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Figure 1: (Left), comparison of our method to the baseline NeuMIP model and the reference, for different scales. The reference is based
on displaced geometry, and by using networks of identical sizes, our neural models enjoy up to 90% lower MSE compared to NeuMIP.
Our method can accurately capture the self-shadowing as well as sharp highlights of complex materials which are known as the limitations
of the traditional NeuMIP. (Right), we show another material with a different lighting configuration to further demonstrate our accurate
representation of high-frequency features.

Abstract
Neural reflectance models are capable of accurately reproducing the spatially-varying appearance of many real-world materials
at different scales. However, existing methods have difficulties handling highly glossy materials. To address this problem, we
introduce a new neural reflectance model which, compared with existing methods, better preserves not only specular highlights
but also fine-grained details. To this end, we enhance the neural network performance by encoding input data to frequency
space, inspired by NeRF, to better preserve the details. Furthermore, we introduce a gradient-based loss and employ it in
multiple stages, adaptive to the progress of the learning phase. Lastly, we utilize an optional extension to the decoder network
using the Inception module for more accurate yet costly performance. We demonstrate the effectiveness of our method using a
variety of synthetic and real examples.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Modeling the appearance of real-world materials in a physically
faithful fashion is crucial for predictive rendering. This, however,
is a challenging task: Many materials exhibit comprise complex
fine-grained geometries that largely drive their macro-scale appear-
ances. Traditionally, material reflectance is typically specified us-
ing spatially varying BRDFs (SVBRDFs) or bidirectional texture
functions (BTFs). While these models work adequately for many

applications, they are typically limited to one specific scale (or res-
olution). Further, SVBRDFs have difficulties handling parallex ef-
fects while BTFs [DvGNK99] are highly data intensive.

Neural appearance modelings are a recent effort to address these
issues utilizing the neural networks to learn the material reflectance
representations [KMX*21; KWM*22; FWH*22]. Although some
of these methods—such as NeuMIP [KMX*21]—can learn the ap-
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pearance of any material at varying physical scales, they still have
difficulties handling fine details and/or specular reflections.

Our goal is to extend these neural methods to better han-
dle materials exhibiting complex light-transport effects—such as
sharp highlights, detailed self-shadowing, and significant parallax
effects—that previous neural methods have difficulties capturing.

In this work, we propose a novel neural representation that offers
a new level of accuracy for modeling the appearances of materials
with complex specular reflections. Concretely, we make the follow-
ing contributions:

• We propose an improved extension to NeuMIP framework to
better capture high glossy materials by introducing an input en-
coding step to the network to map the training inputs into a
higher dimensional space (§3.1).

• For better robustness, we also introduce new losses to allow
our model to better capture both high- and low-frequency ef-
fects (§3.2).

We demonstrate the effectiveness of our technique by compar-
ing to the original NeuMIP [KMX*21] using several examples in
Fig. 4, 6, and 5. In practice, similar to NeuMIP, our neural re-
flectance model can be integrated into most rasterization- and ray-
tracing-based rendering systems.

2. Related Work

Neural rendering has emerged as a promising approach for a wide
variety of applications, including material rendering, texture syn-
thesis, and view synthesis. In this section, we review the most re-
cent and relevant work in the area of neural rendering, focusing on
techniques used for material rendering and displacement mapping.

Displacement mapping serves as a powerful technique for aug-
menting material complexity on surface geometries, thereby yield-
ing persuasive parallax, silhouette, and shadowing effects. How-
ever, it imposes a considerable demand on computational resources.
Conventional ray-tracing-based renderers typically effectuate dis-
placement by tessellating the base geometry, a process that necessi-
tates significant storage and computational capabilities [TBS*21].

A suite of techniques has been proposed as approximations
to displacement mapping, including parallax mapping [KTI*01],
relief mapping [OBM00; POC05], view-dependent displacement
mapping (VDM) [WWT*03], and generalized displacement maps
(GDM) [WTL*04; YZX*04]. These methodologies are fundamen-
tally geometric and reliant on heightfields, overlooking the reflec-
tive effects emanating from the intricate material geometry.

bidirectional texture function (BTF) have been employed to rep-
resent arbitrary reflective surface appearances, first proposed by
Dana et al. [DvGNK99]. The storage of a discretized 6D func-
tion incurs substantial costs, and a multitude of compression tech-
niques have been scrutinized [HFM10]. Rainer et al. [RJGW19] in-
troduced a neural architecture based on an autoencoder framework
for compressing BTF slices per texel, and later advanced their work
by integrating diverse materials into a shared latent space.

