal performance requirements and
features are also specified by the shader model documentation, managed by the Microsoft
Corporation. For example, GPUs conform shader model 3.0 must support at least 512 instructions.
Some video cards already support 65,536 dynamic instructions. This means the hardware is able to
determine whether instructions need to be executed to get the correct output. Instruction that do not
affect the output will not get executed. This saves resources and time.

2.2.7 Rasterizer

The rasterizer translates triangles into pixel space. The algorithm basically loops over all triangles and
determines what pixel on the raster it colors [16]. Traditionally, this raster was either the frame buffer
or the back buffer in case of double buffering. On shader hardware the fragments can also be fed to a
fragment pipe for further processing.

2.2.8 Shader Instruction Dispatch

On GPUs the rasterizer stage is implemented as a shader instruction dispatch. It manages the
instruction decoding and scheduling of the shader at a hardware level and passes the fragments into
one of the pixel shaders [17]. The shader instruction dispatch should keep all fragment shaders busy
for maximal performance.

The shader instruction dispatch is also responsible for filtering the input by means of a technique

named Z-culling. Z-culling excludes each invisible fragment from further processing by one of the
fragment shaders. The filtered fragments are not sent further down the graphics pipe.

-27-

2.2.9 Z-Buffer

On 3D graphics hardware the Z-buffer is used to store per-pixel depth values of the projected scene.
The buffer values determine if objects are occluded or visible, from the user’s perspective. If
occluded, pixels need not be rendered again. This greatly reduces the rendering cost of 3D scenes.

The precision of the Z-buffer is normally 16 or 24 bits. 16 bits granularity can result in visual artifacts
when objects are positioned too close to one another. 24 bits provides better scene quality [18]. A
stencil buffer often accompanies the Z-buffer.

2.2.10 Stencil Buffer

The stencil buffer is a non-displayable bit-plane, similar to the depth buffer. It determines which
rasterized fragments must be excluded from a following rendering pass. An engineer can design tests
and tag certain areas that need special rendering. This stenciling is an extra per-pixel test and a set of
update operations that are closely coupled with the depth test [19].

This technique can be used for masking or rendering shadow volumes and reflections, without
referring back to pre-calculated maps [20]. For example, an 8 bit stencil buffer could be exploited to
render shadow projections of a scene with eight shadow casting light sources in a secondary pass.
One, four and eight bits are the most common stencil buffer configurations.

2.2.11 Register-Combiner Architecture

The first programmable video cards featured new vertex processors, which could compute geometry
transformations and per-vertex lighting (see paragraph 2.2.2). The rasterizer and scanline stages were
left untouched. Initial fragment processing could only be performed conform a rather strict model.
Later, pixel shaders evolved from this same model.

Figure 11 describes the structure of what is called the register-combiner architecture. This name stems
from the two building blocks that make up the processing pipe. One is the register block. This
memory unit stores the values being processed. The other is the combiner, which performs the
arithmetic on these values.

REGISTER-COMBINER ARCHITECTURE

Primitives
Rasterizer —P Texture Unit
| !
LO LI Vo VI TO e Tn SO Sl FO | Z0 REGISTER
v v
RGB Combiner Alpha Combiner
|
LO LI Vo VI TO s Tn SO Sl FO | Z0 REGISTER
v
RGB Combiner Alpha Combiner
Lo LI Vo VI TO v Tn SO Sl FO | Z0 REGISTER
|
Final RGB Combiner Final Alpha Combiner

I |
7

Blend Unit &
Frame Buffer

Figure 11. World’s first register-combiner architecture consisted of a rasterizer, texture
units followed by two pipelined register~ and combiner stages. The results could be
written to the blend unit or frame buffer.

The register element can store vectors, colors and texture coordinates. Each element has an associated
name based on the type of information it should hold. For example, v# are input registers, s# are
texture samples and t# store texture coordinates. The number of registers available to the
programmer increased each generation of GPUs. Now, these registers are exposed as variables in the
various high-level shading languages.

The combiner performs mathematical operations. It reads values from several registers, operates on
these values and writes the results to the next register-block [21]. Each combiner enables the
computation of two dot products, or an add/multiplex operation, and a scale/bias. A combiner
contains two dot/multiply units and one add/multiplex unit to accomplish this. Such a unit can be
instructed to perform either one of the operations on its input, not both.

The RGB and Alpha combiners operate in parallel. The fragment pipeline consists of one or more
register-combiners. The final combiner writes to the frame or back buffer. NVIDIA’s first-generation
GeForce design allowed two register-to-register instructions. It also featured a read-only register (Z0)

and two global constant registers (CO and Cl1). As of the GeForce 3 the constant registers were
29

changed into more flexible per-stage registers (L0 and L1). The register-combiner concept was
extended to a programmable fragment processor.

2.2.12 Fragment Processor

The fragment processor is also named a pixel shader. These processors can be loaded with small
programs called pixel shader programs, which are executed in parallel to speed up the process. Each
pixel shader receives per-fragment data like color and alpha, processes it and writes the result to the
frame buffer or render target. The pixel shader has access to texture memory, but can also perform
fogging, stenciling and alpha blending. Figure 12 shows three important stages of the rendering
pipeline that can be customized though the use of fragment programs.

Triangl P pi .
riangles Primitive Rasterization b Texture Per-Pixel \él_stl,lalflflz.

Assembly Mapping Lighting P Frame-puffer

Y

FRAGMENT PROCESSOR

Figure 12. Pixel processing by the fragment processor encapsulates texture mapping, the
per-pixel lighting and a visibility stage.

Not all fragment processors are designed the same, but they do share a few commonalities. Inside a
fragment processor one or more shader units execute the instructions of the loaded fragment
program. At least one shader unit can perform a texture look up from a local cache or texture
memory. An (optional) texture floating-point processor handles the texture-filtering math.

As of shader model 3.0 branching operation are allowed. The branch processor handles this. The Fog
ALU can blend per-pixel fog. Figure 13 shows an example of the fragment processor as can be found
on NVIDIA’s GeForce 6 series GPUs.

']

Shader Unit 1 <¢—9 Shader Unit 2 > Plraor(?:s(::or

\ 4

\ 4

Fog ALU —_

A

v

Floating-Point
| Texture =P Texture Cache
Processor

FRAGMENT PROCESSOR

Figure 13. The fragment processor determines a fragment’s color using a set of

computational units as well as a texture processor which has access to video memory. This
figure is based on GPU Gems 2 by Matt Pharr et al., chapter 30, page 476.

The number of fragment processors determines how many fragments can be processed
simultaneously. Because of the parallel execution model, no interdependence of fragments is allowed
among output values. Most cards do have multiple texture samplers, so the shader can combine
multiple inputs, but such gathering algorithms are potentially slow. One of our experimental
algorithms took over 100 samples (e.g. a 10 x 10 kernel) per output pixel. It proved that such an
approach severely hampers performance. Similar results were obtained from our ray-tracing shader,
which is described in section 4.3.

-30-

As mentioned before shader model 3.0 prescribes 512 GPU instructions as a minimum. The previous
shader model (2.0) was limited to 96 instructions, being 32 texture plus 64 arithmetic instructions.
More details are found in appendix D.

2.2.13 Raster Operators

The raster operators (ROPs) are part of the pixel pipeline. The fragment crossbar sits between the
pixel shaders and the ROPs, so it can distribute the output of each shader to the appropriate ROP.
The ROP itself performs comparison operations — like Z-culling or custom stenciling — and enables
(alpha) blending and anti-aliasing of pixels in the frame buffer or render target. Some ROPs feature
color and/or Z compression, like the one depicted in figure 14.

RASTER OPERATOR

Fragments

v

Z-values

v

Z-Culling
FP Blending
FSAA / HDR

f_H

Color
Compression

g,_J ROP

A 4

Z Compression

Video Memory

Figure 14. Modern raster operators (ROPs) perform culling, blending and anti-aliasing or
high dynamic range (HDR) lighting. Some ROPs can do compression to save on video
memory.

Certain video cards feature less ROPs than they have pixel shaders. This saves transistors without
severely bottlenecking performance [22]. For example, NVIDIA’s 6800 has 12 or 16 ROPs,
depending on the specific model, whereas the 6600 has 8. The conventional GeForce 6200 has four
raster operators and the TurboCache (TC) version of this card has only two.

Current GeForce 6 series video cards can do either full scene anti-aliasing (FSAA) - via multisampling
— or high dynamic range (HDR) rendering, but not both. This is because both techniques depend on
the floating point blending stage. Multisampling takes samples at two or more locations within each
pixel and determines how much of it is covered by the primitive being drawn. If a pixel is only
partially covered, the resulting color will be a weighted blend of the primitives’ color and the
background color.

NVIDIA’s GeForce 6200 does not support color compression and Z compression. This will limit
performance in cases such as 64-bit or 128-bit textures. The 6200 also lacks OpenEXR blending and
filtering [23].

"OpenEXR is a high dynamic-range image format developed by Industrial Light & Magic.
31-

Anti-aliasing and anisotropic filtering technology on ATI cards is named SmoothVision. Anti-aliasing
algorithms try to reduce jagged edges often visible in raster images. Version 2.1 of SmoothVision
features gamma-corrected multi-sampling that takes up to six samples per pixel to reduce aliasing
artifacts. The adaptive anisotropic filter takes up to 16 samples per pixel to sharpen blurry textures.

These filtering techniques are rather expensive and often have a large impact on performance. Most
drivers provide control over filter settings to balance rendering speed against image quality.

2.2.14 Frame Buffer

The frame buffer, also called front buffer, holds the final picture data, which is displayed on screen.
Current consumer displays range from 640 x 480 (VGA) up to 1920 x 1200 (WUXGA) pixels [24].
An appropriate amount of video memory needs to be allocated for the frame buffer.

2.2.15 Back Buffer

This memory also stores a final raster image, just like the frame buffer. The back buffer is useful in a
technique called double buffering. Using double buffering the frame buffer holds the active image,
which is visible on screen, while the new (next) image is rendered to the back buffer. When all
contents are written the back buffer and frame buffer are swapped, so the new image gets exposed on
screen.

2.2.16 Multiple Render Targets

Multiple Render Targets (MRTs) provide additional buffer space, to which a pixel shaders can write
for storing rendered frames. Output is normally written to the frame or back buffer and is restricted
to RGBA coding. The acronym RGB denotes the colors red, green and blue. The RGBA format —
sometimes denotes as RGBa - represents three 8-bit colors channels and an 8-bit alpha (transparency)
channel.

By using MRTs more than four 8-bit floating-point values can be kept. So, MRTs can be exploited to
save on the expensive render loops of multi-pass rendering, but in practice certain restrictions apply
to using this technique [25].

One should keep in mind that MRTs have a large associated frame-buffer bandwidth cost. For
example, rendering to four A32R32G32B32F surfaces consumes 16 times the frame-buffer bandwidth
of rendering to a single ASR8G8B8. These strings denote the format of the data structure stored in
the buffer. Again the letters represent the alpha and color channels. The interspersed values indicate
the amount of bits used for the coding of the alpha and/or color channels. Modern graphics boards
support a specific and rather large set of data formats.

2.2.17 Texture Memory

Texture memory or texture buffer store texture maps, depth maps or other kinds of maps that
determine surface properties. These texture mapping techniques are commonly used to reduce
modeling complexity. Surface details are often too small and thus expensive and tedious to model
explicitly.

Texture reads are relatively expensive. The processing speed of GPUs tends to increase faster than the
increase in memory speeds. This also holds for writing to texture memory, but in 3D rendering reads
generally occur many more times than writes. Because memory accesses potentially limit performance
(graphics) programming should be memory efficient; possibly at the expense of extra processing
cycles.

-32-

2.3 Brand Specific Technologies

The market leaders on video cards want to differentiate their products from the rest. The following
paragraphs focus on a selection of new technologies related to video cards.

2.3.1 Memory Management

ATP’s HyperMemory technology exploits the PCI Express bus to extend the video memory by
utilizing system memory. Because writing to system memory over PCle is fast — unlike over AGP -
this memory expansion is claimed to be without compromise of speed. All computer applications
should benefit from this, especially at high display resolutions.

NVIDIA introduced a similar concept and calls it TurboCache®. The so-called TurboCache Manager
(TCM) allows direct rendering to system memory [26].

2.3.2 Multi-GPU

Both ATI and NVIDIA provide solutions to increase performance and quality of video processing.
Selected products can be coupled, but these particular set-ups do require a special main board. These
boards typically feature two PCle (x16) buses.

ATD’s CrossFire* workload distribution is based on a checkerboard tiling [27]. Conceptually the
screen space is divided in white tiles and black tiles. All white tiles are handled by the first GPU and
all black tiles are handled by the second GPU. This super tiling should result in a consistent and
efficient load balancing of the GPUs.

CrossFire is designed as an open platform and the two GPU models need not be identical, but some
restrictions do apply. For example, when 16-pipe CrossFire Edition card is coupled with a 12-pipe
card, the number of active pipes is limited to 12 on both cards. However, individual clock-speeds
remain unchanged. All applications will benefit from the dual setup. The following ‘CrossFire Ready’
Radeon cards can be combined with a CrossFire Edition card of the same series that holds a special
CO-processor:

e X850 Pro / XT / XT Platinum Edition
e X800 ‘Vanilla’ / Pro / XL / XT / XT Platinum Edition

NVIDIA competes with their scalable link interface (SLI). It requires both GPUs to be of the same

model. In Multi-GPU mode only one monitor is supported. SLI is supported on the following
GeForce PCle cards:

e 6600 ‘Vanilla’ / LE / GT
e 6800 ‘Vanilla’ / LE / GT / Ultra
e 7800 GT / GTX

Both ATT’s and NVIDIA’s implementation differ from the older 3Dfx solution, which was based on a
shared PCI bus. 3Dfx increased performance by interleaving the scan lines of the output. Fill rates
were improved, but geometry processing however was not. Multi-GPU configurations can also be
used for striped or even more generalized processing. Such a custom design need not rely on
CrossFire or SLI technology.

" HyperMemory is a trademark of ATI Technologies Inc.
T TurboCache is a trademark of NVIDIA Corp.

* CrossFire is a trademark of ATI Technologies Inc.
-33-

2.3.3 Video Processing

High Definition video will become available in the near future. New optical disc formats like Blu-ray
and HD-DVD and HD broadcasts will bring improved picture quality. Current PCs need some kind
of hardware acceleration for smooth playback of this media. Video card manufacturers equip their
new products with components to process these high definition streams. These video processors
perform decoding of compressed video streams, often accompanied with image filtering.

ATI has implemented hardware acceleration for the H.264 codec and calls it VideoShader [28].
Currently, only the Radeon X700 and newer cards feature the VideoShader technology.

NVIDIA’s PureVideo accelerates HD video for Microsoft Windows Media files, but it requires a
specific software component. It should improve picture clarity and enables high-quality scaling to any
view port size. Decoding and spatial-temporal de-interlacing is supported by GeForce 6200 and
higher. Hardware accelerated 3:2 or 2:2 pull down is supported as of the GeForce 6600. Certain
Quadro FX cards also support this technology.

24 Summary

Today’s personal computers are well suited for video streaming. Modern video cards with
programmable GPUs enable video specialists to develop sophisticated render engines based on image
processing algorithms that run in real-time.

We selected NVIDIA’s GeForce 7800 GTX graphics card for developing a multiview render engine.
This card was the most powerful consumer device available at that time. The 7800 is a PCI Express
card. An AGP version would also have sufficed, if one existed, because we will primarily stream data
to — and not from - the graphics card for our purpose.

The engine should implement the video processing in terms of vertex and fragment computations of
the GPU. An elegant approach is constructing an engine similar to one for traditional 3D rendering,
although multiview rendering has a few additional requirements. What these requirements are and
our investigation of the related rendering algorithms is presented in the next chapter.

" More information on can be found at http://www.nvidia.com/page/purevideo_support.html
34

http://www.nvidia.com/page/purevideo_support.html

3 Algorithms

This chapter presents our study of rendering algorithms which were considered for the construction
of our render engine. Literature provides a rather large collection of image processing algorithms, but
not all of them are suitable for a GPU implementation target. We first explain the two specific
problems of rendering to a multiview display. This motivates the investigation of certain mapping
algorithms and 3D to 2D projections matrices, which are discussed thereafter. Then the layout of our
lenticular display is explained. We end this chapter on the topic of image filtering, because all
manipulation should preserve the best image quality possible.

3.1 Project Specifics

The problem of rendering RGB and depth (RGBD) to a multiview display involves two tasks. The
first one is to create disparity from depth information. Once we are able to create such a set of
mutually disparate views, we need to merge these views into a single image with the appropriate
layout. This is the second task. The specifics of both these tasks are explained next.

3.1.1 Disparity from Depth per Pixel

To capture a true stereoscopic image one needs to use a set-up of two cameras that are positioned
somewhat apart. Such a set-up is highlighted in figure 15. The resulting camera shots would include
all the visual cues, including occlusion and de-occlusion. Our video sources were shot with a mono-
ocular camera, but do contain depth information.

SCENE SCENE
CAMERA CAMERAS
Center Projection Left Side Projection Right Side Projection

Figure 15. Stereoscopic images of (real-life) scenes can be created by using a dual camera

set-up. The subtle differences of the resulting projections is what multiview rendering
needs to simulate for /V camera positions.

-35.

The traditional rendering pipeline for 3D graphics also uses the notion of a camera position and
viewing direction. The view of a shot is controlled by one or more projection matrices. It determines
what will end up in the final picture. One approach is to create disparity by changing the camera
position, but we need more than that to get disparity depending on depth. This motivates our
research on the subject of 3D to 2D projections together with a collection of object manipulation
algorithms; topics of the upcoming sections.

Programmability of new GPUs allows us to control the rendering process. We could for example
change the camera positions one or more times between output frames. Switching cameras is of little
use when the scene consists of a flat texture mapped surface. To generate disparity the texture
mapped object also needs some manipulation. We could either change the shape of this object or
alter the texture on it. Research showed that the micropolygon-based displacement mapping
algorithm translates quite nicely to shader hardware. So, the object can be manipulated using a vertex
program.

