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Abstract. Imperceptibility and robustness are two key but complementary requirements of any watermarking algo-

rithm. Low strength watermarking yields high imperceptibility but exhibits poor robustness. High strength watermark-

ing schemes achieve good robustness but often suffers from embedding distortions resulting in poor visual quality in

host media. This paper proposes a novel video watermarking algorithm that offers a fine balance between impercep-

tibility and robustness using motion compensated wavelet-based visual attention model (VAM). The proposed VAM

includes spatial cues for visual saliency as well as temporal cues. The spatial modelling uses the spatial wavelet coef-

ficients while the temporal modelling accounts for both local and global motion to arrive at the spatio-temporal visual

attention model for video. The model is then used to develop a new video watermarking algorithm, where a two-level

watermarking weighting parameter map is generated from the VAM saliency maps using the saliency model and data

is embedded into the host image according to the visual attentiveness of each region. By avoiding higher strength wa-

termarking in visually attentive region, the resulted watermarked video achieves high perceived visual quality while

preserving high robustness. The proposed VAM outperforms the state-of-the-art video visual attention methods in

joint saliency detection and low computational complexity performances. For the same embedding distortion, the

proposed visual attention based watermarking achieves up to 39% (non-blind) and 22% (blind) improvement in ro-

bustness against H.264/AVC compression, compared to the existing watermarking methodology that does not use the

VAM. The proposed visual attention based video watermarking results in visual quality similar to that of low-strength

watermarking and robustness similar to those of high-strength watermarking.

Keywords: Video visual attention model, motion compensation, video watermarking, robustness, subjective visual

quality evaluation.

*Deepayan Bhowmik, deepayan.bhowmik@shu.ac.uk

1 Introduction

With the recent rapid growth of digital technologies, content protection now plays a major role

within content management systems. Of the current systems, digital watermarking provides a

robust and maintainable solution to enhance media security. The visual quality of host media

(often known as imperceptibility) and robustness are widely considered as the two main properties

vital for a good digital watermarking system. They are complimentary to each other and hence

challenging to attain the right balance between them. This paper proposes a new approach to

achieve high robustness in watermarking while not affecting the perceived visual quality of the

host media by exploiting the concepts of visual attention.

The human visual system (HVS) is sensitive to many features which lead to attention being

drawn towards specific regions in a scene and a well studied topic in psychology and biology.1, 2

Visual attention (VA) is an important and complex biological process that helps to identify po-

tential danger, e.g., prey, predators quickly in a cluttered visual world3 as attention to one target

leaves other targets less available.4 Recently a considerable effort was noticed in the literature in

modelling visual attention5 that has applications in many related domains including media qual-

ity evaluation. Areas of visual interest stimulate neural nerve cells, causing human gaze to fixate
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Fig 1: The three causes of global motion: camera panning, tilting and zooming.

towards a particular scene area. The Visual Attention Model (VAM) highlights these visually sen-

sitive regions, which stimulate a neural response within the primary visual cortex.6 Whether that

neural vitalization be from contrast in intensity, a distinctive face, unorthodox motion or a dom-

inant colour, these stimulative regions diverge human attention providing highly useful saliency

maps within the media processing domain.

Human vision behavioural studies7 and feature integration theory8 have prioritised the combi-

nation of three visually stimulating low level features: intensity, colour and orientation which com-

prise the concrete foundations for numerous image domain saliency models.3, 9, 10 Most saliency

models often use Multi-Resolution Analysis (MRA).11–13 Temporal features must be considered as

moving objects are more eye-catching than most static locations.14 Seldom work has been directed

towards video saliency estimation, in comparison to the image domain counterpart, as temporal

feature consideration dramatically increases the overall VA framework complexity. Most typical

video saliency estimation methodologies3, 15–20 exist as a supplementary extension from their im-

age domain algorithms. Research estimating VA within video can also be derived from exploiting

spatiotemporal cues,21, 22 structural tensors23 and optical flow.24

However none of these algorithms explicitly capture the spatio-temporal cues that consider

object motion between frames as well as the motion caused by camera movements. Motion within

a video sequence can come from two categories namely, local motion and global motion. Local

motion is the result of object movement within frames, which comprises all salient temporal data.