NeuMIP [KMX*21; KWM*22], an innovative neural approach,
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Figure 2: Overview of our enhanced neural architecture.

has been formulated to render and represent materials across dis-
parate scales efficiently. Despite its advantages, NeuMIP faces con-
straints due to its network architecture and design, struggling to
simulate the high-frequency information inherent in materials. Fur-
thermore, it fails to accommodate curved surfaces. A more recent
endeavor [KWM*22] aimed to overcome these shortcomings by
incorporating surface curvature and transparency information into
the neural model. Yet, the task of capturing high-frequency materi-
als remains a formidable challenge.

Recent advancements in Neural Radiance Fields (NeRF) have
led to the development of methods capable of handling com-
plex materials and geometries. The NeRF technique [MST*21],
which represents scenes as continuous volumetric fields, has been
adapted for a plethora of applications, such as NeRF-W [ZZF*22]
to manage view-dependent appearances, and Fourier plenOctrees
for NeRF [WZL*22] for real-time rendering. The methodology em-
ployed in this paper is inspired by NeRF to capture details with
sparse sampling.

Volumetric Representations and Thin Shells have been harnessed
in recent research to model materials as thin volumetric layers sur-
rounding a base surface mesh. Jakob et al. [JAM*10] proposed a
unified framework for the real-time rendering of intricate materi-
als using a thin shell method. Zhao et al. [ZJMB11] introduced
volumetric fabric models based on data sourced from micro-CT
imaging, which was subsequently mapped onto a curved surface
using shell mapping. Lombardi and his team [LSSS18] demon-
strated a neural material approach utilizing volumetric layers, capa-
ble of rendering high-quality outputs, including precise silhouette
and parallax effects.

Micro-geometry appearance models grapple with the granular
details of the material and provide high-fidelity rendering results.
The realistic rendering of fabrics, for instance, continues to be an
elusive goal despite substantial efforts [KSZ*15; MXF*21]. More
recently, Montazeri et al. [MGZJ20] introduced an efficient and
unified shading model for woven and subsequently knit [MGJZ21]
fabrics, though these models do not address multi-resolution. In
this study, we exploit their model to generate our fabric samples
for training data.

3. Our Method

In this section, we describe our neural method for representing and
rendering challenging materials, that previous works have difficulty
reproducing. We use NeuMIP [KMX*21] as a baseline and im-
prove upon their model for a variety of materials. In what follows,
we show our enhanced network design (§3.1) yields to better cap-
ture the high frequency. Then, we explain our optimization strate-
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Baseline (NeuMIP) + Input encoding + Gradient loss + Remapping Reference

Figure 3: We show the contributions of each of the improvemental steps we proposed to enhance the baseline, NeuMIP model. Our method
uses the same decoder as NeuMIP and do not add any overhead, yet, is notably more accurate than the baseline.

gies (§3.2) to further improve the performance of training the com-
plex materials. Our results in comparison with baseline NeuMIP
are listed in Fig. 4.

3.1. Enhanced Network Design

Overview of NeuMIP. The input to NeuMIP is a 7D parameter set
including the position u, incoming and outgoing direction ωi, and
ωo as well as the kernel size to address the material scale. Their
pipeline consisted of three main stages, first to update the position
u to compensate the micro-geometry using a neural offset module,
then passed to the neural texture pyramid to handle different lev-
els of detail, and lastly, an MLP decoder to generate the image.
Our framework performs in a similar fashion to the classical Neu-
MIP, as illustrated in Fig. 2 with the following improvements, as
an extended model. Input decodings: A main limitation of the
NeuMIP pipeline is handling high-fidelity materials, especially at
a small scale. Materials with sharp highlight cannot be captured
using the MLP decoder network proposed in NeuMIP regardless
of parameter tuning and loss function choices. We proposed a new
architecture to address this shortcoming, drawing inspiration from
the work on NeRF. The positional encoding techniques proposed
in NeRF, play a crucial role in improving high-frequency details,
however, it only accounts for changes in camera and 3D object po-
sitions.