3.1.2 Multiple Views per Frame

The simulation of multiple camera positions via displacement mapping results in a set of raster
images. Our render engine needs to combine these images into the lenticular output format. One
approach is to buffer the nine 720 x 576 RGB frames, and then multiplex the appropriate pixels by
copying them to the back buffer. This is somewhat expensive in terms of video memory, because
only 1920 x 1080 pixels of the pre-processed 9 x 720 x 576 pixels are effectively being used per
output frame.

A more streamlined approach would not compute redundant intermediate values, but given the
architecture of the GPU this is next to impossible. We cannot change the camera position in between
fragments, because fragments are computed in parallel. The actual order of computation is hidden
from the developer. So, we must keep the view creation and multiplexing in separate passes.

3.2 Overview

In order to create disparity we need to manipulate the input frames based on depth. This depth
information typically differs per pixel, although it is spatially correlated for objects in this picture,
still we are in need of an algorithm to process certain details within one frame.

The literature on image processing provides a collection of algorithms on rendering textured surfaces
— visualized in figure 16 — which proves to be of value to us. The following sections explain some of
these rendering algorithms.

" We do not consider temporal coherence because of the computational complexity and associated
performance penalty.
-36-

Manipulate Texture(s) Manipulate Vertices

Displacement

Mapping by
Slicing Micro-Polygon
Ray-Tracing Displacement

Warping Mapping

Fake Bump Relief Mapping

Mapping

Horizon Mapping

v

Bump Mapping

Manipulate Normals

Figure 16. This Venn diagram shows the properties of a few texture mapping related
techniques.

The disparity requirement rules out texture mapping on a flat surface. The derived algorithms shown
in the diagram above do enable some form of sub-frame manipulation. The amount and direction of
feature manipulation is either controlled by parameters such as normal vectors or vertices, or by
directly manipulating the input texture. Some of the techniques combine two or more of these
parameters.

3.3 Basic Algorithms

3.3.1 Texture Mapping

Texture mapping is a basic rendering technique that is used to apply a picture to the surface of a 3D
object. The technique was invented by Edwin Catmull in 1974 [29]. Traditionally texture maps were
used to add realism to surfaces and are still used in computer modeling and animation today.
Sophisticated texturing of 3D objects could mimic real-life materials like marble or wood. Many of

the more complex mapping techniques for rendering are based on texture mapping and can provide
an even greater surface resemblance.

The image in the center of figure 17 is called a texture map. Such a map is coded as a 2D grid and its
elements usually store color values. The texture elements (texels) can represent other data, such as
height, normal vectors or other parameters [30]. The figure shows how texture mapping can be used
to create a globe out of a sphere and a color map of earth.

-37-

0.0)

\

\H‘EWL/
(L

SPHERE EARTH MAP GLOBE

Figure 17. A globe can be rendered by texture mapping a 2D map of earth on a sphere,
modeled in 3D. (0, 0) and (1, 1) are texture coordinates for the earth map.

Texture Coordinates

Texture coordinates, often denoted as(u,v), specify which part of the image ends up where on the
surface of the object. The coordinates of the texture can be used to crop the edges of the texture map.
The texture coordinates of the object define the position of the texture map and also enable texture
tiling, where the same texture is repeated to fill a larger part of the surface.

Texture mapping is typically used to assign different colors to different spots of a certain geometric
object. These objects are constructed from vertices. In case of textured objects each vertex represents
a position in 3D space, but also holds texture coordinates. These texture coordinates specify where
parts of the texture map end up on the object. Texture coordinates often range from (0, 0) to (1, 1)
where (0, 0) corresponds to the upper-left corner of the texture map and (1, 1) to its lower-right
corner. In fact, the texture coordinates pin a texture down at each vertex. When for example two
vertices lie farther apart the texture is stretched between these points. Linear interpolation is often
used to reduce aliasing artifacts, but picture quality could be improved using other types of filtering.
Modern graphics hardware often implements bilinear or trilinear filters on texture lookups.

To use texture mapping on a model each vertex must have a texture coordinate associated. Various
functions exist for texture coordinate generation. These functions determine where the texture is
applied on the surface. In 3D modeling common functions are planar, cubical, cylindrical and
spherical mapping. We are solely interested in a planar mapping of video frames, because the base
surface is a planar grid.

Texture Clamping and Mirroring

Texture maps can be used to tile a surface. A simple example is the tiling of a bathroom floor or a
brick wall in a 3D scene. This is accomplished by repeating the texture coordinates in the range [0, 1]
for both # and ». Most devices allow addressing in a wider range. Addressing textures outside of the
[0, 1] range can have three possible outcomes depending on the texture addressing mode, as
explained by figure 18.

CLAMPING WRAPPING MIRRORING

Figure 18. Common texture addressing modes are clamping, wrapping and mirroring.

-38-

The case where only the border pixel is repeated is called clamping. When the whole texture is
repeated and the orientation is kept we get texture wrapping. In the last case the texture is being
repeated, but the orientation is flipped. This is the mirroring texture addressing mode.

When generating views with disparity, discrepancies can occur at the vertical sides of the video frame.
This is due to the shifted vertices near the border of the texture mapped grid. Clamping gives the best
results, where artifacts are the least noticeable. Another more expensive approach is to prevent
perturbation of vertices near the border of the grid. However, this also means no disparity is created
at the sides of the frame.

Dynamic Textures
Textures can also be applied to a flat surface such as a quad. Textures need not be static. For example
a video sequence can be projected onto the surface by means of a dynamic animated texture.

Figure 19. This texture mapped video frame shows how a fine-meshed triangle grid can be
manipulated based on a suitable depth map. (source: Disney's Tarzan)

Figure 19 shows a texture map with typical texture coordinates applied to a heavily deformed surface.
The camera uses a perspective projection to clarify the result. The underlying geometry is rotated
about the y-axis to offer a more suggestive view. More on 3D to 2D projections is explained in
section 3.5.

The level of visual detail is sometimes referred to as mesostructure [31]. Texture mapping is not
sufficient for simulating mesostructure effects like (self-) shadows, occlusions, silhouettes and
interreflections. Self-shadows are the result of height differences on the surface of the object, which
obstructs the light from illuminating certain surface areas. Occlusion is the situation where more
distant objects are (partially) hidden behind other objects, because visibility depends on the viewing
direction. The silhouette — or contour — describes the shape of an object border when projected in
2D, e.g. the silhouette of a sphere is a circle. Interreflectance determines the amount of light being
transferred between surface points. These points are in fact the texture elements — or texels for short.

In an attempt to simulate depth one could try to applying a texture onto a continuously changing
object. Because the depth map changes each frame, the geometry updates are rather expensive. These
updates cannot be easily captured by general matrix calculations as often used in 3D gaming. The
depth values of the object’s vertices are little related. Resending the complete object to the video card
for each frame is not an option. It turns out to have too high a cost regarding bandwidth.

-39

3.3.2 Normal Mapping

The creation of photo-realistic images largely depends on correct shading of surfaces. Various lighting
models simulate how light bounces off, is absorbed or refracted by (semi-)transparent materials. One
important parameter is the orientation of the surface. These orientation variations can be described
by a height map. This forms the basis for a technique called bump mapping, which is elaborated on
in the next section.

Another technique to describe surface variations without introducing additional polygons is normal
mapping. Each texel of the a so-called normal map stores the surface normal vector explicitly. Figure
20 shows how to encode the normal map for a spike with four sides.

Red

Green Blue NM
Figure 20. Adding this red, green and blue channels result in a normal map, which
encodes the normal vectors of a spike.

NORMAL MAP EXAMPLE

A normal map contains 3-component vectors, rather than the single dimension of a bump mapping
height map. Each vector defines to which direction a particular point is facing. The three
components of these vectors — X, Y, en Z — usually are coded in the three channels of a standard
RGB image. The red channel is used to encode the X direction. 100% red indicates a vector facing to
the right and 0% red indicates a vector facing left. A 50% value in the red channel means the X-
component of the vector is 0. The Y-component is similarly coded in the green channel, where 100%
green represents a vector facing upward. The blue channel defines the Z-direction of the normal
vector, where 50% blue indicates a Z-component of 0 and the vector is pointing straight out of the
surface when the value is 100% blue [32]. Blue-values below 50% never occur because this would
represent back faces.

Normal maps are commonly used in 3D graphics for realistic lighting of objects. We do not use
lighting as part of our current render engine, but we considered using normal maps to reduce image
artifacts. More on this concept is found in the section 4.5.

3.3.3 Bump Mapping

This basic technique, once introduced by Jim Blinn in 1978, is often used to add realism by shading
the surface of (3D) rendered objects [33]. The existing surface normals are perturbed based on height
values stored in a bump map. This subsequent illumination calculation uses the altered normals
instead of the original surface normals that were derived from the geometry. The amount of the
perturbation is specified by the bump map. Bump maps normally are grey-scale images. Its texel
values represent height. Blinn proposed the following formula to approximate the perturbed normal

3

n:

E,(nxP)-F (nxF)

]

The perturbed normal is 7’ based on surface normal 7. P, and P, are the partial derivatives of the
surface in the # and v directions respectively. F, and F, are the gradients of the bump map. Other
approaches exist for bump mapping. An example of this rendering technique is given in figure 21.

n'=n+

Figure 21. The bump~ and texture mapped sphere mimics a golf ball. The bump map
looks like a white texture with evenly distributed black circles. The smooth gray edges of
these circles result in convincing dents.

There also exists a ‘fake bump mapping’ technique that does not rely on surface normals. This 2D’
bump mapping alters the texel indices directly. The technique assumes that all surface normals point
towards the viewer, which - in general - does not hold.

Bump mapping can mimic small surface details, but depends on a lighting model. This limitation
becomes evident when the 3D scene contains only environmental lighting. In this case the bumps are
invisible and the surface still appears smooth; just like no bump mapping has been applied.

The algorithm neglects occlusion/de-occlusion and does not support silhouettes and interreflections
either. The former problem becomes most noticeable near the sides of bump mapped objects and
when the bump texture represents large height differences. In the example above the circular contour
of the golf ball hints that the small dents are actually non-existent regarding the underlying geometry.
This limitation is by design. Also, bump mapping depends on at least one directional light source,
which renders it useless for our problem, because we do not use virtual light sources in our scene.
The illumination already resides in each video frame and need not be added.

3.4 Compound Algorithms

3.4.1 Relief Mapping

Relief mapping is an extension of texture mapping where the surface elements of polygons can be
displaced orthogonally [34]. It uses a simple 1D forward transform of the input texture, followed by
a standard texture mapping.

The amount of displacement is defined by the heights stored in the relief map. The normal map is
used for the shading features of this technique.

The algorithm computes the intersection point of a ray in the viewing direction with a height-field
surface in tangent space, as shown in figure 22. It starts with a linear search to prevent from missing
the first intersection. The subsequent binary search steps converge to the point of intersection more
quickly. Finally, the algorithm determines whether this surface point is lit or in shade.

4]-

Linear Search

Depth

Binary Search

Figure 22. The height-field is intersected by a line or ray of light. The point of intersection
can be computed by a series of linear search steps following by a binary search to converge
more quickly. Oliveira successfully implemented this algorithm on a GPU.

In addition, the normal vectors are manipulated similar to the bump mapping technique. This results
in shading - not only displacement - of the objects surface.

3.4.2 Horizon Mapping

Horizon mapping is an extension to bump mapping which includes self-shadowing of the surface. It
was introduced by Max in 1988 [35]. Later Sloan and Cohen came up with a hardware
implementation [36] as well did Heidrich [37]. Horizon mapping does not support occlusion and
de-occlusion.

3.4.3 Displacement Mapping

The term displacement mapping represents a collection of rendering techniques. These techniques
typically add more detail to polygon-based surface and support occlusion/de-occlusion and
silhouettes. Several scientists each proposed a different method for displacement mapping, four of
which are being discussed next. The details of bi-directional texture functions (BTFs) and view-
dependent displacement mapping (VDM) are not discussed.

Micropolygons

Conventional displacement mapping, as defined by Cook in 1984, works along mesh normal vectors
[38]. These normals specify the direction along which the surfaces can be altered. The so-called
displacement map defines the amount of perturbation. This method was based on polygonal (mesh)
subdivision, which is not suitable for programmable graphics hardware. This subdividing is often
called tessellation. The REYES rendering architecture was based on a static tessellation of the base
geometry into micropolygons [39]. Later a few adaptive tessellation techniques were proposed.
Tessellation is not yet fully supported in graphics hardware and software implementations will not
provide a real-time solution. These subdivision algorithms are inherently expensive.

Slicing
Dietrich came up with surface-aligned slices which handled occlusions correctly as long as the
viewing angle was not extraordinary large [40]. Kautz extended this idea and his algorithm is based

on an RGBa texture called a displacement texture [41]. This interpretation is rather similar to our
RGBD frames.

Ray-Tracing

Displacement mapped polygons can also be ray-traced. Patterson proposed an algorithm which uses
an inverse mapping of the rays, hence the name inverse displacement mapping [42]. His paper shows
how displacement rendering can be computed for quadratic surfaces, like that of spheres and
cylinders. The ray-surface intersection is calculated in parametric space instead of Euclidean space.
This means there is no need for an explicit 3D construction of the geometry.

The recursive algorithm, illustrated in figure 23, works as follows. For each ray two bounding volumes
are defined. The top and bottom of these volumes represent the maximal displacement of the
object’s surface. Each iteration these volumes are shrunk and when its coordinates, intersecting the
search path, lie within a single texel this process ends. It works like the clamping of the surface with a
binary search along the ray through H, M and D.

Figure 23. Ray-intersection with bounding volumes

In case of inverse mapping a planar surface, the projected rays in texture space are straight lines.
Patterson’s approach is of particular interest for curved surfaces, but can be generalized [43]. Given
that our graphics pipeline already constructs a planar object in 3D object-space we do not benefit
from a parameterized representation.

Smits’ ray-tracing algorithm is based on triangle mesh geometry with vertex normals [44].
Conceptually, the normal vectors define a space partitioning into cells. We refer to figure 24. When
the grid cell is entered by a ray displaced microtriangles are generated on the fly based on Barycentric
coordinates [45]. The triangle pushing is along the surface normal. If the triangle is hit the
intersection point can be determined, otherwise the traversal continues at the next cell. Only one
tessellated cell lives per ray traversal. An explicit representation of the full geometry is prevented. This
makes the method memory efficient.

-43-

Displaced microtriangles

Base triangle

Figure 24. Fach triangle defines a cell volume. Smit proposed a method that iteratively
divides a triangle in four displaced microtriangles.

In case the base mesh is planar the ray tracing reduces to normal height field tracing. Musgrave
showed how to render a terrain by grid tracing a surface described by a fractal noise function [46].

Warping

Displacement mapping has also been based on image warping [47]. Warping can be implemented as
a forward mapping or a backward mapping. The former loops over all input pixels of the original
image. The latter loops over all output pixels and searches for the corresponding pixels in the input
image. This search process is rather expensive. Most warping techniques are implemented in software.
One known warping algorithm for displacement mapping made it into hardware [48].

More on Displacement Mapping
Displacement mapping was adapted to support self-shadows by making it view-dependent [49]. The
pixel-based VDM algorithm has been successfully implemented on programmable graphics hardware.

Displacement mapping stems from 3D rendering. When modeling solid objects, the surface normals
can be generated automatically by the modeling software. However, common video input does not
contain this normal information. We could try to generate a normal map from the depth map or
develop an algorithm which does not depend on normals.

Research on Ray-Tracing Depth

Ray-tracing needs to sample the depth map for determining the intersection of the ray and the
surface of the depth map. To guarantee the correct point of intersection every texel needs to be read
from the sampler, which is rather expensive. The number of samples limits the maximum amount of
disparity. This problem is caused by the requirement to sample the full range of neighboring pixels
from the depth map per output (e.g. 10 to its left and 10 to its right). More information is needed to
reduce this number of texture reads. One solution is to generate a distance map, which allows for a
converging ray-trace instead of fixed steps (per pixel).

GPU Gems 2 describes a ray-tracing technique with uses precomputed information in order to render
the displacement map from an arbitrary viewing direction. However it assumes a static depth map,
whereas our wish is to support depth maps changing each video frame. Can the rather expensive
precomputed be processed in real-time? This is not yet certain. The computation of the so-called
Euclidean distance is a well-studied problem [50, 51], but inherently expensive. Both exact and

-44.

approximating algorithms exist as well as serial and parallel implementations, but the latter do not
maps well onto a GPU per se.

For the implementation of the ray-tracing algorithm for displacement mapping we choose the sample
a fixed number of neighboring pixels (i.e. 10). More research on efficiently precomputed distance
maps was postponed. Many publications on this topic exist, but we found little to no practical
solutions, at least for GPU-compatible implementations. We currently know of only one
displacement mapping example which precomputed the distance map on a CPU and it is not
sufficient for real-time performance.

3.4.4 Summary
Up to here, we have mentioned four distinct algorithms that can alter the appearance of rendered
objects. Table 9 summarizes the features of each rendering technique.

Fine-scale Visual Effect
Self-Shadows Occlusion Silhouettes
Bump Mapping
Horizon Mapping .
Displacement Mapping . .
Relief Mapping . . .

Table 9. This summary table lists the supported visual features for each of the discussed
mapping algorithms.

Bump mapping supports shading, but not shadowing, occlusion or silhouettes. Occlusion support is
of particular interest to us, thus bump mapping is no suitable solution for out problem. Horizon
mapping adds self-shadowing. Given that these shadows already reside in the video frames of the
input stream, we gain nothing.

Displacement mapping does support occlusion. This technique can also render silhouettes of objects
in more detail. Because our video frame will be projected on to a single quad, which borders are
aligned with the view port, this last feature is of little importance.

As mentioned previously, displacement mapping can be implemented using a variety of methods.
Most of these methods lack support for self-shadowing. An exception to this is view-dependent
displacement mapping by Wang et al. Again, we don’t specifically need shadowing. Shadows are
already in the video frames. We could experiment with placing virtual light sources in our 3D scene
to change shadowing, but we decided not to do so as part of this project.