One major feature associated with local motion is independence, so no single transformation can

capture all local movement for the entire frame. Local motion can only be captured from successive

frames differences, if the camera remains motionless. On contrary, global motion describes all

motion in a scene based on a single affine transform from the previous frame and usually is a result

of camera movement during a scene. The transform consists of three components, i.e., camera

panning, tilting and zooming or in image processing terms translation, rotation and scaling. Fig 1

shows three causes for global motion. This paper proposes a new video visual attention model that

accounts local and global motions using a wavelet based motion compensated temporal filtering

framework. Compensating for any perceived camera movement reduces the overall effect of global

movement so salient local object motion can be captured during scenes involving dynamic camera

action.

A region of interest (ROI) dictates the most important visible aspects within media, so distor-

tion within these areas will be highly noticeable to any viewer. The VAM computes such regions.

This paper proposes a novel video watermarking algorithm exploiting the new video VAM. In
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frequency domain watermarking the robustness of the watermarking is usually achieved by in-

creasing the embedding strength. However, this results in visual distortions in the host media, thus

low imperceptibility of embedding. In the proposed method in this work, high watermark robust-

ness without compromising the visual quality of the host media is achieved by embedding greater

watermark strength within the less visually attentive regions within the media, as identified by the

video VAM (in Section 2).

Related work includes defining a Region of Interest (ROI)25–30 and increasing the watermark

strength in the ROI to address cropping attacks. However, in these works, the ROI extraction were

only based on foreground-background models rather than VAM. There are major drawbacks of

such solutions: a) increasing the watermark strength within eye catching frame regions is percep-

tually unpleasant as human attention will naturally be drawn towards any additional embedding

artefacts, and b) scenes exhibiting sparse salience will potentially contain extensively fragile or no

watermark data. Moreover, Sur et al.31 proposed a pixel domain algorithm to improve embed-

ding distortion using an existing visual saliency model described in.3 However, the algorithm only

discusses its limited observation on perceptual quality without considering any robustness.

Our previous work32, 33 shows the exploitation of image saliency in achieving image water-

marking robustness. It is infeasible to simply extend the VA-based image domain algorithm into

a frame-by-frame video watermarking scheme, as temporal factors must first be considered within

the video watermarking framework. A viewer has unlimited time to absorb all information within

an image, so potentially could view all conspicuous and visually uninteresting aspects in a scene.

However, in a video sequence, the visual cortex has very limited processing time to analyse each

individual frame. Human attention will naturally be diverged towards temporally active visually

attentive regions. Thus the proposed motion compensated VAM is a suitable choice for VA based

video watermarking. By employing VA concepts within the digital watermarking, an increased

overall robustness against adversary attacks can be achieved, while subjectively limiting any per-

ceived visual distortions by the human eye. The concept of visual attention based image and video

watermarking was first introduced in our early work.32, 34 Recent work following this concept can

be found in watermarking H.264 video35 and application on cryptography.36 On the contrary, in

this paper, we propose a video watermark embedding strategy based on visual attention modelling

that uses the same spatio-temporal decomposition used in the video watermarking scheme. In ad-

dition, the visual attention model compensate global motion in order to capture local motion into

the saliency model.

Performances of our saliency model and the watermarking algorithms are separately evaluated

by comparing with existing schemes. Subjective tests for media quality assessment recommended

by the International Telecommunication Union (ITU),37 largely missing in the watermarking liter-

ature, are also conducted to complement the objective measurements. Major contributions of this

paper are:

• A new motion compensated spatio-temporal video visual attention model that considers ob-

ject motion between frames as well as global motions due to camera movement.

