395 research outputs found

    Recent Advances in Watermarking for Scalable Video Coding

    Get PDF

    Fast mode decision algorithm

    Get PDF
    Fast mode decision is the developed algorithm intended for selectively choosing the mode decision used by the encoder. The default is the scalable video coding model \vhich is represented by Joint Scalable Video Model (JSVM). It has many mode decisions which are involved during the encoding process. The mode decisions are applied for motion prediction, either intra or inter prediction. Mode decisions in scalable video coding are the features which are available in previous video coding standard and some added features which are in line \vith scalabilit

    On robustness against JPEG2000: a performance evaluation of wavelet-based watermarking techniques

    Get PDF
    With the emergence of new scalable coding standards, such as JPEG2000, multimedia is stored as scalable coded bit streams that may be adapted to cater network, device and usage preferences in multimedia usage chains providing universal multimedia access. These adaptations include quality, resolution, frame rate and region of interest scalability and achieved by discarding least significant parts of the bit stream according to the scalability criteria. Such content adaptations may also affect the content protection data, such as watermarks, hidden in the original content. Many wavelet-based robust watermarking techniques robust to such JPEG2000 compression attacks are proposed in the literature. In this paper, we have categorized and evaluated the robustness of such wavelet-based image watermarking techniques against JPEG2000 compression, in terms of algorithmic choices, wavelet kernel selection, subband selection, or watermark selection using a new modular framework. As most of the algorithms use a different set of parametric combination, this analysis is particularly useful to understand the effect of various parameters on the robustness under a common platform and helpful to design any such new algorithm. The analysis also considers the imperceptibility performance of the watermark embedding, as robustness and imperceptibility are two main watermarking properties, complementary to each other

    Quality scalability aware watermarking for visual content

    Get PDF
    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking

    Global motion compensated visual attention-based video watermarking

    Get PDF
    Imperceptibility and robustness are two key but complementary requirements of any watermarking algorithm. Low-strength watermarking yields high imperceptibility but exhibits poor robustness. High-strength watermarking schemes achieve good robustness but often suffer from embedding distortions resulting in poor visual quality in host media. This paper proposes a unique video watermarking algorithm that offers a fine balance between imperceptibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM includes spatial cues for visual saliency as well as temporal cues. The spatial modeling uses the spatial wavelet coefficients while the temporal modeling accounts for both local and global motion to arrive at the spatiotemporal VAM for video. The model is then used to develop a video watermarking algorithm, where a two-level watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data are embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength watermarking in the visually attentive region, the resulting watermarked video achieves high perceived visual quality while preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in joint saliency detection and low computational complexity performance. For the same embedding distortion, the proposed visual attention-based watermarking achieves up to 39% (nonblind) and 22% (blind) improvement in robustness against H.264/AVC compression, compared to existing watermarking methodology that does not use the VAM. The proposed visual attention-based video watermarking results in visual quality similar to that of low-strength watermarking and a robustness similar to those of high-strength watermarking

    Fast fallback watermark detection using perceptual hashes

    Get PDF
    Forensic watermarking is often used to enable the tracing of digital pirates that leak copyright-protected videos. However, existing watermarking methods have a limited robustness and may be vulnerable to targeted attacks. Our previous work proposed a fallback detection method that uses secondary watermarks rather than the primary watermarks embedded by existing methods. However, the previously proposed fallback method is slow and requires access to all watermarked videos. This paper proposes to make the fallback watermark detection method faster using perceptual hashes instead of uncompressed secondary watermark signals. These perceptual hashes can be calculated prior to detection, such that the actual detection process is sped up with a factor of approximately 26,000 to 92,000. In this way, the proposed method tackles the main criticism about practical usability of the slow fallback method. The fast detection comes at the cost of a modest decrease in robustness, although the fast fallback detection method can still outperform the existing primary watermark method. In conclusion, the proposed method enables fast and more robust detection of watermarks that were embedded by existing watermarking methods

    Encryption for high efficiency video coding with video adaptation capabilities

    Get PDF
    Video encryption techniques enable applications like digital rights management and video scrambling. Applying encryption on the entire video stream can be computationally costly and prevents advanced video modifications by an untrusted middlebox in the network, like splicing, quality monitoring, watermarking, and transcoding. Therefore, encryption techniques are proposed which influence a small amount of the video stream while keeping the video compliant with its compression standard, High Efficiency Video Coding. Encryption while guaranteeing standard compliance can cause degraded compression efficiency, so depending on their bitrate impact, a selection of encrypted syntax elements should be made. Each element also impacts the quality for untrusted decoders differently, so this aspect should also be considered. In this paper, multiple techniques for partial video encryption are investigated, most of them having a low impact on rate-distortion performance and having a broad range in scrambling performance(1)
    corecore