Another rendering algorithm that supports occlusion is relief mapping. Relief mapping is partially
based on a displacement mapping model. It also uses a form of bump mapping for the shading of
objects. We consider displacement mapping to be the most suitable algorithm for multiple disparate
views. Other algorithms either lack support for occlusion or have unneeded features, which
undoubtedly require more processing.

3.5 Geometry Manipulation and Projections

3.5.1 World, View and Projection

Because our view generating algorithm is designed around the 3D graphics pipeline, a conversion step
is needed to get a 2D image out of a 3D scene. Mathematician use a projection function for this kind
of conversion. Such a projection can be described by one or more multiplication matrices. In case of

-45.

3D computer graphics a set of 4 X 4 matrices is used. The OpenGL graphics API specifies two
matrices, being a world and a projection matrix. DirectX specifies an additional view matrix. The
following paragraphs show the effect of certain matrix elements.

3.5.2 Standard Matrices

Solid objects in a virtual space are commonly modeled based on coordinates in a coordinate system.
Some coordinate system to have perpendicular axis of the same scale. These are called homogeneous
space and have the nice property that models do not get deformed when rotated. Other examples of
spaces are affine space and projective space. In an affine space, it is possible to fix a point and
coordinate axis such that every point in the space can be represented as an #-tuple of its coordinates

[52]. Solid geometry is naturally modeled in Euclidean space (R"), which is a type of homogeneous
space.

Homogeneous coordinates allow for convenient manipulation of virtual objects in 3D space. One
can change the position, orientation and size of these objects by multiplication of the appropriate
coordinates. Mathematicians call these operations translation, rotation and scaling respectively. The
following paragraphs describe the structure of the multiplication matrices for these standard
operations.

Translate

Repositioning objects in 3D space can be accomplished by multiplying by a 4 x 4 matrix. For
translation by 3-vector v the matrix has the form:

1 0 0 v,
T = 01 0 v
001 v,
0 0 0 1

The translation matrix 7 shifts the coordinates of an object or scene over vy, vy and v, where o, is the
component along the c-axis of vector V.

Rotate

The rotation of objects is easier to comprehend when restricting the rotation to either x-, y- or z-axis
of the (local) coordinate system. Using a sequence of 7, 7, and r, rotational matrices is equally
powerful as its product. Rotations in homogenous space can always be decomposed into a set of
subsequent rotations around the x-, y- of z-axis. The following matrices define these rotations:

1 0 0 0

R.(60) = 0 C?S(@) —sin(@) 0 ’
0 sin(@d) cos(d) O
0 0 0 1
cos(d) 0 sin(@) O
0 1 0 0

R,(O)=| . ,
Y —sin(@) 0 cos(d) 0
0 0 0 1

cos(d) —sin(d) O
R(0) = smé@) coi)(ﬁ) (1)
0

0 0

- o O O

where 6 defines the amount of rotation in radians.

Scale
The scaling of objects with respect to the origin can be done by multiplying the objects’ coordinates
with the following matrix:

s, 0 0 0

G |0 s, 000
0 0 s, 0
0 0 0 1

where s, s, and s, are the scaling factors for non-uniform scaling. s, = s, = s, results in a uniform
scaling.

3.5.3 Taxonomy of Projections

The general mathematical definition of projections is that these functions take 7-dimensional data
and map this to value of a dimension strictly lower than #. Computer scientists use this concept to
display 3D scenes on a 2D screen. There exists more than one mapping for projecting 3D data onto a
plane. Figure 25 gives an overview of the taxonomy.

Planar Geometry
Projections
Parallel
Orthographic Oblique @
Top (plan)

Figure 25. This taxonomy of projections shows the relation of common 3D to 2D
conversions.

For parallel projections the direction of projection (DOP) is the same for all points [53]. When the
DOP is perpendicular to a view plane, we can get a top, front or side view. These are all orthographic
views. Cases where the DOP is not perpendicular to the view plane are called oblique, which means

-47-

having an angle. Examples of these oblique projections are Cavalier (o = 45°) and Cabinet (o =
63,4°), visualized in figure 26.

0=63,4° 0=A45° /

V/ 4/ A c - [45 [45

PROJECTORS FRONT CABINET CAVALIER

Figure 26. Changing the direction of the projectors results is three different parallel
projections. The z-axis is drawn at a 45° angle for both Cabinet and Cavalier projections;
this 45° drawing angle is not related to projector’s angle o.

All three (axonometric) axes of an isometric projection are 120°. When only two axonometric axes
are equal a dimetric results, otherwise we called the axonometric view trimetric.

Orthographic projections are true to scale but incorrect in terms of perspective. This means the size
of objects appears correct, but does not vary with depth.

Unlike parallel projections, perspective projections do not have the center of projection (COP) at
infinity. Points are mapped onto the view plane along non-parallel ‘projectors’, emanating from the
COP. A perspective projection can have one, two or three vanishing points [54]. In real life there are
infinitely many vanishing points, but using two-point perspective suggests nearly all the others. Next,
the math behind these two projection categories will be described in more detail.

3.5.4 Perspective Projection

One class of projections is called the perspective projection. This class is not affine, because parallel
lines are not preserved and rotation about x or y will distort the shape of objects. This paragraph will
describe the specific properties and calculus of perspective projections.

The most prominent characteristic of the perspective projection is that it takes distance into account.
This type of projection can be modeled with a knotted pyramid as depicted in figure 27. The
projection plane sits in between the virtual objects and the camera position. This plane is
perpendicular to the viewing direction. Objects that are more distant from the projection plane will
appear smaller than objects that are positioned close to this plane. This concept is similar to what a
camera would capture in real life.

-48-

z

Figure 277. This is the viewing frustum for a perspective projection along the z-axis.

When using a perspective projection the virtual objects are being scaled as part of the mapping
operation. This is caused by the division by distance. The viewing direction is along the w-axis by
design. This explains the division by w in the projection matrix.

The transformation of coordinates (x, y, z, w) into projected — and perspective corrected - (x, y, W)
can be accomplished by matrix multiplication. x and y determine the position on the 2D plane. The
last component, factor w, sometimes marks the case that these coordinates are pre-transformed and
thus specified in screen space. Otherwise w defines the correct scaling. Next, the generic perspective
matrix is stated.

I 0o 0 O

o1 0 o0
perspective 0 0 0 >

0 0 I/d 0

where d is the perspective correcting divisor.

3.5.5 Orthogonal Projection

Orthogonal projections neglect object to camera distance. This means no scaling occurs as part of
this operation. All distance relations are respected and the transformation is affine. The projection
can be visualized with a box-shaped volume, like shown in figure 28.

-49.

~

z

Figure 28. This shape represents the viewing frustum for an orthographic projection.

All coordinates inside this volume or frustum are mapped onto the side, which is perpendicular to
the viewing direction and closest to the virtual camera. In fact, orthogonal projections can be
characterized by the following. The result of the orthogonal projection only depends on the viewing
direction, not the position of the camera. This direction is defined by a single three-component
vector.

The multiplication matrix is solely determined by the viewing vector. In addition it is possible to
define clipping planes. Only objects inside the bounded volume will be transformed. An exemplary
matrix for the orthogonal projection is:

M

orthogonal =

S o O =
S O = O
S O O O
— o O O

This matrix drops the z-component to project x and y on a plane.

3.5.6 Oblique Projection

An oblique projection is constructed using the following multiplication matrix.

0 —tan(d) O
1 —tan(¢) O
0 0 0
0 0 1

M =

oblique

b

S O O =

where 0 and @ define the angles between the viewing direction and the projection plane; along x and
y respectively.

3.6 Lenticular Rendering

3.6.1 Lenticular Layout

The target display exposes a set of nine views. The surface of the screen contains small lenses [55,
56]. Without this top layer one would see all nine views at once. The lenses, however, spread light in
a specific direction. A light bundle of nine views is often called a ‘viewing cone’ due to its shape — as
is depicted in figure 30. The end-user is supposed to take position where two subsequent views within
a single viewing cone are projected on to the person’s left and right retina respectively. In this
particular situation, it is possible to create depth vision by the exposure of two disparate views.

Lens

Viewing Cone
(9 slots)

LENS SHEET

Figure 29. The viewing cone describes how the lenses spread the light horizontally with
respect to the display device.

To create suitable viewing cones the lenses are aligned over the pixels in a specific way. Nine
subpixels are grouped in a small patch, which can be regarded as a new screen element. These
elements play the same role as the pixels of an ordinary display device. The alignment of the lenses
can be explained by the tiling of the patches. To create a seamless tiling every subsequent patch is
placed down two rows and one column to the right. As shown in figure 30, this offsetting results in
the exact slant used for the lenses on top of these patches.

A

Figure 30. This diagram sketches the layout of the patches on a nine-view lenticular
display. The slant (angle) of the lenses causes a smooth transition among the views.
51-

The colored LCD pixels underneath the lenticular sheet are aligned vertically as usual. This is because
of technical and practical reasons. Current prototypes of lenticular displays are based on existing HD
LCD panels.

3.6.2 Mapping Function

Shader hardware is output based, which means we must return a color value for each output pixel.
Specific to our problem is that the R, G and B-value for these pixels depend on view numbers. We
could compute the view for each subpixel on the fly or alternatively fetch these static values from a
texture, which would trade memory for computation. In both cases we need a mapping function
which takes a pixel’s UV-coordinate and returns the view number for each subpixel:

f:UxV = Ny xNg xNg.

Nx represents the view number in the range [0, 8] for the subpixel of color X. Per-subpixel formulae
for our lenticular layout are:

frWU,V)=Ux6-V)mod9
foU,V)=(Ux6+2-V)mod9
foU,V)=Ux6+4-V)mod9

This mapping exactly describes the tiling depicted in figure 30.

3.7 Image Filtering

Creating a set of views with disparity from 2D video and depth information involves local stretching
and compression of the input frames. These operations resample texture data and possibly introduce
artifacts. Scaling artifacts, but also occlusion and de-occlusion artifacts can be reduced by using
appropriate image filtering.

Image scaling is often accomplished through convolution of image samples with a single kernel. For
example, we can perform scaling using a bilinear or bicubic kernel [57], but more complex methods
exist. A kernel defines the set of samples being considered and the amount each sample contributes
to the resulting pixel. Kernels can be regarded as a mathematical description of an image filter. The
sampler component of the texture unit in a GPU already implements the description for bilinear
filtering. Custom filters can also be written for GPUs.

3.7.1 Native GPU Filtering

The texture samplers of current GPUs only support a limited set of image filters in hardware. The
following paragraph describes the structure of modern texture samplers as is stated in Microsoft’s
DirectX SDK. The subsequent paragraphs elaborate on the concepts of basic sampling techniques.

Minify, Magnify & MIP

Programmable GPUs are required to distinguish three sampler states. These sampler states define the
type of filtering being used when fetching texture data. The states are texture minify (MINFILTER);
magnify (MAGFILTER) and so-called mip mapping (MIPFILTER). Each state can be associated with a
specific type of filtering or no filtering at all. The latter technique is called nearest-point sampling.
The native filtering types are described thereafter.

Nearest-Point Sampling

Nearest-point sampling — or nearest neighbor sampling as it is often called - is the least expensive
means for fetching data from a texture map. This sampling algorithm interpolates the texture by
convolving it with a box function. A convolution is the operation of a mathematical function on a
signal and is often used to describe filters; also in digital imaging.

In mathematics, the convolution theorem states that under suitable conditions the Fourier transform
of a convolution is the point-wise product of Fourier transforms. In other words, convolution in one
domain (here: space domain) equals point-wise multiplication in the other domain (here: frequency
domain). Versions of the convolution theorem are true for various Fourier-related transforms [58].

Operationally the system selects a single texel from the map based on the specified U- and V-
coordinate. The sampled texel coordinate is guaranteed to be the closest to (U, V). Because of
possible ties in the selection at texel boundaries problems arise.

b_“-." ey

iy T 4
N e +
4 - O '
—
P s

NEAREST POINT UP SCALING

Figure 31. Nearest point upscaling will result in aliasing.

Like figure 31 shows, scaling textures using nearest-point sampling will introduce aliasing artifacts,
which are perceived as ‘blockiness’. This sampling technique is the least performing scaling algorithm
regarding picture quality. It should only be considered for speed.

Linear Texture Filtering

Linear interpolation algorithms are typified by a triangular convolution function. The one-
dimensional sampling of the linear function weighs the two nearest points. Bilinear texture filtering
applies the concept of linear interpolation to both horizontal and vertical dimension of a texture.
This technique first determines the texel closest to (U, V). Then it computes the weighted average
from a total of four texels based on three interpolations, as figure 32 explains.

<«d>

So Si b ¢ y 4

2

BILINEAR FILTERING SCHEMATICS RESULT

Figure 32. Bilinear filtering takes four samples for each output value and gives a smooth
result.

-53-

The following formulae specify the computation of a bilinear texture lookup.

I, =S, x(1-d)+S,xd,
I, =8, x(-d,)+8,xd,
B=I,x(1-d,)+1,xd,

The first equation linearly interpolates the samples S, and S; based on distance 4. The second
equation does the same for S, and S;. The final step interpolates the previous results [, and /; based
on dy.

Bilinear filtering reduces aliasing, but could still produce jagged edges. It has a relatively low overhead
and should have no impact on performance, whereas modern graphics hardware is designed to
support at least this type of filtering. It is suitable for modest scaling of textures applied to surfaces
that are perpendicular to the viewing direction. Angled surfaces need anisotropic filtering, which is
discussed next.

Anisotropic Filtering

When a texture is applied to a surface that has an angle with respect to the plane of the screen certain
distortion occurs. The more such an unfiltered surface is sloped into distance the fuzzier it will look.
The artifacts are caused by the depth depended scaling of the texture map (in case of perspective
projections).

A single output pixel could combine information from a number of horizontally and possibly
different number of vertically spaced texels. The problem requires a non-square filtering pattern —
hence the name anisotropic - that differs along the x- and y-axis. Figure 33 shows a pattern, both with
and without anisotropic filtering.

s,

e

.
——

NEAREST POINT ANISOTROPIC

Figure 33. This nearest point sampling versus anisotropic filtering comparison shows
differences near the center of the image. The image was constructed by applying a
checkerboard pattern to the inside of a tube. It demonstrates the quality of both
magnifying and minifying the texture.

This type of filtering is computationally expensive. Classical anisotropic filtering uses sixteen samples,
called taps in the filter jargon, for each output pixel. These samples are preferably already trilinear
(which takes four samples from each mip level) or at least bilinear filtered. The often adaptive
implementations and resulting image quality differs per hardware manufacturer [59].

.54.

When the anisotropic filtering is activated via ATDs driver, as it usually is, the impact is less
important as the tri-linear between mip-map is only processed on the level 1 texture with Direct3D.
The others mip levels remains in bilinear filtered [60]. This means that anisotropic filtering is only
enabled in specific areas of the output. Our video processing does not need anisotropic filtering,
because our base geometry is orientated perpendicular to the viewing direction and manipulation is
only modest. More so, we decided not to rely on anisotropic filtering given uncertainties as the one
state above.

Mip Mapping

Mip mapping is a technique that stores multiple downscaled and filtered replicas of a high-resolution
texture in a single space. MIP stands for multum in parvo. The phrase is Latin and translates to “many
things in a small space”. An exemplary mip map is shown in figure 34. Using these pre-filtered
textures lowers processing time and reduces moiré artifacts.

MIP MAPPED TEXTURE NEAREST POINT MIP MAPPING

Figure 34. A mip map contains one or more pre-filtered versions of the base texture and
this gives better results than nearest point sampling does when downscaling. The
differences are just about visible near the center of these two examples.

3.7.2 Custom Filtering

Bicubic Filtering
Bicubic image filtering uses sixteen samples per output pixel [61]. These samples are formatted in a 4
x 4 cell grid, as figure 35 shows.

«—d—>

«2»

O O O O

BICUBIC FILTERING SCHEMATICS

Figure 35. The concept of bicubic filtering is to combine 16 samples; weighted by
distances d, and d,.

-55-

The bicubic filtering algorithm computes a weighted average from a cubic function in both
horizontal and vertical direction. Here, ‘bi’ means ‘in two directions’. Bicubic interpolation can be
described as follows:

3 3
2.2 ax

i=0 j=0

For the sake of simplicity we first explain one-dimensional (1D) cubic interpolation. There are two
common methods for averaging the samples based on cubic interpolation. The standard approach
uses a cubic B-spline interpolation, the other approach is a more general cubic interpolation
function, which allows for better high-frequency performance and this can be controlled by a free
constant. The B-spline is in its turn a generalization of the Bézier curve. These curves are constructed
by Bernstein polynomials. We will not describe this construction here. A cubic B-spline can be
written as:

f(x)z%x3—x2+% x:(0,1)

f(x):—éx3 +x° —2x+§ x:(1,2)

A B-spline is piece-wise continuous by definition. In this case it is defined over the interval (-2, 2)
and is symmetrical around x = 0. For any offset the sum of the sampled interpolation function
points is equal to 1 [62]. The sampled points are computed by fd), fd— 1), 1 + d) and A2 — d)

where dis the offset from the nearest pixel. Figure 36 is an example of cubic B-spline sampling.

Lt
0.8
0.6
0.0 |

0.2 F

-2 -1.5 -1 -0.5 0.5 1 1.5 2

Figure 36. This plot shows four cubic B-splines which sum to 1.

The B-spline approach for bicubic filtering uses this four point sampling in both horizontal and
vertical dimension. In the two-dimensional case offset 4 is split up in 4, and 4.

Cubic B-splines are a special type of cubic splines. The cubic polynomials for the general case have
eight unknown coefficients. For a smooth averaging of the samples we require a symmetrical and
continuous interpolation function. This lowers the number of undefined - free to choose -
coefficients. We also require f0) = 1, 1) = 0 and f2) = 0. This set of constraints defines the cubic
spline up to a constant (4). Mathematically, the generic cubic spline interpolating function can be
written as:

f(xX)=(a+2)x> —(a+3)x>+1 x:(0,])
f(x)=ax’ —5ax* +8ax—4a x:(1,2)

: 3 |
Common choices for the constant are a =—-1, a = 3 and a = 5 Figure 37 shows a graph for
1
a=-—.
2

0.8 —

0.2

0.2 L

Figure 37. This plot shows four general cubic splines using lobe constant a = ——.