• New blind and non-blind video watermarking algorithms that is highly imperceptible and

robust against compression attacks.

• Subjective tests that evaluate visual quality of the proposed watermarking algorithms.

3



Fig 2: Proposed video visual attention model functional block diagram.

The saliency model and the watermarking algorithms are evaluated using existing video datasets

described in Section 4.1. Initial concept of the motion compensated video attention model was re-

ported earlier in the form of a conference publication38 while this paper discusses the proposed

scheme in details with an exhaustive evaluation and proposes a case study describing a new video

watermarking scheme that uses the attention model.

2 Motion Compensated Video Visual Attention Model

The most attentive regions within media can be captured by exploiting and imposing characteristics

from within the HVS. In this section, a novel method is proposed to detect any saliency information

within a video. The proposed methods incorporate motion compensated spatio-temporal wavelet

decomposition combined with HVS modelling to capture any saliency information. A unique

approach combining salient temporal, intensity, colour, orientation contrasts formulate the essential

video saliency methodology.

Physiological and psychophysical evidence demonstrate visually stimulating regions occur at

different scales within media39 and the object motion within the scene.14 Consequently, models

proposed in this work exploit the identifiable multi-resolution property of the wavelet transform

that incorporates a motion compensation algorithm to generate the model. By exploiting the multi

resolution spatio-temporal representation of the wavelet transform, VA is estimated directly from

within the wavelet domain. The video saliency model is divided into three subsections. Firstly, Sec-

tion 2.1 describes the global motion compensation following the description of the spatial saliency

model in Section 2.2 and Section 2.3 illustrates the temporal saliency feature map generation. Fi-

nally, Section 2.4 combines spatio-temporal model to estimate video visual saliency. An over all

functional block diagram of our proposed model is shown in Fig 2. For the spatial saliency model

in this work, we adopted our image visual attention model proposed in 32, 33.

2.1 Global Motion Compensated Frame Difference

Compensation for global motion is dependant upon homogeneous Motion Vector (MV) detection,

consistent throughout the frame. Fig 3 considers the motion estimation between two consecutive

frames, taken from the coastguard sequence. A fixed block size based upon the frame resolution

determines number of MV blocks. The magnitude and phase of the MVs are represented by the

size and direction of the arrows, respectively, whereas the absence of an arrow portrays a MV of
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Fig 3: Motion block estimation

zero. Firstly, it is assumed there is a greater percentage of pixels within moving objects than the

background, so large densities of comparative MVs are the result from dynamic camera action.

To compensate for camera panning, the entire reference frame is spatially translated by the most

frequent MV, the global camera MV,
−→
M global. This process is applied, prior to the 2D+t wavelet

decomposition to deduce global motion compensated saliency estimation. The global motion com-

pensation is described in Eq.(1):

−→
M object =

−→
M total −

−→
M global, (1)

where
−→
M object is the local object MV and

−→
M total is the complete combined MV.

Compensating for other camera movement can be achieved by searching for a particular pattern

of MVs. For example a circular MV pattern will determine camera rotation and all MVs converging

or diverging from a particular point will govern camera zooming. An iterative search over all

possible MV patterns can cover each type of global camera action.40 Speeded Up Robust Features

(SURF) detection41 could be used to directly align key feature points between consecutive frames

but this would be very computationally exhaustive. This model only requires a fast rough global

motion estimate to neglect the effect of global camera motion on the overall saliency map.