In a similar fashion, we incorporate high-frequency encoding
for lighting direction ωi and camera directions ωo, along with tex-
ture position u. Rahaman et al. [RBA*19] showed neural networks
are biased toward learning low-frequency functions and perform
poorly at representing high-frequency variation. Thus, we mod-
ify the MLP decoder by mapping its inputs to a high-dimensional
space using Fourier transformation [BB86] instead of directly op-
erating on input coordinates, such as in previous work.

This mapping significantly improves the ability of the network to
reconstruct highlights and capture high-frequency image features,
addressing the shortcomings of the traditional NeuMIP network.
The formulation of our decoder F is a composition of two func-
tions F = F ′ ◦ γ. Where only F ′ is learned and γ(.) is the encoding
function that is applied to each of the input values which are all
normalized, p ∈ u,ωi,ωo

γ(p) =
(

sin(20
πp),cos(20

πp), ...,sin(2L−1
πp),cos(2L−1

πp)
)
,

where L defines the level of frequencies. Based on our experiments,
we set L as 10 and 4 for γ(u) and γ(ω), respectively. Fig. 3 shows a
comparison with and without the input encoding stage for a sample
scene to highlight its contribution.

Inception module (optional): In addition to the input encodings
γ(.), to further improve capturing the high frequencies, we propose
an optional step for using an Inception module instead of MLP lay-
ers, used in classical NeuMIP. Introducing Inception blocks comes
with the expense of slower training and evaluation time, due to the
larger number of network weights. Hence, we refer to this as op-
tional step and do not include it in our comparison results with
NeuMIP for fairness. The contribution of our extended architecture
capturing the fine details is exhibited in Fig. 8.

The Inception modules were first introduced in [SLJ*15] is a net-
work block that optimizes the structure of a convolutional network
based on the image model. It allows multiple types of filter sizes
instead of a constant one, such as for fully-connected layers. This
unique network design leveraging the Inception layers enables cap-
turing the image features in multiple scales and reproducing details
while preserving the overall appearance simultaneously. Introduc-
ing an adaptive kernel size into our network yields better capturing
of image features in different scales.

3.2. Enhanced Loss Functions

While the two aforementioned contributions in the network design
explained in §3.1, significantly improve the NeuMIP baseline, the
fine details are not still fully reconstructed such as the fiber ge-
ometries shown in Fig. 3. To further improve learning the high-
frequency features, we propose a series of optimization strategies
to emphasize high frequencies and better reproduce fine details.

Gradient loss.: In order to better preserve edge and high-
frequency details during the training process, we propose an inno-
vative gradient-based loss function. The primary shortcomings in
neural-network-generated results pertain to the absence of textural
details, hence, we draw inspiration from the Canny edge detection

algorithm [Can86] to keep textural details. Consequently, we
employ the Sobel operator to extract edge information from the
images as a preprocessing phase. We calculate the gradient of the
predicted and reference images prior to computing the loss differ-
ence and we refer to this as the Gradient Loss LG.
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Reference Ours NeuMIP Reference Ours NeuMIP
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Figure 4: Comparisons of synthetic data.



Bowen Xue & Shuang Zhao&Henrik Wann Jensen&Zahra Montazeri An Improved NeuMIP with Better Accuracy 5

Sobel and Feldman [SF73] introduced a 3x3 kernel as a discrete
differential operator for capturing edges in both horizontal (x) and
vertical (y) directions, as demonstrated below:

kx =

1 0 −1
2 0 −2
1 0 −1

 and ky =

 1 2 1
0 0 0
−1 −2 −1


Gx and Gy are computed by convolving the image I using the

filters as kx ∗ I and ky ∗ I, respectively. The gradient loss function
used at backpropagation is as follows, where Ĝ is the reference
image.

LG(I) =
(
Ĝx(I)−Gx(I)

)2
+
(
Ĝy(I)−Gy(I)

)2
(1)

Please refer to Fig. 3 to exclusively compare the absence of
gradient-based loss as it notably improves the learning capability
of the network capturing the details. We postulate that the proposed
loss function exhibits a high degree of generalizability and can be
extensively employed in various image generation tasks, such as
super-resolution, novel view synthesis, and image-to-image trans-
lation.