Either approach for bicubic filtering is computationally more expensive than bilinear filtering, but it
usually leads to shaper image stretches.

Multi-tap Filtering

Modern pixel shader hardware does not limit us to traditional filtering techniques such as bilinear
filtering. As long as the memory bandwidth suffices, we could write a custom bicubic filter or even a
multi-tap filter. The downside is that the graphics hardware does require an output based
implementation and multiple taps will probably require a lot of texture fetches.

Design Notes

The creation of disparate views uses subtle image manipulation, but only in horizontal direction. The
amount of shifting in the color map is based on information from the depth map. Both sources must
be sampled and resized, but only by a small scaling factor (e.g. < 1.1). This means that picture quality
will not benefit much from techniques such as mip mapping. Bilinear and bicubic filtering however
will improve the quality of the output, especially near borders (in the depth map). See figure 38 for a
comparison of these two filter techniques.

-57-

i
‘\

AR
LR
AN
Y
N

7z
757

4
177
77

77

BILINEAR BICUBIC

Figure 38. This bilinear versus bicubic filtering comparison shows that the latter method
results in a somewhat shaper image. This is visible especially near the border.

Native bilinear filtering or a custom bicubic filtering partially wastes processing power, because
vertical scaling will not occur or could be prevented by design. From a performance point of view a
multi-tap filter that only samples in horizontal direction would be a better solution. This is only
appropriate in the case there is room left in the pixel shader pipes for this filtering computation.

We can design a suitable multi-tap filter. What is regarded as suitable depends on the purpose of this
filter and also the input characteristics. We assume only modest scaling in horizontal dimension is
needed. We do not know the actual contents of the input video frames a priori. The frequency
profile of images is generally not known in advance and must be treated as being random. Also, the
characteristics of the accompanying depth information is yet unknown. All this makes it hard to
design a good multi-tap filter.

3.8 Summary

Micropolygon displacement mapping is a suitable candidate for implementation on a GPU, because
texture lookup and vertex manipulation belong to the set of shader operation. Also, modern GPUs
are capable of handling a large number of polygons. The concept of displaced vertices and projecting
the constructed geometry orthogonally will result in our disparate views. A separate shader program is
designed to merge these views into a single lenticular output.

We refrained from using anisotropic filtering, because horizontal disparity only requires scaling in
that single dimension. We chose for native bilinear filtering for performance reasons.

-58-

4 Concepts and Design

4.1 Introduction

This section describes a series of concepts that led to the current design of the rendering engine.
Understanding the programmable features of a GPU need not result in a good design with respect to
performance. We will discuss a few intuitive approaches and why they do not guarantee high frame
rates. After this introduction the details of the candidate engine are explored.

4.1.1 Performance Considerations
As previously mentioned, the two key aspects of the engine is to create a set views with disparity and
merge these conform the lenticular layout. Because of the real-time performance requirement we
must use all the processing power available in the GPU. It is difficult to see what the penalties are for
certain design decisions beforehand. We performed research to find out which shader operations are
inherently more expensive than others.

We designed an engine that is similar to a standard 3D rendering engine - just like the ones used in
computer games. This reduces the chance of abusing the hardware in a way that will probably slow
performance. It is best to use a single effect with as little render passes as possible. An effect — or
shader — consists of a vertex program and a fragment program, both which run on the GPU. Effects
are assigned to 3D objects and define its appearance, e.g. color, reflectivity, transparency, etc. More
information can be found in chapter 2.

4.1.2 Multiple Views per Frame

Traditional 3D game engines only render a single view at a time. Other important observations are
that only a few scene parameters change between frames, which are for example the camera position
and viewing direction and only a handful (counting polygons) of dynamic objects. The view is
described by two or three multiplication matrices. Moving or deforming objects require geometry
updates, which are fairly expensive regarding upload bandwidth to the graphics card. We can say that
the biggest part of the scene data is static, including textures and most of the geometry. This notion
has influenced our design to a large extent. The fastest way is to deform objects in video memory by
using a vertex program.

We need to solve the problem of generating a set of nine views instead of only one per frame.
Normally each render pass is only allowed to write its output to a single 2D buffer. This would mean

that preparing all of the views would cost eight passes, assuming the center view is the unmodified
RGB frame.

The introduction of multiple render targets (MTRs) loosened this single buffer restriction. The
current GPUs only support up to four additional buffers. Exploiting this buffer space has its
drawbacks. Render targets must be of certain texture format and are all required of having the same
dimensions. Also, we only have four of them, where we logically need eight. This is another problem
of rendering multiple views. The MRT-feature was designed to enable writing to multiple buffers
within a single pass, which also means a single point of view.

So far we have described one of the main problems, when using hardware designed for accelerating

standard 3D rendering for multiview rendering. Besides the problem of multiple views, we must also
manipulate the contents to create disparity.

-59-

4.1.3 Creating Disparity with Occlusions

Chapter 2 showed that image manipulation can be the result of direct texture manipulation,
geometry modification or even a combination of both. Texture mapping is a basic but also fast
operation on modern graphics hardware, which we wish to exploit. As of today, relief mapping and a
form of displacement mapping have been successfully implemented on GPUs. Two side notes apply.
First, relief mapping supports lighting; a feature we do not need. Not exploiting this feature, the
technique boils down to a type of displacement mapping. And secondly, acceptable frame rates for
ray-traced displacement mapping only hold in case of a static depth map. Again, this is not a suitable
choice for multiview rendering of video sequences.

We decided to design our render engine around micropolygon displacement mapping. A modern
GPU can process millions of textured triangles per second. A 2D grid in 3D space will serve as a
drawing canvas. The grid itself consists of a single triangle strip. The vertices of this grid not only
specify the position in 3D space, but also the texture coordinates needed for texture mapping.

Changing texture coordinates would only result in stretching and compression of local image
features. This is because the rasterizer stage of the GPU linearly interpolates this vertex data. This
technique proves to be a basic solution to the disparity problem, where pixels can be shifted
horizontally. The downside is that features never become occluded. Figure 39 shows how an
orthogonal projection of a 3D shape can result in horizontally shifted pixels.

Checkerboard

Left Orthogonal Projection

Depth Map

Figure 39. The horizontal shifting of a checkerboard pattern is the result of manipulating
the underlying geometry by the amount specified in the depth map.

Instead of manipulating the texture coordinates, we manipulate the z-value for each vertex depending
on a value stored in the depth map. The shape, resulting from displacing coordinates of the triangle
grid along the z-axis, represents the depth of the real-life scene. A texture map is applied to the
surface of this new shape. Using a specially constructed orthogonal projection we can create
occlusions. We have not solved the de-occlusion problem yet.

One important property is that the resulting amount of disparity after projection is linearly related to
the amount of shifting of vertices along the z-axis. We will exploit this property by rendering
multiple views simultaneously, simulating the camera position shifted either to the left or to the right
side. An example of a manipulated triangle grid is given in figure 40. Details are described in section
4.1.4.

Figure 40. The z-values for each vertex of the initially planar grid are changed according
to the depth map of dodecaeder.

Problems typically arise at sharp edges in the depth map. This is why this map needs to be low-pass
filtered. Linear filtering can be applied natively by a GPU when downscaling a texture map, as
depicted in figure 41. We choose this method because of speed, not quality.

Depth Map Downscaled Version

Figure 41. A depth map can be downscaled using GPU’s native bilinear filtering.

We still found round-off errors. These errors become apparent when the grid is more course grain.
When choosing a finer grid (e.g. 180 x 144 cells) this problem is hardly noticeable, except at sharp
transition in depth. We neglect these artifacts, focusing on performance. The section 4.5 proposes a
method for detecting approximations error that could possibly be extended to correct these artifacts.

4.1.4 Texture Atlases

We need at least two render targets to store all eight views and also two passes to compute its
contents. We have chosen to first group four views in one render target. They represent the left hand
side views. The other four views will be written to a second render target. The center view already
exists as an 720 X 576 input texture. The views in each target are ordered in a 2 X 2 tiling as is shown
in the deconstruction in figure 42.

-61-

720 x 576 1440 x 1152

Tile 4x 0 1

— > <
Uncompressed Grid Texture Atlas

Figure 42. The texture atlas is constructed from four tiles. The in-between quads solve the
problem of incompatible texture coordinates.

To prevent down sampling we chose to double the size of the two render targets. Each target has to
have equal dimensions. In our case this is 2 x 720 x 576 = 1140 x 1152. The two render targets cost
about 13 MB of video memory. This is within budget.

4.1.5 Merging Multiple Views

After the computation of the two atlas passes, all nine views reside in video memory; either as the
input texture or in a render target. The final pass samples these inputs and constructs a lenticular
output picture by interleaving (multiplexing) subpixels. This process is explained by figure 43.

1440 x 1152 720 x 576 1440 x 1152
0 1 4 8 7
2 3 6 5

Left Center Right
R G B

OUTPUT PIXEL

Figure 43. This example shows how the views 0, 2 and 4 are sampled when assigning the
color to a certain output pixel.

No vertex manipulation is necessary in this pass so a quad suffices as geometry. Again texture
coordinates define the position of the texture on the geometry surface. The fragment program first
determines the corresponding view numbers for each of the three (RGB) subpixels using a texture
fetch from the lenticular map. The view numbers could also be computed on-the-fly, but this is in
fact just a memory versus computation tradeoff. The memory solution turns out to have a slightly
better performance. The lenticular texture map holds integer values for each subpixel and these
numbers correspond one-on-one with the values as define in the section 3.6.1.

The view number determines from which input texture a color needs to be fetched. In case of a non-
center view, branching statements handle the texture addressing within the atlas. This shader

-62-

construction depends on relatively expensive if-statements. It guarantees exactly 3 color + 1 lenticular
= 4 texture lookups per fragment, so memory bandwidth usage is minimal.

4.2 Detailed Design

This section describes the design decisions for both the ray-tracing and micropolygon based
rendering algorithms. Our micropolygon based shader needs a specific geometry construction in
order to work. The ray-tracing solution does not depend on heavy vertex processing. We also discuss
the use of textures and its filtering in this section.

4.2.1 Geometry Construction

The quality of image manipulation based on perturbing the vertices largely depends on the number
of vertices defining the texture mapped surface. A more fine grain grid could describe a depth map
more precisely. We want to process as many triangles as possible for our micropolygon solution.

Because of this wish, it is important to choose an efficient construction of the geometry, which allows
for quick drawing. The cheapest method for drawing a 3D primitive is providing a single triangle
strip. Two common drawing methods are explained in figure 44 and 45.

v2

v6 v1 v3
v2 v4
v4
v1
v5
v3 v5 V6
v7
TRIANGLE STRIP TRIANGLE FAN
Figure 44. Vertices v1 though v7 define a Figure 45. Vertices v1 though v6 define a

triangle strip. triangle fan.

Specifying all three coordinates for each triangle would introduce a lot of overhead. When
constructing a closed shape or object, adjacent triangles have identical coordinates. Using triangle
strips or triangle fans exploit this property. Instead of fully specifying three vertices for each
subsequent triangle only one vertex is defined. The process of drawing a triangle strip connects this
fresh vertex with the last two vertices in the list. Drawing a triangle fan connects each fresh vertex with
the last vertex and the first one in the list.

The vertices are stored in a vertex buffer, which is explicitly uploaded to the graphics board in
accelerated scenarios. This also enables the re-use of geometry data without burdening the graphics
bus.

As figure 46 shows, our triangle grid can be build from a single strip. Each grid cell will consist of two
triangles. We must either choose to traverse the rectangular space row-first or column-first. There is no
particular motivation on which approach is better. We have chosen a row-first approach; similar to
reading the lines of an article.

-63-

To construct a M x N grid, where M is the number of columns and N the number of rows, we specify
N rows . The rows are traversed in a snake-like fashion as the example shows. Odd numbered rows a
build left to right, even numbered rows right to left. This will ‘make all ends meet’.

M=4

) e e e s

TRIANGLE GRID CORRESPONDING VERTICES

Figure 46. A triangle grid is constructed row after row.

To fill a rectangular area with 4 x N cells we opt to use twice that many triangles. Graphics APIs only
draw triangles when their normal faces towards the camera by default. So-called backface culling can
be disabled or the vertices of each triangle need to be specified in clock-wise order. We chose the
latter solution, which is commonly accepted among 3D graphics specialists.

Without countermeasures every other row of the grid would get culled, because the triangle normals
point away from the camera. This problem is usually fixed by adding a degenerated triangle at the end
of each row. This location is marked with a small red cross in figure shown above. Such a triangle is
easily created by repeating this vertex. Note that even with a triangle strip all vertices appear in the
buffer twice, except for those on the first or last row.

To describe an M x N grid we have (M + 1) x (NN + 1) unique coordinates. A triangle strip-
compatible list of vertices is longer. Each of the N rows requires (M + 1) x 2 vertices and also one
vertex for the degenerate triangle, except for the last row. So, the vertex buffer needs to hold (M + 1)
x 2+ 1) x N -1 vertices. A quad results for M= N=1.

Our geometry for the texture atlas adds another column to the grid right in the middle. Such an
insertion only works for an even number of columns. Our texture atlases will be of at least 2 x 2 cells
in order to support all four texture tiles. The size of the vertex buffer can be calculated by substituting
M+ 1 for M. This inserts a column in the grid. The width of this column will be zero, but it allows us
to correct the horizontal texture coordinates. Row insertion is not necessary because the long sides of
the rows are not connected — although adjacent — and no undesired interpolation of this vertex data
will occur. The atlas buffer will hold (M + 2) x 2 + 1) x N - 1 vertices.

4.2.2 Texture Requirements

Near the start of this project it was assumed that video sources would contain 24-bits RGB data and 8-
bits depth information. This motivates why the render engine is designed around these two data
formats. Later it became clear, that the actual source files would be using YUV as color space with
4:2:2 subsampling. The technically correct name for the color space is YC,C,, which stems from PAL
TV sets. The 4:2:2 subsampling means that chrominance data is horizontally multiplexed. From now
on this document will treat YC,C, and YUV as being the same.

The YUV format encodes color using luma (Y) and chrominance (both U and V). YUV data can be
converted to RGB and this can be implemented on a GPU as well. It was not our primary concern so
it was decided to use CPU code. There exist multiple formulas for doing this conversion, some of
which are not exact, but this has historical reasons. The conversion formula that was used can be
found in appendix F.

" An alternative grid construction called an N-patch is not yet fully supported in the graphics driver.

Once the color data is converted to RGB it can be stored in textures, which reside either in system
memory, video memory or both. These textures must be of at least the same precision. The
dimensions of the source textures need to be 720 x 576.

Color and depth is stored in separate textures. This has a small performance penalty, but makes it
easier to visualize and debug the rendering process. The depth map could be stored in the alpha
channel of a single 32-bits RGBA texture in the future.

4.2.3 Filtering Goals

Our implementation of a custom bicubic image filter in the pixel shader allows control over the
previously mentioned filter ‘constant’ (). It is coded as a variable, which can be set in the range [-1, -
1/2]. Algorithmically this mostly influences the shape of the second lobe of the cubic function. It can
be used to fine-tune the sharpness of resulting image.

In the current render engine there is little to no room left in the pixel shader to do expensive custom
filtering. The custom bilinear and bicubic filter were implemented as a standalone shader and were
used to create some exemplary pictures for this document. We hope to incorporate a controllable
cubic image filter in the future.

4.3 Ray-Tracing Shader

Patterson’s and Smits’ displacement algorithms inspired us to research ray-tracing of depth maps.
Patterson showed how curved surfaces can be displaced along its normals. This complex method is
expensive, or at least the parametric space is not easily mapped onto programmable GPUs. More so
our base surface is flat, not curved. It reduces the problem to ray-surface intersection. A problem also
tackled by Smits for 3D geometry.

We investigated tracing the depth map. Computing the point of intersection requires a lot of texture
fetches. This is an inefficient approach and results in poor performance. Even the use of a so-called
distance map does not solve this problem. The computation of such a distance map itself is already
expensive. One GPU-compatible implementation uses a large 3D texture. Each volume element
(voxel) of this texture stores the distance to the nearest point on the surface of the corresponding
depth map. It would take megabytes of video memory to store the distance map of a single depth
map. Donnelly and Du Toit implemented a demo which computes the distance map on the CPU
[63]. The GPU is then used to render a displaced surface in real-time. The viewing direction can be
controlled interactively. Sadly, the construction of the distance map takes a few second.

Christen concluded that directly ray-tracing a 3D scene is feasible for a limited set of objects, but did
run into driver problems with the OpenGL implementation [64]. Also all objects should fit in video
memory to get acceptable performance. Tracing a scene consisting of more than 60,000 polygons in a
20 x 20 x 20 space took over a second on a GeForce 6800 Ultra. We have only one object — our grid
— with over one million polygons. Another problem is that we wish near 720 X 576 x 256 resolution,
where 256 denotes the depth resolution.

Purcell offers two methods for ray tracing on a GPU [65]. One is a multi-pass algorithm being
bandwidth limited; the other one is computationally limited. We observe that iterations must be kept
low at all times. Because we trace a depth map for creating horizontal disparity we could potentially
save computations. We constructed a model which computes the intersection point of a ray with the
depth map for each output pixel. The #,2-coordinate of this hit is used for looking up the
corresponding texel from the RGB-texture. The shader is shown in figure 48.

RGB —p

Depth —p M€ Lo oviEWS

Pass

ad —

Figure 47. Ray-tracing displacement mapping uses the color (RGB) texture and depth map
as well as a quad and renders nine views.

Our single pass shader needs an RGB-frame, depth map and quad on its input. The vertex program
only passes on the 3D and texture coordinates of the four vertices. Almost all the work is done in the
pixel shader.