2.2 Spatial Saliency Model

As the starting point in generating the saliency map from a colour image / frame, RGB colour

space is converted to YUV colour spectral space as the latter exhibits prominent intensity varia-

tions through its luminance channel Y. Firstly, the 2D forward DWT (FDWT) is applied on each

Y, U and V channel to decompose them in multiple levels. The 2D FDWT decomposes an image

in frequency domain expressing coarse grain approximation of the original signal along with three

fine grain orientated edge information at multiple resolutions. DWT captures horizontal, vertical

5



and diagonal contrasts within an image, respectively, portraying prominent edges in various orien-

tations. Due to the dyadic nature of the multi-resolution wavelet transform, the image resolutions

are decreased after each wavelet decomposition iteration. This is useful in capturing both short

and long structural information at different scales and useful for saliency computation. The ab-

solute values of the wavelet coefficients are normalised so that the overall saliency contributions

from each subband and prevents biassing towards the finer scale subbands. An average filter is

also applied to remove unnecessary finer details. To provide full resolution output maps, each of

the high frequency subbands is consequently interpolated up to full frame resolution. The interpo-

lated subband feature maps, LHi (horizontal), HLi (vertical) and HHi (diagonal), i ∈ N1, for all

decomposition levels L are combined by a weighted linear summation as illustrated in Eq.(2):

LH1···LX
=

L
∑

i=1

LHi ∗ τi,

HL1···LX
=

L
∑

i=1

HLi ∗ τi,

HH1···LX
=

L
∑

i=1

HHi ∗ τi, (2)

where τi is the subband weighting parameter and LH1···LX
, HL1···LX

and HH1···LX
are the subband

feature maps for a given spectral channel X , where X ∈ {Y, U, V }.

A feature map promotion and suppression steps is followed next as shown in Eq. (3). If m is

the average of local maxima present within the feature map and M is the global maximum, the

promotion and suppression normalisation is achieved by Eq.(3):

LHX = LH1···LX
∗ (M −m)2,

HLX = HL1···LX
∗ (M −m)2,

HHX = HH1···LX
∗ (M −m)2, (3)

where lhX , hlX and hhX are the normalised set of subband feature maps.

Finally, the overall saliency map, S, is generated by

S =
∑

∀X∈{Y,U,V }

wX ∗ SX , (4)

where wX is the weight given to each spectral component and SX is the saliency map for each

spectral channel (Y, U, V ), which is computed as follows:

SX = LHX +HLX +HHX . (5)

Finally the overall map is generated by using a weight summation of all color channels as shown

in Fig 4.
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Fig 4: Overall functional diagram of the spatial visual saliency model.

2.3 Temporal Saliency Model

2.3.1 2D+t Wavelet Domain

We extend our spatial saliency model towards video domain saliency, logically by uitlising a 3D

wavelet transform. Video coding research provides evidence that differing texture and motion

characteristics occur after wavelet decomposition from the t+2D domain42 and incorporating its

alternative technique, the 2D+t transform.43, 44 The t+2D domain decomposition compacts most of

the transform coefficient energy within the low frequency temporal subband and provides efficient

compression within the temporal high frequency subbands. Vast quantities of the high frequency

coefficients have zero magnitude, or very close, which is unnecessary for the transforms’ useful-

ness within this framework. Alternatively, 2D+t decomposition produces greater transform energy

within the higher frequency components, i.e., a greater amounts of larger and non-zero coefficients

and reduces computational complexity to a great extent. A description on reduced computational

complexity by using 2D+t compared to t+2D can be found in 44. Therefore, in this work we have

used a 2D+t decomposition as shown in Fig 5 (for three levels of spatial followed by one level of

temporal Haar wavelet decomposition).

2.3.2 Temporal Saliency Feature Map

To acquire accurate video saliency estimation, both spatial and temporal features within the wavelet

transform are considered. The wavelet-based spatial saliency model, described in Section 2.2

constitutes the spatial element for the video saliency model where as this section concentrates

upon establishing temporal saliency maps, STemp.