Output remapping : While our gradient-based loss achieves a
substantial improvement in handling the edges, it also introduces
bias in those regions. To compensate for this, we utilize a non-
linear image value remapping strategy to increase the contribution
of low-luminance regions. After rigorous experiments, we noticed
applying 4th root functions as the image remapping is the optimum
spot to capture both low and high frequencies. Our final loss func-
tion is formulated as follows:

L=
1
n

n

∑
i=0

(
L1(I)+LG(

1
I4 )

)
, (2)

where LG is formulated in (1), L1 is simply 1
n∥Î − I∥, and n is the

total pixel count.

4. Implementation Details

Dataset and training: The input to our neural rendering frame-
work is 7D queries including the camera and light direction (ωi, and
ωi), UV location u and the kernel size. Our method directly out-
puts the radiance value per texel and uses this as back-propagation
during optimization. We generate our datasets (Basket cloth and
Metal ring) using production renderer, Keyshot [Lux20] and the
rest is published datasets by NeuMIP [KMX*21]. The Metal ring
reference is explicit displaced geometry using heightfield, the same
as NeuMIP datasets. The Basket cloth dataset, however, is con-
structed of actual micro-geometry as explicit curves then shaded
using [MGZJ20], which makes it even more challenging. During
training, the evaluation of the network happens for the whole batch
and proceeds until convergence, which is 30,000 for our model,
and 80,000 in case of an additional Inception module.

Rendering: Our extended NeuMIP can be integrated into a
Monte-Carlo renderer, as such in NeuMIP, and capture the interac-
tion bounces between objects in the scene. The results shown in this
paper use an implementation in Mitsuba rendering engine [Jac20],

accounting only for direct illumination. During render time, we use
material query buffers to compute the inputs to our framework, then
we pass the whole buffer to GPU to evaluate the queries as a batch.
The LoD is also accounted in rendered results based on the camera
distance per query. The rendered results in Fig. 7 has 16 sample-
per-pixel (ssp) and the rest is 64 SPP.

4.1. Performance

A single evaluation of our method for a 5122 image takes about 5ms
which is the same as our main framework NeuMIP [KMX*21],
as we use the same resources hence, on average, ours performs
roughly the same time as NeuMIP, with significant quality improve-
ments. Furthermore, the training of the results in this paper takes
about 90 minutes for our main framework which is also the same as
NeuMIP. The training and evaluation of our method are the same as
NeuMIP underlying the same decoder. The measurements are per-
formed using the maximum resolution 5122 using NVIDIA V100
GPU.

5. Experiments and Results

In what follows, we show rendered results generated using our
method. We first highlight our ablation studies to demonstrate the
effect of the components of our proposed model (§5.1). Then, we
evaluate the ability of our technique to represent a range of materi-
als (§5.2).

5.1. Ablation Studies

In Fig. 3, we exhibit the importance of each of the components
of our proposed method using the Basket cloth sample. This is
a challenging material example for the neural method due to its
complex geometry, substantial parallax effect, and high-frequency
details such as fibers and sharp highlights. Using rigorous exper-
iments, we observed our input encoding module and our gradient
loss always improves capturing the edges and high-frequency fea-
tures. While the inception module improves matching the overall

Reference Ours NeuMIP
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Figure 5: Comparisons of real BTF data.
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color better and the stage loss, enhances the bias between low and
high-frequency features.

5.2. Evaluation Results

Comparisons with previous works: In Fig. 4, we show the
results of our method on a wide range of complex materials, in
comparison with traditional NeuMIP. In the Basket cloth sample,
please note the deeper yarns are missing in NeuMIP while ours can
successfully reproduce low-luminance regions as well as the high-
frequency features such as edges and fiber details. In both the Turtle
shell and Victorial fabric samples, NeuMIP has difficulty capturing
the sharp highlights correctly. For the Metal ring scene, we noticed
the shadow is not properly represented due to their simple MLP
decoder. There is always a noticeable color shift in all complex
datasets using NeuMIP, while less challenging materials work just
as fine as our method.

Multi-resolution results: We demonstrate the effectiveness of
our method addressing the different levels of detail of the material
in Fig. 6. As expected, for the courser levels, the errors become
smaller as we travel down in the hierarchical structure. This is due
to the natural downsampling effect and gradual fading of the high-
frequency details. We refer to the closest view as level-0 and the
coarser levels are assigned to higher grades. The error score for
different levels are highlighted in Table 2.