The pixel shader hardware enables execution of a fragment program P, which computes
<Vx,y :O£x<W/\OSy<H:P.x.y>

in parallel. The constants W and H define the width respectively height of the output frame. Program
P could for example do a texture fetch based on the coordinates x and y. The abstract program would
read:

P.x.y = tex2 D(colorSampler, x, y)

in pseudo-code. tex2D represents a shader function that fetches a value from a sampler at position
(x); in this case from the sampler named colorSampler.

— X

4N

7 X tan(a)

(697

Figure 48. Ray-tracing the depth map for the output pixel at (xp) computes the
intersection point of the arrow and the surface described by this depth map. The direction
is defined by angle a. The algorithm requires 7 iterations.

Our ray-tracer must also assign a single color value for each pixel. We create disparity by offsetting the
x-coordinate depending on depth. To determine this offset, or displacement, we need to trace the
depth map in horizontal direction. Figure 49 shows how to trace a ray, shot from a pixel located at

(x,y) and an angle of a, towards the depth map. It shows the slice of the depth map from above. For
each output we cast a ray along the appropriate viewing direction towards the depth map. As part of
the iteration we make small steps along this ray (arrow) and determine whether we already passed the
surface of the depth map. If so, we have a hit and can determine the x-coordinate. The y-coordinate is
already known because of the scanline we are processing. We use this 2D texture coordinate to look-
up the color from the RGB-texture and assign it to the output.

The ray being traced hits the surface of the depth map after 7 steps sideways. These steps are exactly
the size of a pixel, because we do not want to undersample or over sample the depth map. So, we
construct a for-loop with index 7 using the predicate

ixtan(a) < Z—-D.(x+1i).y

to decide whether the ray has hit the surface of the depth map. Constant Z defines the upper bound
along the z-axis (i.e. 256). The value of x + 7 turns out to be a good candidate for a displaced fetch
from the color map.

Ray tracing a depth map is not any different from tracing a slice in a height field. Here the slices are
scan lines. In fact we are finding the intersection point of a line with a 2D height function, which is
sampled at equidistant positions; 720 at most.

The number of steps to end the recursion depends on several factors. One is the horizontal
resolution, but also the resolution along the z-axis and the viewing angle matter. The horizontal
resolution is 720 pixels and an 8-bit value is used to describe the pixel’s depth. The maximum
simulated viewing angle was not specified for this project. It was advised to try to support up to 30
pixels of horizontal disparity, but 30 fetches already exceeds the bandwidth budget.

The problem is the number of texture fetches. Each iteration step of the tracing algorithm needs to
read a value from the depth map. This limits our shader performance to the video memory
bandwidth. High-end programmable GPUs have up to 35 GB/s of total bandwidth, which is roughly
1 GB per rendered frame. It does not mean we can fetch 1 megapixel textures over one thousand
times. Research showed we could fetch about 10 texels per output pixel, where we would expect
higher numbers considering the total video memory bandwidth. Perhaps this is due a disadvantageous
texture cache strategy, or ill performing scheduling of fragment processing.

4.4 Micropolygon Based Shader

The micropolygon algorithm for displacement mapping turns out to be the most in line with the
architecture of programmable GPUs. The algorithm relies on a heavily tessellated geometry. New
hardware can handle lots of triangles. Small features of the geometry can then be manipulated. This
task 1s suitable for the vertex shader. Thereafter the color texture is applied, which can be done by the
pixel shader very fast. Figure 47 shows the design of our micropolygon based shader.

View 0 View |
RGB
(View 4) | Pass | >
View 2 View 3
LEFT ATLAS
Depth Pass3 — 9VIEWS
View 8 View 7
ri ! Pass 2 >
View 6 View 5
RIGHT ATLAS T
ad

Figure 49. Micropolygon based displacement mapping uses three passes to compute and
merge nine views.

This shader uses three render passes to generate nine views. Each pass always implements both a
vertex program and a fragment program. The former code is executed on the vertex shader; the latter
on the pixel shader.

Pass 1 needs the RGB-frame, corresponding depth map and unaltered geometry. The pass creates four
views for the left-hand side and writes the output to a render target. Pass 2 does the same for the right-
handed views. This output is stored in the second render target. Both passes depend on a fine-grain
grid of typically 180 x 144 cells. The hardware should be capable of processing

(2 triangle/cell x 180 x 144 cells x atlases/frame + 2 triangles/quad) x 25 fps = 2.6M triangles/s.

Pass 3 combines the original RGB-frame and the eight pre-processed views from the render targets in a
lenticular formatted image. A quad consisting of two triangles suffices for this mapping.

Although GPUs allow rendering to multiple targets from a single pass, we will not. Pass 1 and 2
require a different viewing direction - one from the left and one from the right — and thus the
projection matrices differ. Matrices cannot be changed within a render pass.

4.5 Improved Displacement Shader

The following design allows detection of the approximation error, resulting from the grid fitting of the
depth map. Low-pass filtering the depth map removed aliasing problems and provided better results.
We even found that the under sampling of the depth map is not that big of a problem in case of real-
life footage. The estimated depth from such sequences tends to have less sharp variations in depth.

We succeeded in writing a real-time shader that superimposes a distinct color on the areas with a large
approximation error. This is a good starting point for reducing the remaining artifacts from our
micropolygon based shader. We would like to attempt ray-tracing the limited areas that have a large
error.

" The results of different grid configurations can be found in section 6.1.

The schema in figure 50 shows the structure of the multi-pass algorithm which can detect grid
artifacts. Pass 3 and 6 could implement some kind of texture correction on the problem areas.

€ €
RGB
(View 4) Pass | Pass 2
€ €
A
° v
Depth View 0 | View |
Pass 3 >
View 2 | View 3
4 \ 4
LEFT ATLAS
APPROX. ERRORS NORMALS d Pass7 ~— 9 VIEWS
View 8 | View 7
Pass 6 >
View 6 | View 5
° RIGHT ATLAS
\ 4
€ €
Pass 4 Pass 5

€ €

Figure 50. Texture corrected displacement mapping requires additional passes (1 & 4) to

compute the size of the approximation error (g) for each output. Passes 2 and 5 compute
normal maps that could help the final correction passes.

Pass 1 and 4 compute the error between the per-pixel depth approximated by the triangle grid and the
actual depth, as specified by the depth map. We let these errors determine the amount of correction
that must be applied in one of the following passes. The sign of the error is also required. This is why
we construct per-pixel normal vectors, which are computed by pass 2 and 5. The size and direction of
these vectors can be used to visualize and potentially correct artifacts, which are the result of
imperfect grid fitting. However, a solution based on this schema has not yet been found. The texture
corrections applied in one place still introduce artifacts in other places. We did succeed in visualizing
the fitting errors of displacement mapping.

5 Implementation

The development of a render engine for driving a display device involves a selection of software tools.
We would need the usual development equipment like an editor, compiler and debugging aids.
Because we were to design a graphics processing application for a programmable GPU we also needed
to decide on appropriate graphics and shader tools. This chapter motivates our choices.

5.1 Software Selection

The primary driver for the software selection was the exploitation of new programmable graphics
hardware for PCs. We looked for hardware and software combinations that would support new
technologies for rendering during the first months of the project. Not all programmable GPUs were
suitable, mostly because they lacked some shading features.

New hardware features can only be used when they are exposed by some software interface. Nowadays
the operating system prevents almost all direct access to hardware for security and stability reasons.
Software interfaces offer a set of functions which are implemented in the corresponding software
layer. The layered structure is what programmers call a stack. Figure 51 is an example of a stack for
graphics processing [66].

Application
(mviewer)

Graphics API
(DirectX 9)

Graphics Driver
(ForceWare Release 78)

Graphics Hardware
(GeForce 7800 GTX)

Figure 51. The graphics stack shows the relation of the demo application, graphics API,
device driver and video hardware.

At the bottom we have a hardware device, such as a sound card, wireless adapter or in our case a video
card. On top of that sits the device driver. It is part of the machines operating system (OS) and
enables the use of this piece of equipment. This software level separates hardware specifics from the
rest of the OS. Another level of the software stack implements generic functionality which is available
to the application developer, for example DirectX or OpenGL. Application software often builds onto
a multitude of APIs. Our concern is a suitable graphics stack. The application, which is on the top
level, interfaces with the end-user. In a windowed environment it exposes a graphical user interface
(GUI) and allows interaction.

We investigated programmable features of GPUs from three mayor manufacturers, being ATI,
NVIDIA and Matrox. We used the graphics drivers from NVIDIA (ForceWare release 78.01), which
should work identical on third party boards. The drivers are more current and offer then most
functionality, especially related to shader programming.

Back in June 2005 only NVIDIA’s 7800 model and ATI’s X600 and higher models supported the
newest shader model (3.0) in both DirectX and OpenGL. This shader model requires the use of either
OpenGL 2.0 or DirectX 9. OpenGL exposes the shader hardware features via the extensions
ARB vertex program and ARBifragmentiprogram*. There also exists non—approved (Often
vendor specific) extensions, but these would introduce uncertainties to the project.

DirectX offered the features of the new shader model in one clear interface and offered them a bit
earlier than OpenGL did. Also, a lot of programming examples were based on Microsoft’s API. The
logical choice was to go for a DirectX 9 capable card. We selected a GeForce 7800 board, so we could
also revert to an OpenGL-based implementation.

It turned out that NVIDIA’s tools were very useful for shader development. We decided to construct
our vertex and fragment programs in FX Composer and would develop a C++ DirectX application in
Visual Studio, which could demonstrate these shaders. FX Composer enables fast prototyping of
shaders. Visual Studio supports shader debugging since its 2002 .NET release.

5.2 Shader Models

Today, already three generations of shader models exist. The fourth generation will be incorporated in
DirectX 10, which will be part of Microsoft’s next operating system, Windows Vista. Each shader
model (SM) defines feature requirements and specifies a set of instructions for graphics hardware. It
defines what the vertex- and fragment processors on the video card must be capable of. The
requirement details on register counts and other features can be found in appendix D. This
specification is the merit of Microsoft and can be consulted at Microsoft’s Developers Network"
(MSDN). Next, we summarize how the shader models evolved.

SM 1.0 features a basic instruction set to manipulate register values. Loading, adding, subtracting,
copying and comparison operations are available. The set also enables logarithmic calculus - in both
full (32-bit) and partial (16-bit) precision — and allows typical graphics arithmetic like dot product,
matrix multiplication and lighting. All instructions have an associated cost expressed in a number of
slots. The min, max and mad (multiply-and-add) instructions all use one slot.

The 1.X pixel shader instruction set enables the same basic operational codes (opcodes) for arithmetic.
These are add, dp3, dp4, 1rp, mad, mov, mul and sub. The initial model for the fragment processor
included access to texture memory. This is reflected in various texture instructions. The most
important texture fragment operations are loading (text1d) and killing (texki11), the latter which
causes the pixel to be excluded from rendering.

SM 2.0 adds boolean and integer registers and accompanying instructions defb and defi. Basic flow
control instructions were included in the (vertex shader) set. The assembly codes for selection blocks
are if bool, else and end if. Loop constructions have 1oop followed by end loop or use the
repetition codes rep and endrep. The cross product can by calculated using crs and two values
can be linearly interpolated by 1rp. Both operations cost two VS slots. sng determines the sign of
register value and a vector is normalized by nrm; both operations at the cost of three slots. x to the
power of y — where x and y are two registers — is calculated by pow and the sine and cosine are
retrieved by sincos. The result of the latter instruction is returned in radians and costs eight slots.
abs, call, callnz, ret and mova are also new to SM 2.0.

Pixel shader version 2.0 adds the same matrix multiplication as supported in vertex programs to the
pixel programs. This also holds for the abs, exp, 10g, max, min, nrm, pow, rcp, rsqand sincos
instructions. New fragment shader specific operations are frc, which returns component fractions,

" ARB stands for Architecture Review Board; the consortium that approves OpenGL extensions.
T The Microsoft Developers Network web site is located at http://msdn.microsoft.com/

http://msdn.microsoft.com/

and two texture operations, tex1ldb and texldp. The last two codes are used for biased respectively
projected loading from a texture. dc1 was added to declare the newly available pixel shader registers,
optionally in partial precision (pp). dcl samplerType is used to declare 2D, cube or volume
samplers (denoted by s#).

SM 2.X extended the vertex shader instruction set with break and a few predicate operations. These
are setp to set the predicate register, breakp and new versions of the conditional codes callnz and
if. PS 2.X added breaking, call-return and conditional codes to the instruction set. Conditions,
boolean expression and predicates can be used to select the appropriate execution path. The new
boolean and integer constant registers are defined by defb and defi, analogous to VS programming.
Version 2.X also added repetition and marker labels. Up to 16 labels were supported, but can only be
used directly after a ret code. dsx and dsy extract the change in x- and y-direction (gradient) of the
render target.

SM 3.0 added the instruction tex1dl to the vertex shader set. It is used to load a texture with user-
adjustable level of detail (LOD). An important improvement is that the texture fetch instructions
could also be used in vertex programs. This feature is called vertex texture fetching. As of SM 3.0 the
vertex shaders are no longer limited to geometry and constants for its input. Mathematical functions
can also use texture data for geometry manipulation in a way similar to what fragment code can do for
setting a pixel’s color. Finally, the 3.0 pixel shader adds the 1oop...endloop construction and also
features the tex1d1 LOD texture lookup instruction.

We need shader model 3.0 to implement our render engine, because the engine requires vertex texture
fetches (VTFs). Also compiling fragment program for view multiplexing results in over 64 arithmetic
shader instructions, which requires at least the same shader model on NVIDIA cards.

5.3 Shader Languages
In modern graphics programming, one hardly ever needs to code in assembly, as discussed in the
previous section. The exception is general purpose programming of the GPU; often referred to as

GPGPU.

The use of so-called high level shader languages eases the task of coding and reduces the number of
errors. Today’s shader program compilers are actually quite good, in the sense that assembly coding
by hand shortens the programs only by a handful of instructions. This could well be caused by the
fact that the size of the instruction set is still well under 80 operation codes. This optimization could
be important, however the time spent on developing the shader in assembly is much higher.

Various shading languages exist today. These are Microsoft’s HLSL, NVIDIA’s Cg and for example
Sh, which extends C++. Another GPU programming languages are the Brook stream language, which
is developed at the Stanford University [67], and GLSL, which is managed by the Architecture Review
Board. We will shortly discuss three high level shading languages. These high level languages all offer
useful functions for geometry transformation and lighting. This includes normalized 2, 3 and 4-
component vector functions such as reflection, refraction, clamping and clipping. Other features are
4 x 4 matrix multiplication, trigonometry and texture lookup.

531 (g

Cg stands for C for Graphics [68]. The specification for this high-level shading language was
developed by NVIDIA. Cg is an open standard for shader programming. NVIDIA encourages others
to write their own compilers for this language, but none have decided to do so until this date.

Cg is designed to work with both DirectX and OpenGL. DirectX 8 is support, but the primary
focus is on version 9. The Cg compiler produces shader assembly code for various GPU

architectures and platforms, compatible with both OpenGL and Direct3D applications. The target
platform profiles are selected the compiler switches of cgc.exe. This compiler is included in the
Cg Toolkit, which is available for the Windows, Linux and Mac OS X platform.

NVIDIA also provides a set of development tools for content creation (i.e. FX Composer) and
profiling (i.e. NVPerfHUD). FX Composer is suitable for shader development and prototyping. It
uses Microsoft’s effect compiler and not the before mentioned shader compiler.

532 GLSL

The shading language for OpenGL has a more restricted set of data types; half~ and double precision
types are absent in this specification [69]. Matrices in GLSL must be of equal dimensions. Effect files
for this shading languages are not compiled using a standalone tool. The actual conversion to GPU
assembly is supposed to be built into the graphics hardware drivers and thus the responsibility of the
independent hardware vendors. This welcomes innovation through flexibility, but could also result in
stability issues. This design decision also means that hardware profiles — like HLSL and Cg have - do
not exist.

Developers are expected to select appropriate OpenGL extensions themselves. These extensions come
in both vendor specific and non-vendor specific (ARB) flavors. The latter are recognized by the
extension’s name _ARB infix. GPU programmers can start using shaders by including the object
extensions GL_ARB shader objects, GL ARB vertex shader and GL ARB fragment shader.
The common programmable features reside in the accompanying GL ARB vertex program and
GL_ARB fragment program extensions. Both shader and program pairs can be compiled to GPU
assembly by the graphics driver. Additional functionality is offered through vendor specific
extensions such as ATI fragment shader and NV fragment program’.

Features implemented by these extensions became available somewhat later than its DirectX
counterparts. Only the newest card of NVIDIA supported OpenGL version 2.0 back then, as well as a
few cards from ATI. This is also the reason for choosing DirectX. Our current implementation could
be ported to OpenGL. The shading concepts remain the same.

533 HLSL

By many regarded as the most mature and stable solution for GPU programming, HLSL is tightly
integrated into DirectX and thus limited to the Microsoft’s Windows platform. HLSL code closely
resembles ANSI C code but adds specific functions and compound data types, just like Cg and GLSL
do. HLSL is not an open standard.

Shader programs are compiled offline using fxc.exe or at runtime. Microsoft also provides an effect
editor as part of their DirectX 9 SDK. This editor only handles one shader at a time and does not
provide preview windows for textures and render targets. It also lacks color coding, which makes it less
attractive for shader development. We conclude this section with table 10, which provides an
overview of three high-level shading languages.

" The OpenGL Extension Registry is published at http://oss.sgi.com/projects/ogl-sample/registry/.

http://oss.sgi.com/projects/ogl-sample/registry/

Shader Language Cg GLSL HLSL
Vendor NVIDIA ARB Microsoft
Supported Platforms Linux, OS X, Windows Linux, OS X, Windows Windows
Compilation & Linking DirectX, OpenGL Hardware driver DirectX

Scalars

bool, int, half, float,
double

bool, int, float

bool, int, half, float,
double

Vectors 24 2-4 2-4

Matrices M xN N x N M x N

Samplers 1D, 2D, 3D, cube map 1D, 2D, 3D, cube map, 1D, 2D, 3D, cube map

shadow map

Combine User-defined No ? Yes

Functions

Intellectual Property No, must compile into No, must compile into Partially, through

Protection exe exe assembly shader stream

format

Table 10. This table summarizes the properties of three high-level shading languages;
deduced from Lovesey's technical report [70].