Similar methodology to expose temporal conspicuousness is implemented in comparison to

the spatial model in Section 2.2. Firstly, the existence of any palpable local object motion is de-
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Fig 5: 2D+t wavelet decomposition.

termined within the sequence. Fig 6 shows the histograms of two globally motion compensated

frames. Global motion is any frame motion due to camera movement, whether that be panning,

zooming or rotation (see Section 2.1). Change within lighting, noise and global motion compen-

sation error account for the peaks present within Fig 6a), whereas the contribution from object

movement is also present within Fig 6b). A local threshold, T , segments frames containing suffi-

ciently noticeable local motion, M, from an entire sequence. If F1 and F2 are consecutive 8-bit

luma frames within the same sequence, Eq. (6) classifies temporal frame dynamics using frame

difference D:

D(x, y) = |F1(x, y)− F2(x, y)|. (6)

From the histograms shown within Fig 6(a) and Fig 6(b), a local threshold value of T = Dmax/10
determines motion classification, where Dmax is the maximum possible frame pixel difference, and

T is highlighted by a red dashed line within both figures. A 0.5 percent error ratio of coefficients

representing local motion M must be greater than T , to reduce frame misclassification. For each

temporally active frame, the Y channel renders sufficient information to estimate salient object

movement without considering the U and V components.

The STemp methodology bears a distinct similarity to the spatial domain approach as the high

pass temporal subbands: LHti, HLti and HHti, for i levels of spatial decomposition, combine

after full 2D+t wavelet decomposition, which is shown in Fig 5. The decomposed data is forged

using comparable logic as Eq.(2), as all transformed coefficients are segregated into 1 of 3 temporal
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Fig 6: Difference frames after global motion compensation: A sequence (a) without local motion

and (b) containing local motion.

subband feature maps. This process is described in Eq.(7):

LHtt =
n

∑

i=1

(|LHti|
↑2i ∗ τi),

HLtt =
n

∑

i=1

(|HLti|
↑2i ∗ τi),

HHtt =
n

∑

i=1

(|HHti|
↑2i ∗ τi), (7)

where LHtt, HLtt and HHtt are the temporal LH, HL and HH combined feature maps, respec-

tively. The method captures any subtle conspicuous object motion, in both horizontal, vertical

and diagonal directions. This subsequently fuses the coefficients into a meaningful visual saliency

approximation by merging the data across multiple scales. STemp is finally generated from Eq.(8):

STemp = LHtt +HLtt +HHtt, (8)

2.4 Spatial-Temporal Saliency Map Combination

The spatial and temporal maps are combined to form an overall saliency map. The primary visual

cortex is extremely sensitive to object movement so if enough local motion is detected, within

a frame, the overall saliency estimation is dominated by any temporal contribution with respect

to local motion M. Hence, the temporal weightage parameter, γ, determined from Eq. (6) is

calculated in Eq.(9):

γ =

{

1 if M > T ,

0 otherwise.
(9)

If significant motion is detected within a frame, the complete final saliency map comprises solely

from the temporal feature. Previous studies support this theory, providing evidence that local

motion is the most dominant feature within low level VA.45 Consequently, if no local motion is

detected with a frame, the spatial model contributes towards the final saliency map in its entirety,
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hence γ is a binary variable. The equation forging the overall saliency map is,

SFinal = STemp ∗ γ + SSpat ∗ (1− γ), (10)

where SSpat, STemp and SFinal are the spatial, temporal and combined overall saliency maps, re-

spectively. An overall diagram for the entire proposed system is shown in Fig 2.

3 Visual Attention based Video Watermarking

We propose a novel algorithm that provides a solution towards blind and non-blind VA-based video

watermarking. The video saliency model described in Section 2 is utilized within the video water-

marking framework to determine the watermarking embedding strength. Coinciding with the pre-

vious video VA model, watermark data is embedded within the 2D+t wavelet domain as outlined

in Section 2.3.1. The VAM identifies the ROI, most perceptive to human vision, which is a highly

exploitable property when designing watermarking systems. The subjective effect of watermark

embedding distortion can be greatly reduced if any artefacts occur within inattentive regions. By

incorporating VA-based characteristics within the watermarking framework, algorithms can pro-

vide a retained media visual quality and increased overall watermark robustness, compared with

the methodologies that do not exploit the VA. This section proposes two (blind and non-blind) new

video watermarking approaches that incorporate the VAM. In both scenarios, a content dependent

saliency map is generated which is used to calculate the region adaptive watermarking strength pa-

rameter alpha, α ∈ [0, 1]. A lower and higher value of α in salient regions and non-salient regions,

respectively, ensures higher imperceptibility of the watermarked image distortions while keeping

greater robustness.