Real BTF results: The input to our neural method framework
is a 7D parameter set that can be obtained using either synthetic
datasets or real-measured BTF. We used examples from UBO 2014
dataset [MK14] to exemplify the effectiveness of our model regard-
less of the input source. The rendered results of BTF samples are
shown in Fig. 5 for only a single level because the dataset does not
include multi-resolution measurements. In comparison with Neu-
MIP as the baseline, our method performs better and matches the
overall color more accurately.

Quantitative evaluation: We also measure the numerical error
of our neural method when compared to the reference. Our method
performance in comparison with NeuMIP is listed in Table 1 using
both MSE loss (Means Square Error) and perceptual loss LPIPS
(Learned Perceptual Image Patch Similarity). This shows the over-
all average on the whole dataset and our method always outper-
forms NeuMIP using the same configuration. Later, in Table 2
we demonstrate the scores of multiple scales of ours and NeuMIP
model using the different levels of detail from the reference dataset.
This is computed using the images in Fig. 6.

5.3. Our Extended Decoder

Our extended network structure is demonstrated in Fig. 9. The two
1*1 convolution layers at both ends, act as fully-connected and ad-
just the input and output size. The 6-layer Inception modules in
between, capture the image features in four different scales using
four kernel sizes that perform in parallel. Each of these Inception
blocks consists of four parallel pathways. The first three pathways
employ convolutional layers with window sizes of 1x1, 3x3, and
5x5, respectively, to extract information at different spatial scales.
The middle two pathways first apply a 1x1 convolution to the in-
put to reduce the number of input channels, thereby decreasing the

MSE x103 LPIPS

Scene ↓ Ours NeuMIP Ours NeuMIP

a) Basket cloth 0.395 28.071 0.104 0.341
b) Turtle shell 0.0561 0.703 0.070 0.163
c) Victorian fabric 1.335 8.071 0.104 0.141
d) Rocks 0.096 0.384 0.0673 0.127
e) Metal ring 0.342 3.474 0.139 0.215
f) Insulation foam 4.133 41.436 0.049 0.243
g) Leather07 0.054 1.690 0.0325 0.342
h) Leather11 0.029 0.540 0.0125 0.134

Table 1: Errors for images in Fig. 4 and 5.

model complexity. The fourth pathway utilizes a 3x3 max-pooling
layer, followed by a 1x1 convolutional layer to alter the number
of channels. All four pathways implement appropriate padding to
ensure that input and output heights and widths remain consistent.

The output channel count for the Inception block is 64+ 128+
32+32 = 256, with the output channel ratios for the four pathways
being 64 : 128 : 32 : 32 = 2 : 4 : 1 : 1. Each Inception module is
designed to have an input and output of 256 channels. In our com-
parative analysis of fully connected networks with equivalent depth
and neuron count, we observed a markedly inferior performance in
the fully connected networks. Interestingly, increasing the number
of neurons and deeper fully connected networks does not yield sig-
nificant improvements in performance in capturing the details.

6. Discussion and Conclusion

Limitation and future work: To integrate our neural reflectance
models into physics-based Monte Carlo rendering frameworks, ef-
ficient importance sampling techniques for these models need to
be developed—which we think is an important problem for future
investigation.

Further, adopting our technique to improve the accuracy of the
more recent neural reflectance model [KWM*22] (with better sil-
houettes) is worth exploring.

Lastly, generalizing our technique to introduce neural BSSRDFs
(that can capture subsurface scattering) can be beneficial to many
future applications.

Conclusion: In this paper, we improved the accuracy of the Neu-
MIP [KMX*21] by introducing a new neural representation as well
as a training process for this representation. Using neural networks
with identical sizes, compared with NeuMIP, our neural represen-
tation is capable of reproducing detailed specular highlights and
shadowing at significantly higher accuracy while better preserving
a material’s overall color. Additionally, we proposed an optional
modification to the decoder architecture that further enhances the
performance. We demonstrated the effectiveness of our technique
by comparing to NeuMIP (at equal network size) using several ex-
amples.
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Reference Ours NeuMIP Reference Ours NeuMIP

Figure 6: Rendered results at the different levels of detail for selected materials.

Figure 7: An assortment of materials with our method on a non-flat surface. Please view the animation video in our supplemental materials.
We animate moving light direction as well as gradual zoom to show consistency over time as well as different levels of detail, respectively.
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