5.4 General Framework

Figure 52 shows the global structure of our demonstrator application. The main class is located at the
top. All customary classes are depicted in yellow. The interfaces are shown in blue and its components
in green. The arrows represent (the direction of) function calls.

CApplication

\

CFrame «¢——— CSource

CMatrix

v v v v X Ry v v
Device Matrix M Effect Texture Surface CPFSPD Font
Buffer
DIRECTX API PFSPD WIN API

Figure 52. This application overview depicts both the dependencies of the internal classes
and its external interfaces.

A top-level class (not depicted) implements the window and menu creation, message loop and
instances a single CApplication object. Window messages result in function calls to this application
object.

The capplication instance not only holds the main state variables but also controls the primary
DirectX device and the additional graphics resource for effects, textures, surfaces and a font object for
overlay text. The application class also manages the instances of the matrix, grid and source objects.
These customary classes use the interfaces of DirectX matrices, vertex buffers and the CPESPD library.
The font interface is part of the common Windows APIL. CApplication also implements the render
loop (Render()) and the frame preparation (PrepareFrame ()), which updates the appropriate
textures in video memory.

During runtime three instances of cMatrix live. They store the current values for the world, view and
projection transform.

The application also uses three vertex buffers. The buffers define the geometry for a texture quad, a
textured M x N grid and texture atlas. The structures are programmatically created by the cGrid class,
not loaded from a file.

A single csource object is responsible for loading video data from disk. The actual disk operations
are implemented in the CPESPD library, which was written in ANSI C. CSource serves as a wrapper
between the PESPD interface and the main program. Both color and depth instances of CFrame are
used for intermediate video frame data; one frame to store Y, one for U/V and another one for D.
The color data is provided in YUV format and needs to be converted to RGB before it is used by our
render engine. This color space conversion is implemented as CPU code. Otherwise it would have
tainted our shader code. This design change could perhaps be incorporated in the future. The next
sections explain our implementation in more detail.

5.4.1 Naming conventions

The name of each class is prefixed with a capital letter ‘C’. The C++ source code for each of these
object classes resides in a header (.h) and implementation file (.c). The filenames of effect files all
have the . fx extension. All filenames for this project’s source are in lowercase.

Variables are named conform the ‘Systems Hungarian’ notation. It is a coding convention for
commenting source code. This includes the naming of variables by their data type and its scope.
Table 11 provides a limited overview.

Data type Prefix
character ch
dword dw
handle h

int n
pointer p
word w
Scope Prefix
class member m_
global g

Table 11. This table was compiled from Simonyi's article [71].

This writing style certainly has some objections when it come to finding program bugs as Spolsky
pointed out [72], but can make code more readable, mostly because Microsoft’s reference
documentation uses this convention. We considered it to be an acceptable choice as long as the style
is applied consistently. Using the so-called ‘Apps Hungarian’ convention would have been better.

5.4.2 Imtialization

After the creation of the program window a few additional initialization steps are carried out. The
Direct3D object is created. This step also checks whether the correct DirectX runtime library exists on
the client machine. Next, the actual hardware capabilities of the graphics boards are determined. This
step checks for the availability of hardware vertex processing. A render device is created. Render
devices of debug builds support the NVPerfHUD profiling tool (on the primary display). Multi-
monitor support is available in non-profiling situations; either in windowed or full screen mode.

During initialization the appropriate font size parameter is determined and the CFont object is
created. A timer object is set for the computation of the FPS display. The custom vertex format is
declared, which is described in the section named ‘Input Streams’. The initialization is ended by
spawning a list of resource initialization procedures. These are InitD3D(), InitVB(),
TnitTextures () and InitEffects ().

Resource Creation
InitD3D() applies suitable value for the world, view and projection matrices and sets the render
states of the graphics pipe: lighting, z-buffering and culling is disabled for the fixed pipe. The shading

mode is set to flat shading instead of the Gouraud default. This is appropriate because lighting is
already disabled.

Our shader demo depends on three geometric models being a quad, a grid and the model for our
texture atlas. TnitVB () creates each of these three models in a vertex buffer and uploads them into
video memory.

For texture resource creation the requirements are checked against the devices’ capabilities. E.g. the
engine depends on multiple render targets and needs support non-power-of-2 textures. The
InitTextures () procedure is ended by setting sampler states and configuring the texture stage. The
fixed function sampler is set for texture clamping and linear filtering. The texture stage will use texture
mapping without any fogging or blending.

InitEffects () loads and compiles the corresponding effect file for the current shader mode. Each
shader uses a specific set of parameters such as the amount of depth, depth offset, but also one or
input textures. These parameters are linked to application variables directly after successful
compilation. In case of an error this procedure shows a warning message and causes a fallback to fixed
function rendering.

Render Capabilities and the Adapter Menu

The top-level menu of mviewer.exe always contains the items File, View, Play, Window and Help.
Another item - the Adapter menu - is inserted at runtime. This menu is context sensitive. The entries
in the adapter menu depend on the capabilities of the graphics card. The menu lists the video
adapters and available display resolutions. Rendering to a lenticular display normally requires
rendering at full resolution (i.e. 1600 x 1200 or 1920 x 1080). The DetectRenderCaps () procedure
determines the set of features offered by the graphics hardware and modifies access to the shader
modes accordingly. The adapter menu is initially built by procedure InsertadapterMenu (). After
the initialization steps the program enters its main loop.

5.4.3 Main Loop

The main loop contains the message loop and the render loop. The former handles the window
messages. Window messages result from the user’s keyboard, mouse events and more. The render loop
implements all DirectX related drawing.

5.4.4 Input Streams

Apart from the uploaded vertex and fragment program, the graphics board has two types of input
streams. One kind is geometry. It includes the quad, grid and atlas structures that are loaded into
video memory during initialization. The other input stream is the video data; both for color and
depth. These are concurrent streams. Before a GPU can interpret the data it receives these information
streams need to be defined on the application side. A DirectX implementation is highlighted next.
This code will instruct associate the data streams with certain memory registers, e.g. vertex data will
end up in the input registers of the vertex shader.

The application header file (application.h) defines our vertex format in two different methods.
The older method uses a C-style structure.

struct CUSTOMVERTEX

{
FLOAT x, vy, z;//The untransformed position of the vertex

FLOAT u, v;//The (2D) texture coordinate
}i

The other method uses the Flexible Vertex Format (FVF) and allows customization of how this vertex
data 1s streamed to the graphics hardware.

#define D3DFVF_CUSTOMVERTEX (D3DFVF_XYZ | D3DFVF TEX1)
The vertex declaration is as follows:

const D3DVERTEXELEMENT9 declaration[] =

{
{0, 0, D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE POSITION, 0},
{0, 12, D3DDECLTYPE FLOAT2, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE TEXCOORD, 0},
D3DDECL_END ()

}i

This declaration announces that each vertex element in stream 0 starts with 12 bytes to specify a
position in 3D space and that the next 8 bytes define a 2D texture coordinate for this vertex.

The flow configuration of geometry data is now prepared, but we also need to direct two video
streams. We read our YUV and depth frames in two separate calls. The current CPESPD library does
not offer a function that combines the two. This also has a somewhat negative effect on the
performance when reading from disk, where seek times are relatively high. When the data is fetched
the YUV frame is converted to a DirectX RGB surface using the computation described in appendix
E. The depth information is copied to an L8 texture, which represents 8-bit luma. Then, both DirectX
surfaces are uploaded to video memory. This operation overwrites the existing textures for color and

depth.

5.4.5 Shader Loading and Interfacing

In DirectX effect files can be loaded and compiled at run-time using D3DXCompileShaderFromFile.
We choose this method over pre-compilation, because it allows one to edit the shader text file while
running the render application. Saving changes and reselecting the effect immediately shows the
impact of the revision. Also, shader compilation is fast, especially compared to application
compilation. We designed a strict interface between our effect files and the application. This enables

the sharing of effect parameters controlled by the application. The following variable names are
defined:

e g ColorMap

e g DepthMap

e g LenticularMap
e g Effect

e g Offset

The first three variables provide access to the color, depth and lenticular map. g Effect and

g Offset allow control over the amount of effect and an offset by the user. For our premicre
multiview shader, g Effect controls the amount of disparity. g Offset determines the origin on
the z-axis. The semantics of these variables could also be chosen differently. Some of the featured
shaders do not have any controllable parameters, e.g. the texture mapping shader.

5.4.6 Lenticular Mapping
The next simplified code snippet shows the implementation for filling the lenticular texture map
with the appropriate view numbers.

D3DLOCKED_RECT rect;

m pLenticular->LockRect(0, &rect, NULL, D3DLOCK DISCARD);
UINT *pfBits = (UINT *) rect.pBits;

UINT view = 0;

int row = 0;

for(UINT i = 0; i < (m _nTargetHeight * m nTargetWidth); i++)
{

if(i % m nTargetWidth == 0 && 1 != 0)
{

row++;

view = 0;
}
//RGB-bits
UINT R = ((view * 2) + 9000 - row) % 9;
view++;
UINT G = ((view * 2) + 9000 - row) % 9;
view++;
UINT B = ((view * 2) + 9000 - row) % 9;
view++;
pfBits[i] = (R << 16) + (G << 8) + B;

}
m pLenticular->UnlockRect(0);

Before writing to the texture buffer the memory must be locked. A for-loop sequentially fills the
buffer pixel after pixel and row after row. A single index variable (i) suffices because consecutive rows
are mapped adjacently in memory. The constant 9000 represents a big enough variable belonging to
the class of X modulo 9 = 0. This number must be larger than the maximum height of the lenticular
texture, which is usually 1080 or 1200 pixels. Otherwise the intermediate value could become
negative, which is illegal for unsigned integers (UINT). Two bit-shift-left operators (<<) put the values
for the red and green subpixel into place. Finally, the texture is unlocked again.

5.4.7 Render Loop

Each execution of the render loop computes a full output frame. It is always wise to keep this routine
streamlined. We moved all the possible state changes out of the render loop the keep overhead to a
minimum. ‘Aggressive’ debugging (warning level 4) still shows a few unnecessary state changes.
Further optimization is possible using the DirectX EffectStateManager interface. It allows custom
control over the state changes of the graphics hardware such as render states (SetRenderState) and
texture stages (SetTextureStageState). Performance gains will be low as the number of state
changes we monitored is less than 20. Currently, state switching is not a bottleneck.

6 Results

We succeeded in designing and implementing a demonstrator for the nine-view display device on a
GPU. The demonstrator provides a 3D impression from RGBD video. This chapter presents the
results for the micropolygon displacement shader, which is the image processing engine of the
demonstrator. We performed three series of tests to determine the performance bottlenecks of this
shader. The three series were repeated on three different video cards, being NVIDIA’s 6200, the 6600
GT and the 7800 GTX. Running tests on different hardware allowed us to get a better understanding
of how shader hardware specifications translate to frame rates and also revealed adequate program
settings.

Potential bottlenecks for render engines include the communication bandwidth to (and from) the
graphics card and the speed of its video memory. The vertex or fragment shader hardware could also
limit performance. The bandwidth provided by PCle and AGP is sufficient to sustain the upload of
the 720 x 576 RGBD stream.

The measurements for the 7800 GTX graphics processor were run on an Intel Pentium 4 3.0 GHz
system with 1.0 GB of memory running Windows XP. The 6600 GT and 6200 tests were run on
different machines, but of comparable specification. The frame rates were computed by the
demonstrator itself, but also confirmed by using NVPerfHUD, a GPU profiling tool from NVIDIA.
The following paragraphs discuss the results in more detail. The performance measurements are
tabularized in appendix E.

6.1 Vertex Processing

Our algorithm requires a huge amount of vertex processing. The computation of displaced vertices is
the bottleneck of this system when rendering at the full output resolution of 1920 x 1080 pixels.
Ideally we could manipulate a textured grid consisting of 1440 x 1152 vertices in order to speak of
true micropolygons. Such polygons are smaller than a single texel.

The algorithm can push the vertex processing to about 47M displaced triangles per second on a 7800
GTX and 18M on a 6600 GT, when using 2 x 2 textures. NVIDIA states that the 6800 can process up
to 33M displaced vertices per second [73], which is about the same in triangles when they are drawn
in a single strip. This makes sense because the 6800 has only 6 compared to the 7800’s 8 vertex
processors. Realistic texture sizes result in a performance of 33M displaced triangles per second.

We tested various grid configurations ranging from 90 x 72 cells up to 720 x 576 cells. This changes
the load on the limiting vertex shader hardware and thus affects performance. Dimensions below 90 x
72 did not cause a bottleneck. At 720 x 576 the throughput always dropped below 25 frames per
second, even using the 7800 GTX, so we did not measure beyond these dimensions. Figure 53 shows
the frame rates we measured.

100 ~

o ——7800 GTX
o.
wo —=—6600 GT
T
g —— 6200
o 90x72 (speed)
g 50
-
[}
.
" 720x576 (quality)
@ 25 -
=
g ——
L A R - -8

o)) -)) - 1

0 100 200 300 400 500

Grid Cells (x1000)

Figure 53. The frame rate (EPS) gradually drops when rendering 1920 x 1080 on a 7800
GTX while increasing the number of grid cells.

The number of grid cells affects the final image quality. Although the images remain sharp, lowering
the grid dimensions worsens the depth perception. The reason is that the geometry can not represent
the depth map that well, when a lower number of triangles is used. On the 7800 GTX, we were able to
sustain a frame rate of just over 25 frames per second when using a grid of 360 thousand cells. This
holds for both an equally dimensioned 600 x 600 grid as a 692 x 520 grid, which has square cells
when the aspect ratio is 4:3. Such grids result in acceptable stereoscopic quality.

We need more than eight vertex pipes, a 7800 GTX offers, to improve the picture quality any further.
It is uncertain whether video cards for the professional market perform any better than consumer
cards when it comes to vertex processing. Professional cards have the same number of vertex pipes,
although they offer some additional hardware accelerated features for computer-aided design and
digital content creation. However multiview rendering is unlikely to profit from these features. More
so, we do not expect that upscaling the grid dimensions will become feasible any time soon. Single
GPU workstations do not have the power to process, for example, four times the number of vertices,
when doubling the grid dimensions to 1440 x 1152. We will have to look for other means to improve
on picture quality. Feature correction implemented on the pixel shader, as proposed in section 4.5,
could be a solution.

6.2 Pixel Shading Performance

To get the best results we kept the number of texture fetches at a minimum. Nonetheless the
lenticular compatible output requires different views for each subpixel. Our render engine is capable
of rendering at any output resolution the graphics board and display device advertise via DirectX.

Higher output resolutions will result in lower frame rates due to video memory bandwidth limitations.
Lenticular displays only have one native setting where the 3D picture is correctly aligned with the
lenses. Different settings will not result in pictures that give a 3D impression. This means we cannot
save on the output setting and we are obligated to render at 1920 x 1080 pixels. In figure 54, we
provide the test results when using a 3 x 2 grid. It helps us predict whether the render engine will be
sufficient to drive multiview devices with different screen dimensions.

250 -

512x384
G 225 - ——7800 GTX
& 200 - —=—6600 GT
N
g 1751 —— 6200
9 150 -
[}
w125
]
O 100 -
o 75 -
£ 50- 19201080
1
L 25
o
- - mep— ——
0 T T T — T 1
0 500 1000 1500 2000 2500

Pixel Count (x1000)

Figure 54. The frame rate (FPS) gradually drops when increasing the output resolution. To
minimize the load on the vertex shader a grid of 3 x 2 cells was used.

On a 7800 GTX, we are able to multiplex nine standard definition views at just over 50 frames per
second at the maximum output resolution of 1920 x 1080 pixels. When we use finer triangle grids,
this number drops to just below 25 frames per second. The cost of fragment processing increases
progressively with the total number of triangles that are being rasterized to create these fragments.
Thus, more triangles cause more overhead.

The technical development of memory chip, regarding speed, tends to increase slower than the
technical development of processors on the market for PCs. We should not expect (3D) output
images getting bigger than 1920 x 1080 in the near future. We think the extra power of newer
computer hardware is better spent on improving depth estimation and advise to stick to rendering at
current high definition output format.

6.3 Image Filtering

It is hard to quantify the results for image filtering. We can state, however, that we successfully
implemented custom filtering on programmable GPUs, be it as a separate shader. We coded a bilinear
and bicubic image filter. The sharpness of the bicubic filter can be controlled by a parameter.
Comparative pictures can be found in section 3.7. For optimal speed of custom filters built-in linearly
interpolated texture look-ups could be exploited [74]. Still, custom filtering is not used in
combination with our micropolygon displacement shader because it has a negative impact on the
frame rate. Currently, this combination of multiview rendering and filtering is too expensive for

GPUs.

6.4 Ray-Tracing Results

The multiview rendering of our ray-tracing algorithm did not result in real-time performance. Tracing
the depth map turned out to be memory intensive. This becomes a problem when scaling to high
definition output resolution. Fetching over 16 pixels brings down the performance to only two frames
per second. These texture fetches are required for supporting up to 16 pixels of horizontal disparity,
which is not that big for a 3D impression. The results are shown in figure 55.

N
(%,]
]

——7800 GTX

N
o
1

v
1

o
1

(]
1

—

Frames Per Second (FPS)

o

0 5 10 15 20
Maximal Disparity (pixels)

Figure 55. Ray-tracing on the pixel shader is memory bandwidth limited. Doubling the
one-dimensional search range about halves the frame rate (FPS), because twice as many
texture samples are needed.

7 Conclusion

We have presented a method for multiview rendering on a GPU. Our application proves that modern
personal computers equipped with NVIDIA’s 7800 GTX or comparable video card are powerful
enough for nine-view rendering. Comparable, in this case, means the same number of vertex and pixel
shaders. The computational power per shader should also be identical. This property is reflected by
the support shader model version. The clock frequency of the GPU and its memory also influences
performance.