3.1 The Watermarking Algorithms

At this point, we describe the classical wavelet-based watermarking schemes without consider-

ing the VAM and subsequently propose the new approach that incorporates the saliency model.

Frequency-based watermarking, more precisely wavelet domain watermarking, methodologies are

highly favoured in the current research era. The wavelet domain is also compliant within many

image coding, e.g., JPEG200046 and video coding, e.g., Motion JPEG2000, Motion-Compensated

Embedded Zeroblock Coding (MC-EZBC),47 schemes, leading to smooth adaptability within mod-

ern frameworks. Due to the multi-resolution decomposition and the property to retain spatial syn-

chronisation, which are not provided by other transforms (the Discrete Cosine Transform (DCT)

for example), the Discrete Wavelet Transform (DWT) provides an ideal choice for robust water-

marking.48–57

The FDWT is applied on the host image before watermark data is embedded within the se-

lected subband coefficients. The Inverse Discrete Wavelet Transform (IDWT) reconstructs the

watermarked image. The extraction operation is performed after the FDWT. The extracted water-

mark data is compared to the original embedded data sequence before an authentication decision

verifies the watermark presence. A wide variety of potential adversary attacks, including compres-

sion and filtering, can occur in an attempt to distort or remove any embedded watermark data. A

detailed discussion of such watermarking schemes can be found in 58.
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3.1.1 Non-blind Watermarking

Magnitude-based multiplicative watermarking32, 53, 55, 59–61 is a popular choice when using a non-

blind watermarking system, due to its simplicity. Wavelet coefficients are modified based on the

watermark strength parameter, α, the magnitude of the original coefficient, C(m,n) and the wa-

termark information, W (m,n). The watermarked coefficients, C ′(m,n), are obtained as follows:

C ′(m,n) = C(m,n) + αW (m,n)C(m,n). (11)

W (m,n) is derived from a pseudo-random binary sequence, b, using weighting parameters, W1

and W2 (where W2 > W1), which are assigned as follows:

W (m,n) =

{

W2 if b = 1
W1 if b = 0.

(12)

To obtain the extracted watermark, W ′(m,n), Eq.(11) is rearranged as:

W ′(m,n) =
C ′(m,n)− C(m,n)

αC(m,n)
. (13)

Since the non-watermarked coefficients, C(m,n), are needed for comparison, this results in non-

blind extraction. A threshold limit of Tw =
W1 +W2

2
is used to determine the extracted binary

watermark b′ as follows:

b′ =

{

1 if W ′(m,n) ≥ Tw

0 if W ′(m,n) < Tw.
(14)

3.1.2 Blind Watermarking

Quantization-based watermarking54, 62–66 is a blind scheme which relies on modifying various co-

efficients towards a specific quantization step. As proposed in 54, the algorithm is based on mod-

ifying the median coefficient towards the step size, δ, by using a running non-overlapping 3×1

window. The altered coefficient must retain the median value of the three coefficients within the

window, after the modification. The equation calculating δ is described as follows:

δ = α
(Cmin) + (Cmax)

2
, (15)

where Cmin and Cmax are the minimum and maximum coefficients, respectively. The median

coefficient, Cmed, is quantised towards the nearest step, depending on the binary watermark, b.
The extracted watermark, b′, for a given window position, is extracted by

b′ =

[

Cmax − Cmed

δ

]

%2, (16)

where % denotes the modulo operator to detect an odd or even number and Cmed is the median

coefficient value within the 3×1 window.
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Fig 7: (a) Example host image (b) VAM saliency map (saliency is proportional to the grey scale)

(c) Cumulative saliency histogram (d) α step graph (e) α strength map (dark corresponds to low

strength).