To be more specific, nine-view rendering requires at least 12 fragment processors to merge these views
to the lenticular format at 1920 x 1080 output pixels. The 7800 GTX has 24 fragment processors, but
these are loaded about half. This is deduced from the fact that we were able to sustain a little over 50
frames per second throughput, when minimizing the workload on the vertex shaders, as shown in
section 6.2. This frame rate is twice the target of 25 frames per second, the latter which we consider as
real-time performance. So, effectively about half the number of fragment processors should suffice.

As mentioned in section 2.3, the fragment pipes also consist of raster operators, not only fragment
processors. Some GPUs have less raster operators than they have fragment processors. This is less of a
concern to us, because the render engine does not rely on the special features of these raster operators.

The micropolygon displacement mapping algorithm typically involves a lot of triangle processing. A
grid of 720 x 576 cells holds about 0.8 million triangles and requires eight vertex processors to do its
math. So, current vertex units are good for processing about 25 x 0.1 million triangles each second. In
section 6.1 we showed that — of the three video cards we tested — only the 7800 GTX is powerful
enough to handle these computations in real-time. We could reduce the number of cells to sustain
real-time speeds on lesser specified GPUs, but this sacrifices some of the quality of the 3D impression.

Real-time multiview rendering both requires powerful pixel processing and vertex processing.
Interleaving a set of views conveniently maps to the pixel shader hardware. Many image processing
algorithms do. However, the vertex shader hardware can also be put to good use, even for image
manipulation. For example, our algorithm generates disparity by deforming textured geometry on de
vertex shader hardware. In fact, the vertex shader hardware is a limiting factor when rendering at full
resolution. The performance for micropolygon displacement mapping already starts to decline at 90 x
72 cells, as the graph in section 6.1 shows. A solution is to effectively trade vertex processing for
fragment processing by undersampling the depth map on the vertex shader and texture correct the
resulting artifacts on the pixel shader. The framework for this approach has already been laid out in
section 4.5.

We are able to render RGBD sources to a lenticular display at a 25 frames per second throughput.
Programmable GPUs are not limited to lenticular display rendering, but are also suitable for driving
other types of multiview devices. These programmable video cards extend the PC to a valuable
development platform for video processing. However, not all algorithms lend itself for a efficient
GPU implementation, as we experienced with our ray-tracing attempt. Strictly speaking, expensive ray-
tracing is only needed for occlusion and de-occlusion support. Course horizontal shifts to generate
disparity are possible without sampling each pixel by exploiting the vertex shader hardware. We
proved this by implementing the micropolygon shader. To make depth map tracing into a real-time
solution for multiview rendering, we could restrict the tracing process to areas near object borders.
However, object (border) recognition in image sequences is yet another difficult problem, but we did
already succeeded in detecting and visualizing problem areas. So, programmable GPUs also help the
developers to debug their computer graphic solutions.

We conclude that at least a 3.0 GHz personal computer and video card with 8 programmable vertex
pipes and 24 programmable fragment pipes are a suitable starting point for real-time nine-view

rendering at high definition resolution. The load on the vertex shaders can be maximized by tuning
the triangle grid. Interleaving subpixels typically puts a load on the pixel shader hardware. So, the 24
pixel pipes are mostly determine the feasible output resolutions.

Increasing the number of views beyond nine requires even more processing power. To keep the same
quality the number of grid triangles has to be increased proportionally. So, more vertex processing
needs to be done. The current GPUs on the consumer market have eight vertex processors at most,
which poses a problem. One solution is to use multiple GPUs. For example, we expect a dual 7800 or
7800 in SLI mode to be sufficient to drive a 15-view display device. The total number of fragment
processor in such a set-up is also sufficient to multiplex the views to the 1920 x 1080 output
resolution. Scaling beyond four GPUs is yet impossible, given today’s state of technology. Current
motherboards support two single or two dual GPUs (called quad SLI) at most. The latter
configuration could also enable output to quad HD screens.

8 Recommendations

DirectX is a suitable API for exploiting the latest technologies on computer graphics. However we did
encounter some stability issues during development, including hardware resets. This could be due to
driver problems and caused by misuse of certain DirectX calls. The graphics runtime seems to be
sensitive to invalid resource creation in video memory and certain malformed shader programs.

In the near future we will see unified shader hardware. This relaxation will be supported starting from
DirectX version 10, which will be incorporated in Windows Vista. It will allow designers to trade
vertex processing for pixel processing and vice versa. This could help us in improving our
micropolygon displacement shader. Other massively parallel computations also benefits from the
ongoing development of shader technology. We already see dual-core CPU and dual GPU systems
and this trend of more parallelism will undoubtedly continue. However, it will take extra
programming effort to exploit these increasingly parallel systems.

The current implementation of micropolygon displacement shader has a few minor deficiencies. The
most apparent deficiency occurs when the disparity effect is set to higher values. In this case artifacts
arise at the left and right side of the output image. These artifacts are caused by the 2 x 2 layout of the
tiles in the texture atlases. The texture mapped polygons of two horizontally adjacent views invade the
orthogonal projected space of one another. We can resolve this by choosing a 4 x 1 atlas layout or by
inserting space between the tiles. We already experimented with the latter solution, but it has a small
impact on performance, due to additional shader code for texture addressing. The former solution
does not suffer from this disadvantage.

Another deficiency is caused by the triangular structure of the texture mapped grid. These artifacts
become visible when using a course grain grid. Ideally, triangles are as small as the texels. The
performance of current graphics hardware is close to having true micropolygons, but in the mean time
we hope to work out a texture correction scheme to overcome this problem.

Yet another improvement would be extending the DirectX framework to support pluggable shaders
similar to NVIDIA’s FX Composer. We do not intend to create a full integrated development
environment, but a specialized tool could ease the development of new shaders for video processing.
The focus of FX Composer is on supporting shaders for 3D game graphics, which excludes video
sources.

We can also add support for different kinds of multiview display devices. The view creation and its
interleaving are deliberately separated over distinct shaders programs. This means we can write new
interleaving code or expand the number of views independently. However additional views will
require more processing power. For example, a 15-view display will not only need more video
memory, but also more powerful vertex and fragment processing. The size of the triangle grid is
related to the input resolution. Larger output sizes require more fragment processing and video
memory bandwidth. The shader hardware requirements scale linearly with the number of views.
Because of the ongoing developments programmable GPUs will eventually support additional views.

Finally, a small adjustment is to improve file handling. The currently used library (CPFSPD") is not
particularly suitable for streaming RGBD, due to heavy disk seeks. We could implement a system
memory buffering algorithm to save on expensive disk arrays (RAID). This will also improve the frame
stepping responsiveness of our application.

" CPFSPD is a cross-platform C-library implementing the Philips File Standard for Pictorial Data.

A ATI Specifications

Radeon Model 9200 9600 9800 X550 X600 X700 X800 X850
Bus Speed 1x/- 8x/- 8x/- -/%x16 8x/x16 8x/x16 8x/x16 8x/x16
AGP/PCle

Max. Memory 128MB 128MB 128MB 128MB 256MB 256MB 256MB 256MB
Memory Interface | 128-bit 128-bit 128-bit 128-bit 128-bit 128-bit 256-bit 256-bit
Vertex Pipes 2 2 4 2 2 6 6 6
Vertices/sec 62.5M 1.3M 325M ? ? 637M* 780M* 810M*
Pixel Pipes 4 4 8 4 4 8 12-16 12-16
Pixels/sec 1.0G 1.3G 2.6G 1.6G 2.0G* 3.4G* 8.3G* 8.6G*
Texture units 4 4 8 4 4 8 8-16 16
Textures/pass 6 16 16 16 16 16 16 16
DirectX 8.1 9.0 9.0 9.0 9.0 9.0 9.0b 9.0b
Shader Model 1.4 2.0 2.0 2.0 2.0 2.0b 2.0b 2.0b
OpenGL 1.3+ 1.5+ 2.0+ 1.5+ 2.0+ 2.0+ 2.0 2.0
*When using the fastest bus type (PCI Express).

+Functionality exposed via OpenGL Extensions.

FireGL Model | T2-128 71-128 X2-256t X3-256 V3100 V3200 V5000 V5100 V7100
Bus Speed 8x/- 8x/- 8x/- 8x/- -/x16 -/x16 -/x16 -/x16 -/x16
AGP/PCle

Core 9600 9500 9800XT X800Pro X300 X600 X700 X800Pro X800XT
Max. Memory | 128MB 128MB 256MB 256MB 128MB 128MB 128MB 128MB 256MB
Memory 128bit 256-bit 256-bit 256-bit | 128-bit 128-bit 128-bit 256bit 256-bit
Interface

Vertex Pipes 2 4 4 6 2 2 6 6 6
Vertices/sec 200M 300M 412M 750M 200M 250M 637M 675M 750M
Pixel Pipes 4 4 8 12 4 4 8 12 16
Pixels/sec 1.6G 1.3G 3.3G 5.4G 1.6G 2.0G 3.4G 54G 8.0G
Texture Units | 4 4 8 12 4 4 8 12 16
Textures/pass | 16 16 16 16 16 16 16 16 16
DirectX 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
Shader Model | 2.0 2.0 2.0 2.0b 2.0 2.0 2.0b 2.0b 2.0b
OpenGL 1.5+ 1.5+ 1.5+ 1.5+ 1.5+ 1.5+ 1.5+ 1.5+ 1.5+

+Functionality exposed via OpenGL Extensions.

(These tables were compiled from http://www.ati.com/products/workstation/fireglmatrix.html and ATT’s
product specification site as of July 18" 2005.)

http://www.ati.com/products/fireglt2-128/index.html
http://www.ati.com/products/fireglz1/index.html
http://www.ati.com/products/fireglx2-256t/index.html
http://www.ati.com/products/fireglx3-256/index.html
http://www.ati.com/products/fireglv3100/index.html
http://www.ati.com/products/fireglv3200/index.html
http://www.ati.com/products/fireglv5000/index.html
http://www.ati.com/products/fireglv5100/index.html
http://www.ati.com/products/fireglv7100/index.html
http://www.ati.com/products/workstation/fireglmatrix.html

B Matrox Specifications

Matrox Model G450 G550 P650 P750 Parhelia
Bus Speed AGP/PCle | 4x/- 4x/- 8x/- 8x/- 8x/-
Max. Memory 32 MB 32 MB 64 MB 64 MB 256 MB
Memory Interface 64-bit 64-bit 128-bit 128-bit 256-bit
Vertex Pipes 0 0 2 2 4
Vertices/sec

Pixel Pipes 2 2 2 2 4
Pixels/sec

Texture Units 1+1 2+2 4 4 16
Textures/pass 4
DirectX 6 6 8.1 8.1 8.1
OpenGL 1.1 1.1 1.3 1.3 1.3

(This table was constructed from the Matrox product site as of July 18" 2005.)

http://www.ati.com/products/fireglt2-128/index.html
http://www.ati.com/products/fireglz1/index.html
http://www.ati.com/products/fireglx2-256t/index.html
http://www.ati.com/products/fireglx3-256/index.html
http://www.ati.com/products/fireglv3100/index.html

C NVIDIA Specifications

NVidia Model | 5200 5600 5800 5900 6200 6600 6800 7800
GPU Code NV34 NV31 NV30 NV35 NV44 NV43 NV40 G70
Bus Speed 8x/- 8x/- 8x/- 8x/- 8x/x16 8x/x16 8x/x16 -/x16
AGP/PCle

Max. Memory | 256 MB 256 MB 256 MB 256 MB 256 MB 256 MB 512 MB <256MB
Memory 64/128bit 64/128bit 128bit 256bit | 128-bit 128bit 256bit | 256-bit
Interface

Vertex Pipes 2 2 3 3 2 3 6 8
Vertices/sec 81M 88M 160M 338M 263M* 375M* 600M* 860M
Pixel Pipes 4 4 4 4 4 8 12-16 24
Pixels/sec 1.3G 1.6G 1.6G 1.6G 1.4G* 4.0G* 6.4G* 10.3G
ROPs 4 4 4 4 2-4 4 12-16 16
Texture Units 4 4 8 8 4 8 12-16 32
Textures/pass 4x2 2x2o0r4x1 8x1 4x2 16 16 16 16
DirectX 9.0 9.0 9.0 9.0 9.0c 9.0c 9.0c 9.0c
Shader Model 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0
OpenGL 1.4 1.5 1.4 1.5 1.5 1.5 2.0

*When using the fastest bus type (PCI Express).

(This table was constructed from NVIDIA’s product site and various specification PDFs as of July 28" 2005.)

D Shader Models

Vertex shader version vs_ 11 vs 2 0 vs_ 2 X vs 3 0
Maximum instructions 128 256 256 >512
Address registers (a#) 1 1 1 1
Input registers (v#) 16 16 16 16
Temporary registers (r#) 12 12 2 (12) 32
Constant boolean registers 0 16 16 16
Constant float registers 2 (96) 2 (256) 3 (256) 2 (256)
Constant integer registers 0 16 16 16
Loop counter registers (al) 0 1 1 1
Predicate registers (p) 0 0 0 1
Texture samplers (s#) 0 0 0 4
Texture coordinates (0T#) 8 8 8

Output (oPos+oFog+oPts) 1+1+1 1+1+1 1+1+1 } 12
Color registers (0D1, 0D2) 2 2 2

(Source: http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/directx9_c/directx/graphics/reference/assemblylanguageshaders/vertexshaders/vertexshaders.asp)

Pixel shader version ps1 1 ps12 ps13 psl14 ps20 ps2x ps30
Maximum instructions 4+8 4+8 4+8 6+38 32+64 >96 >512
(texture+arithmetic)

Input color registers (v#) 2 2 2 2 2 2 10
Temporary registers (r#) 0 0 0 0 12-32 12-32 32
Constant boolean registers 0 0 0 0 0 16 16
Constant float registers 0 0 0 0 32 32 224
Constant integer registers 0 0 0 0 0 16 16
Loop counter register (al) 0 0 0 0 0 1 1
Predicate register (p) 0 0 0 0 0 1 1
Texture samplers (s#) 4 4 4 8 16 16 16
Texture coordinates (t#) 0 0 0 0 8 8 8
Dynamic flow control [Fx>5 | No No No No No Yes Yes
Static flow control IF x=5 No No No No No Yes Yes
Arbitrary source swizzle No No No No No Yes Yes
Gradient instructions No No No No No Yes Yes
Prediction No No No No No Yes Yes

(Source: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/reference/assemblylanguageshaders/pixelshaders/pixelshaders.asp)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/reference/assemblylanguageshaders/vertexshaders/vertexshaders.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/reference/assemblylanguageshaders/vertexshaders/vertexshaders.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/reference/assemblylanguageshaders/pixelshaders/pixelshaders.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/reference/assemblylanguageshaders/pixelshaders/pixelshaders.asp

E Tabularized Test Results

The following tables provide our test measurements in numbers, which were used for the graphs
found in chapter 6.

These are the frame rates when varying the number of cells of the texture mapped geometry and fixing
the output resolution at 1920 x 1080 pixels:

Grid Cell Count 6200 6600 GT 7800 GTX
90 x 72 5 18 58
180 x 144 5 17 56
240 x 192 5 16 53
360 x 288 5 14 42
540 x 432 3 10 31
720 x 576 3 8 23

The next table lists the frame rates when varying the output resolution and using a grid of 3 x 2 cells:

Output Resolution 6200 6600 GT 7800 GTX
512 x 384 16 93 240

720 x 576 12 65 180

1024 x 768 9 41 120

1280 x 1024 7 28 80

1600 x 1200 5 20 58

1920 x 1080 5 18 55

F YC,C, to RGB Conversion

The following formulas define the implemented YC,C, (conform signal encoding standard CCIR
601) to RGB conversion as proposed by Microsoft [75]:

C=Y-16
D=C,-128
E=C, -128

This defines three integer coefficients that are used to compute the RGB values:

R=((298xC)+(409x E)+128) >> 8
G=((298xC)—(100x D) — (208 x E) +128 >> 8
B=((298xC)+(516xD)+128) >>8

The operator >> is the bit-shift-right operator. Only the eight most significant bits are used of each
component. Some precision is lost using integer math.

Each component R, G and B needs to be clamped to the range [0,255].

More information can be found at http://www.fourcc.org/fceyvrgb.php

http://www.fourcc.org/fccyvrgb.php

G References

1 Wikipedia community. 2006. Broadcast Television Systems. In Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Broadcast_television_system

2 C. Poynton. 2003. Introduction. In Digital Video and HDTV Algorithms and Interfaces, pp. 3—127.

3 Wikipedia community. 2006. Advanced Technology Attachment. In Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Advanced_Technology Attachment

4 Silicon Integrated Systems Corp. 2005. The Evolution of Chipset I/O Interface and PCI Express. In The PCI
Express Technology, http://www.sis.com/elibrary/elibrary_index00_000011.htm

5 Wikipedia community. 2005. PCI Express. In Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/PCI_Express

6 M. Chambers. 1999. GPU Overview. In NDIVIA GeForce 256,
http://www.nvnews.net/reviews/geforce_256/preface.shtml

7 NVIDIA Press Release. 2001. In NVIDIA Introduces GeForce3 for the PC,
http://www.nvidia.com/object/IO_20010530_5676.html

8 W. Harris. 2005. Some History. In A bluffer’s guide to Shader Models, http://www.bit-
tech.net/hardware/2005/07/25/guide_to_shaders/1.html

9 NVIDIA Press Release. 2002. In NVIDIA GeForce FX GPU Ushers in a New Era of Cinematic Computing,
http://www.nvidia.com/object/IO_20021117_7139.html

10 D. Luebke. 2003. Classic Rendering Pipeline. In The GPU Revolution: Programmable Graphics Hardware, p.
1—2, http://www.cs.virginia.edu/ ~ gfx/Courses/2003/Intro.fall.03/slides/gpu_web/gpu.pdf

11 1. E. Sutherland. 1974. Reentrant polygon clipping. In Communications of the ACM Vol. 7 Num. 1, p. 32.