3.1.3 Authentication of Extracted Watermarks

Authentication is performed by comparison of the extracted watermark with the original watermark

information and computing closeness between the two in a vector space. Common authentication

methods are defined by calculating the similarity correlation or Hamming distance, H , between

the original embedded and extracted watermark as follows:

H(b, b′) =
1

N

∑

b⊕ b′, (17)

where N represents the length of the watermark sequence and ⊕ is the XOR logical operation

between the respective bits.

3.2 Saliency Map Segmentation

This subsection presents the threshold-based saliency map segmentation which is used for adapting

the watermarking algorithms described in Section 3.1 in order to change the watermark strength

according to the underlying visual attention properties. Fig 7(a) and Fig 7(b) show an example

original host frame and its corresponding saliency map, respectively, generated from the proposed

methodology in Section 2. In Fig 7(b), the light and dark regions, within the saliency map, repre-

sent the visually attentive and non-attentive areas, respectively. At this point, we employ thresh-

olding to quantise the saliency map into coarse saliency levels as fine granular saliency levels are

not important in the proposed application. In addition, that may also lead to reducing errors in

saliency map regeneration during watermark extraction as follows. Recalling blind and non-blind

watermarking schemes, in Section 3.1, the host media source is only available within non-blind

algorithms. However in blind algorithms, identical saliency reconstruction might not be possible

within the watermark extraction process due to the coefficient values changed by watermark em-

bedding as well as potential attacks. Thus, the saliency map is quantised using thresholds leading

to regions of similar visual attentiveness. The employment of a threshold reduces saliency map

reconstruction errors, which may occur as a result of any watermark embedding distortion, as

justified further in Section 3.4.

The thresholding strategy relies upon a histogram analysis approach. Histogram analysis de-

picts automatic segmentation of the saliency map into two independent levels by employing the

saliency threshold, Ts, where s ∈ S represents the saliency values in the saliency map, S. In order

to segment highly conspicuous locations within a scene, firstly, the cumulative frequency function,

f , of the ordered saliency values, s, (from 0 to the maximum saliency value, smax) is considered.
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Then, Ts is chosen as

Ts = f−1(p ∗ fmax), (18)

where p corresponds to the percentage of the pixels that can be set as the least attentive pixels and

fmax = f(smax) corresponds to the cumulative frequency corresponding to the maximum saliency

value, smax. An example of a cumulative frequency plot of a saliency map and finding Ts for

p = 0.75 is shown in Fig 7(c).

Saliency-based thresholding enables determining the coefficients’ eligibility for a low or high

strength watermarking. To ensure VA-based embedding, the watermark weighting parameter

strength, α, in Eq. (11) and Eq. (15) is made variable α(j, k), dependant upon Ts, as follows:

α(j, k) =

{

αmax if s(j, k) < Ts,

αmin if s(j, k) ≥ Ts,
(19)

where α(j, k) is the adaptive watermark strength map giving the α value for a the corresponding

saliency at a given pixel coordinate (j, k). The watermark weighting parameters, αmin and αmax

correspond to the high and low strength, values respectively and their typical values are determined

from the analysis within Section 3.3. As shown in Fig 7(d), the most and the least salient regions

are given watermark weighting parameters of αmin and αmax, respectively. An example of the

final VA-based alpha watermarking strength map is shown in Fig 7(e), where a brighter intensity

represents an increase in α.