12 R. F. Puk. 1977. General clipping on an oblique viewing frustum. In ACM SIGGRAPH Computer Graphics,
Vol. 11 Issue 2.

13 Microsoft Corp. 2005. Rendering from Vertex and Index Buffers. In Rendering Primitives,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/directx9_c/directx/graphics/programmingguide/GettingStarted/Rendering/renderingprimitives/renderingfro
mvertexindexbuffers.asp

14 ATI Corp. 2005. Vertex Processing Engine. In ATT Demos,
http://mirror.ati.com/vortal/r350/flash/9800educational/index.html

15 P. Gerasimov, R. Fernando, S. Green. 2004. Using Vertex Fetches. In Shader Model 3 Whitepaper,
http://developer.nvidia.com/object/using_vertex_textures.html

16 Wikipedia community. 2005. Primitive-by-primitive. In Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Rendering

17 ExtremeTech. 2004. Making the Trains Run On Time. In Preview: NVIDIA's GeForce 6800 Ultra,
http://www.extremetech.com/article2/0,1558,1567090,00.asp

18 Wikipedia community. 2005. Z-buffering. In Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Z-
buffer

19 NVIDIA Corp. 2005. Introduction. In Improving Shadows and Reflections via the Stencil Buffer, p. 2,
http://developer.nvidia.com/object/Stencil_Buffer Tutorial.html

20 S. Dietrich. 1999. Game Developers Conference presentation. On Using the Stencil Buffer, p. 3,
http://developer.nvidia.com/attach/7294

http://en.wikipedia.org/wiki/Broadcast_television_system
http://en.wikipedia.org/wiki/Advanced_Technology_Attachment
http://www.sis.com/elibrary/elibrary_index00_000011.htm
http://en.wikipedia.org/wiki/PCI_Express
http://www.nvnews.net/reviews/geforce_256/preface.shtml
http://www.nvidia.com/object/IO_20010530_5676.html
http://www.bit-tech.net/hardware/2005/07/25/guide_to_shaders/1.html
http://www.bit-tech.net/hardware/2005/07/25/guide_to_shaders/1.html
http://www.nvidia.com/object/IO_20021117_7139.html
http://www.cs.virginia.edu/%7Egfx/Courses/2003/Intro.fall.03/slides/gpu_web/gpu.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/programmingguide/GettingStarted/Rendering/renderingprimitives/renderingfromvertexindexbuffers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/programmingguide/GettingStarted/Rendering/renderingprimitives/renderingfromvertexindexbuffers.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/directx/graphics/programmingguide/GettingStarted/Rendering/renderingprimitives/renderingfromvertexindexbuffers.asp
http://mirror.ati.com/vortal/r350/flash/9800educational/index.html
http://developer.nvidia.com/object/using_vertex_textures.html
http://en.wikipedia.org/wiki/Rendering
http://www.extremetech.com/article2/0,1558,1567090,00.asp
http://en.wikipedia.org/wiki/Z-buffer
http://en.wikipedia.org/wiki/Z-buffer
http://developer.nvidia.com/object/Stencil_Buffer_Tutorial.html
http://developer.nvidia.com/attach/7294

21 W. R. Mark, K. Proudfoot. 2001. Compiling to a VLIW Fragment Pipeline. In Proceedings of 2001
SIGGRAPH/Eurographics Workshop on Graphics Hardware, p. 2.

22 The Tech Report. 2004. The GeForce 6200. In NVIDIA’s GeForce 6200 graphics processor, p. 1,
http://techreport.com/reviews/2004q4/geforce-6200/

23 The Tech Report. 2004. The NV44 GPU. In NVIDIA's GeForce 6200 with TurboCache, p. 1,
http://techreport.com/reviews/2004q4/geforce-6200-turbocache/

24 Wikipedia community. 2006. Common Display Resolutions. In Display resolutions,
http://en.wikipedia.org/wiki/Display_resolution

25 NVIDIA Corp. 2005. Chapter 4.8. In GPU Programming Guide 2.4.0, p. 40—41,
http://download.nvidia.com/developer/GPU_Programming_Guide/GPU_Programming_Guide.pdf

26 NVIDIA Corp. 2005. Introduction. In TurboCache Technical Brief,
http://www.nvidia.com/object/IO_17361.html

27 ATI Technologies Inc. 2005. Multiply & Conquer. In CrossFire Brochure,
http://www.ati.com/technology/crossfire/CrossFireBrochure.pdf

28 ATI Technologies Inc. 2005. What is H.264? In H.264 Whitepaper,
http://www.ati.com/products/pdf/H264 Whitepaper.pdf

29 E. A. Catmull. 1974. Computer Display of Curved Surfaces. In Proceedings of Conference on Computer Graphics,
Pattern Recognition, and Data Structure, pp. 11—17.

30 P. Heckbert. 1986. Uses for Texture Mapping. In Survey of Texture Mapping, p. 2.

31].]. Koendrink, A. J. V. Doorn. 1996. Illuminance Texture Due to Surface Mesostructure. Journal of the Optical
Society of America 13, 3, pp. 452—463.

32 J. Hastings-Trew. 2005. Creating Normal Maps with Cinema 4-D (part 1),
http://members.shaw.ca/jimht03/normal.html

33 J. Blinn. 1978. Simulation of Wrinkled Surfaces. In Proceedings of the 5th Conference on Computer Graphics.

34 M. Oliveira, G. Bishop, D. McAllister. 2000. Relief Texture Mapping. In Proceedings of SIGGRAPH, pp.
359—368.

35 N. Max. 1988. Horizon Mapping: shadows for Bump-Mapped Surfaces. In The Visual Computer 4, 2, pp.
109—117.

36 P.-P. Sloan, M. F. Cohen. 2000. Interactive Horizon Mapping. In Eurographics Workshop on Rendering, pp.
175—186.

37 W. Heidrich, K. Daubert, J. Kautz, H.-P. Seidel. 2000. [lluminating Micro Geometry Based on Precomputed
Visibility. In SIGGRAPH °00 Proceedings of Computer Graphics, pp. 455—464.

38 R. Cook. 1984. Shade Trees. In Proceedings of SIGGRAPH, pp. 223—231.

39 R. Cook, L. Carpenter, E. Catmull. 1987. The Reyes Image Rendering Architecture. In Proceedings of
SIGGRAPH, pp. 95—102.

40 S. Dietrich. 2000. Elevation Maps. In Technical Report from NVIDIA Corp., pp. 1—12.

417J. Kautz, H.-P. Seidel. 2001. Hardware Accelerated Displacement Mapping for Image Based Rendering. In
Grapbhics Interface, pp. 61—70.

42 J. W. Patterson, S. G. Hoggar, J. R. Logie. 1991. Inverse Displacement Mapping. In Computer Graphics Forum
Volume 10 (2), p. 129—139.

43 J. R. Logie, J. W. Patterson. 1995. Inverse Displacement Mapping in the General Case. In Computer Graphics
Forum Volume 14 (5), pp. 261—273.

44 B. Smits, P. Shirley, M. M. Stark. 2000. Direct Ray Tracing of Displacement Mapped Triangles. In
Eurographics Workshop on Rendering, pp. 307—318.

45 E. W. Weisstein. 2006. Barycentric Coordinates. In MathWorld—A Wolfram Web Resource,
http://mathworld.wolfram.com/BarycentricCoordinates.html

http://techreport.com/reviews/2004q4/geforce-6200/
http://techreport.com/reviews/2004q4/geforce-6200-turbocache/
http://en.wikipedia.org/wiki/Display_resolution
http://download.nvidia.com/developer/GPU_Programming_Guide/GPU_Programming_Guide.pdf
http://www.nvidia.com/object/IO_17361.html
http://www.ati.com/technology/crossfire/CrossFireBrochure.pdf
http://www.ati.com/products/pdf/H264_Whitepaper.pdf
http://members.shaw.ca/jimht03/normal.html
http://mathworld.wolfram.com/BarycentricCoordinates.html

46 F. K. Musgrave, C. E. Kolb, R. S. Mace. 1989. The Synthesis and Rendering of Eroded Fractal Terrains. In
16" Proceedings on Computer Graphics and Interactive Techniques Volume 23 (3), pp. 41—50.

47 L. McMillan. 1997. An Image-Based Approach to Three-Dimensional Computer Graphics. In PhD thesis,
University of Noth Carolina at Chapel Hill.

48 G. Schaufler, M. Priglinger. 1999. Efficient Displacement Mapping by Image Warping. In 10" Eurographics
Rendering Workshop, pp. 183—194.

49 L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B, Guo, H.-Y. Shum, 2003, View-Dependent Displacement
Mapping. In ACM Transactions on Graphics Volume 22 (3), pp. 334—339.

50 A. Rosenfeld, J. L. Pfalz. Distance Function on Digital Pictures. In Pattern Recognition Vol. 1, pp. 33—61.

51 Y.-H. Lee, S.-J. Horng, J. Seitzer. 2003. Parallel Computation of the Euclidean Distance Transform on a
Three-Dimensional Image Array. In IEEE Transactions on Parallel and Distributed Systems, Vol 14 (3), pp. 203—213.

52 E.W. Weisstein. 2006. Affine Space. In MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/AffineSpace.html

53 A. Finkelstein. 2001. Parallel Projection. In 3D Polygon Rendering Pipeline, pp. 26.

54 O. Tolba, J. Dorsey, L. McMillan. 2001. A Projective Drawing System. In Proceedings of the 2001 symposium on
Interactive 3D graphics, pp. 27.

55 C. van Berkel, J.A. Clarke. 1997. Characterisation and Optimisation of 3D-LCD Module Design. In
Proceedings of SPIE Vol. 3012, pp. 179—187.

56 C. van Berkel. 1999. Image Preparation on 3D-LCD. In Proceedings of SPIE Volume 3639 Stereoscopic Displays
and Vitual Reality Systems V1.

57 F. M. Cardocia, J. C. Principe. Introduction. In Superresolution of Images with Learned Multiple Reconstruction
Kernels, pp. 2.

58 Wikipedia community. 2006. Convolution theorem. In Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Convolution_theorem

59 ExtremeTech. 2002. ATI vs NVIDIA: Adaptive Filtering. In The Naked Truth About Anisotropic Filtering, p. 3,
http://www.extremetech.com/article2/0,3973,548248,00.asp

60 BeHardware. 2004. Anisotropic Filtering. In AT Radeon X800 XT and X800 Pro, p. 6,
http://www.behardware.com/articles/494-6/ati-radeon-x800-xt-and-x800-pro.html

61 H. S. Hou, H. C. Andrews. 1978. Cubic splines for image interpolation and digital filtering. In /EEE
Transactions on Acoustics, Speech, and Signal Processing, pp. 508—517.

62]. A. Parker, R.V. Kenyon, D. E. Troxel. 1983. Resampling. In Comparison of Interpolating Methods for Image
Resampling, p. 36.

63 W. Donnelly. 2005. Per-Pixel Displacement Mapping with Distance Function. In GPU Gems 2,
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf

64 M. Christen. 2005. Ray Tracing on GPU. In Thesis from University of Applied Sciences Basel.

65 T.]J. Purcell, I. Buck, W. R. Mark, P. Hanrahan. 2002. Ray Tracing on Programmable Graphics Hardware. In
Proceedings of the 29" annual conference on computer graphics and interactive techniques SIGGRAPH 2002.

66 W. Jones. 2002. The What, Why, and How of DirectX. In Beginning DirectX, p. 6.

67 1. Buck. 2004. Abstract. In Brook for GPUs: Stream Computing on Graphics Hardware,
http://graphics.stanford.edu/papers/brookgpu/

68 NVIDIA Corp. 2006. Introduction to the Cg Language. In User’s Manual, pp. 1—32,
http://download.nvidia.com/developer/cg/Cg_1.4/1.4.1/Cg-1.4.1_UsersManual.pdf

69 J. Kessenich, D. Baldwin, R. Rost. 2004. Basic Types. In The OpenGL Shading Language, pp. 16,
http://o0ss.sgi.com/projects/ogl-sample/registry/ ARB/GLSLangSpec.Full.1.10.59.pdf

70 A. Lovesey. 2005. A Comparison of Real Time Graphical Shader Languages. In CS4983 Senior Technical
Report, pp. 1—42, http://www.cs.unb.ca/undergrad/html/documents/Lovesey_Senior_TechReport.pdf

http://mathworld.wolfram.com/AffineSpace.html
http://en.wikipedia.org/wiki/Convolution_theorem
http://www.extremetech.com/article2/0,3973,548248,00.asp
http://www.behardware.com/articles/494-6/ati-radeon-x800-xt-and-x800-pro.html
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf
http://graphics.stanford.edu/projects/brookgpu/
http://graphics.stanford.edu/projects/brookgpu/
http://download.nvidia.com/developer/cg/Cg_1.4/1.4.1/Cg-1.4.1_UsersManual.pdf
http://oss.sgi.com/projects/ogl-sample/registry/ARB/GLSLangSpec.Full.1.10.59.pdf
http://www.cs.unb.ca/undergrad/html/documents/Lovesey_Senior_TechReport.pdf

71 C. Simonyi. 1999. Hungarian notation reprint. In MSDN Library,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs600/html/HungaNotat.asp

72 J. Spolsky. 2005. Making Wrong Code Look Wrong. In Joel on Software,
http://www.joelonsoftware.com/articles/Wrong.html

73 P. Gerasimov, R. Fernando, S. Green. 2004. Using Vertex Fetches. In Shader Model 3 Whitepaper,
http://developer.nvidia.com/object/using_vertex_textures.html

74 M. Pharr. 2005. Fast Third-Order Texture Filtering. In GPU Gems 2, pp. 313—328.

75 G. Sullivan, S. Estrop. 2002. Video Rendering with 8-bit YUV Formats. In Microsoft’s MSDN Library,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwmt/html/yuvformats.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs600/html/HungaNotat.asp
http://www.joelonsoftware.com/articles/Wrong.html
http://developer.nvidia.com/object/using_vertex_textures.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwmt/html/yuvformats.asp

	1 Introduction
	1.1 Project and Assignment
	1.2 Document Structure

	2 PC and GPU Analysis
	2.1 PC Architecture
	2.1.1 Essential Components
	2.1.2 Video Playback Requirements
	2.1.3 Hard disk performance
	2.1.4 System Bus: North- and Southbridge
	2.1.5 System Memory Speeds and Bandwidth
	2.1.6 CPU and the FSB
	2.1.7 Video Buses

	2.2 Video Cards
	2.2.1 Overview of Internals and Connectivity
	2.2.2 Graphics Hardware Evolution
	2.2.3 Rendering Pipeline
	2.2.4 Programmable Architecture
	2.2.5 Vertex Buffer
	2.2.6 Geometry/Vertex Processor
	2.2.7 Rasterizer
	2.2.8 Shader Instruction Dispatch
	2.2.9 Z-Buffer
	2.2.10 Stencil Buffer
	2.2.11 Register-Combiner Architecture
	2.2.12 Fragment Processor
	2.2.13 Raster Operators
	2.2.14 Frame Buffer
	2.2.15 Back Buffer
	2.2.16 Multiple Render Targets
	2.2.17 Texture Memory

	2.3 Brand Specific Technologies
	2.3.1 Memory Management
	2.3.2 Multi-GPU
	2.3.3 Video Processing

	2.4 Summary

	3 Algorithms
	3.1 Project Specifics
	3.1.1 Disparity from Depth per Pixel
	3.1.2 Multiple Views per Frame

	3.2 Overview
	3.3 Basic Algorithms
	3.3.1 Texture Mapping
	Texture Coordinates
	Texture Clamping and Mirroring
	Dynamic Textures

	3.3.2 Normal Mapping
	3.3.3 Bump Mapping

	3.4 Compound Algorithms
	3.4.1 Relief Mapping
	3.4.2 Horizon Mapping
	3.4.3 Displacement Mapping
	Micropolygons
	Slicing
	Ray-Tracing
	Warping
	More on Displacement Mapping
	Research on Ray-Tracing Depth

	3.4.4 Summary

	3.5 Geometry Manipulation and Projections
	3.5.1 World, View and Projection
	3.5.2 Standard Matrices
	Translate
	Rotate
	Scale

	3.5.3 Taxonomy of Projections
	3.5.4 Perspective Projection
	3.5.5 Orthogonal Projection
	3.5.6 Oblique Projection

	3.6 Lenticular Rendering
	3.6.1 Lenticular Layout
	3.6.2 Mapping Function

	3.7 Image Filtering
	3.7.1 Native GPU Filtering
	Minify, Magnify & MIP
	Nearest-Point Sampling
	Linear Texture Filtering
	Anisotropic Filtering
	Mip Mapping

	3.7.2 Custom Filtering
	Bicubic Filtering
	Multi-tap Filtering
	Design Notes

	3.8 Summary

	4 Concepts and Design
	4.1 Introduction
	4.1.1 Performance Considerations
	4.1.2 Multiple Views per Frame
	4.1.3 Creating Disparity with Occlusions
	4.1.4 Texture Atlases
	4.1.5 Merging Multiple Views

	4.2 Detailed Design
	4.2.1 Geometry Construction
	4.2.2 Texture Requirements
	4.2.3 Filtering Goals

	4.3 Ray-Tracing Shader
	4.4 Micropolygon Based Shader
	4.5 Improved Displacement Shader

	5 Implementation
	5.1 Software Selection
	5.2 Shader Models
	5.3 Shader Languages
	5.3.1 Cg
	5.3.2 GLSL
	5.3.3 HLSL

	5.4 General Framework
	5.4.1 Naming conventions
	5.4.2 Initialization
	Resource Creation
	Render Capabilities and the Adapter Menu

	5.4.3 Main Loop
	5.4.4 Input Streams
	5.4.5 Shader Loading and Interfacing
	5.4.6 Lenticular Mapping
	5.4.7 Render Loop

	6 Results
	6.1 Vertex Processing
	6.2 Pixel Shading Performance
	6.3 Image Filtering
	6.4 Ray-Tracing Results

	7 Conclusion
	8 Recommendations
	A ATI Specifications
	B Matrox Specifications
	C NVIDIA Specifications
	D Shader Models
	E Tabularized Test Results
	F YCbCr to RGB Conversion
	G References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