3.3 Watermark Embedding Strength Calculation

The watermark weighting parameter strengths, αmax and αmin can be calculated from the visible

artifact PSNR limitations within the image. Visual distortion becomes gradually noticeable as the

overall Peak Signal to Noise Ratio (PSNR) drops below 40 ∼ 35dB,67 so minimum and maximum

PSNR requirements are set to approximate 35dB and 40dB, respectively, for both the blind and

non-blind watermarking schemes. These PSNR limits ensure maximum amount of data can be

embedded into any host image to enhance watermark robustness without substantially distorting

the media quality. Therefore it is sensible to incorporate PSNR in determining the watermark

strength parameter α.

Recalling PSNR, which measures the error between two images with dimensions X × Y is

expressed on pixel domain as follows:

PSNR(I, I ′) = 10 log











M2

1

XY

X
∑

j=1

Y
∑

k=1

(I ′(j, k)− I(j, k))2











, (20)

where M is the maximum coefficient value of the data, I(j, k) and I ′(j, k) is the original and

watermarked image pixel values at (j, k) indices, respectively. Considering the use of orthogonal

wavelet kernels and the Parseval’s theorem, the mean square error in the wavelet domain, due to

watermarking, is equal to the mean square error in the spatial domain.50 Therefore, Eq.(20) can be

redefined on transform domain for non-blind magnitude based multiplicative watermarking, shown
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in Eq.(11), as follows:

PSNR(I, I ′) = 10 log









M2

1

XY

X
∑

m=1

Y
∑

n=1

(αW (m,n)C(m,n))2









. (21)

By rearranging for α, an expression determining the watermark weighting parameter, depend-

ing on the desired PSNR value is derived for non-blind watermarking in Eq.(22) as follows:

α =
M

√

10(PSNR(I,I′)/10)

XY

X
∑

m=1

Y
∑

n=1

(W (m,n)C(m,n))2

. (22)

Similarly for the blind watermarking scheme described in Section 3.1.2, PSNR in transform

domain can be estimated by substituting the median and modified median coefficients, C(med) and

C ′
(med), respectively, in Eq.(20). Then subsequent rearranging results in an expression for the total

error in median values, in terms of the desired PSNR as follows:

X
∑

m=1

Y
∑

n=1

(C ′
(med) − C(med))

2 = XY
M2

10(PSNR/10)
. (23)

Eq.(23) determines the total coefficient modification for a given PSNR requirement, hence is used

to α in Eq.(15).

3.4 Saliency Map Reconstruction

For non-blind watermarking, the host data is available during watermark extraction so an identi-

cal saliency map can be generated. However, a blind watermarking scheme requires the saliency

map to be reconstructed based upon the watermarked media, which may have got pixel values

slightly different to the original host media. Thresholding the saliency map into 2 levels, as de-

scribed in Section 3.2, ensures high accuracy within the saliency model reconstruction for blind

watermarking. Further experimental objective analysis reveals that use of thresholding improves

the saliency coefficients match upto 99.4% compared to approximately only 55.6% of coefficients

when thresholding was not used and hence reconstruction errors are greatly reduced.

4 Experimental Results and Discussion

The performance of the proposed video visual attention method and its application in robust video

watermarking is presented and discussed in this section. The video VAM is evaluated in terms of

the accuracy with respect to the ground truth and computational time in Section 4.1. The video

visual attention based watermarking is evaluated in terms of embedding distortion and robustness

to compression in Section 4.2.
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Fig 8: Video database - 15 thumbnails for each sequence.

4.1 Visual Attention Model Evaluation

For attention model evaluation, the video dataset is taken from the literature 68, which comprises

of 15 video sequences, containing over 2000 frames in total. Ground truth video sequences have

been generated from the database by subjective testing. A thumbnail from each of the 15 test

sequences are shown in Fig 8. Common test set parameters for VAM and later in watermarking,

used throughout all performed experiments, include: the orthogonal Daubechies length 4 (D4)

wavelet for three levels of 2D spatial decomposition and one level of motion compensated temporal

Haar decomposition.

Experimental results demonstrate the model performance against the existing state-of-the-art

methodologies. The proposed algorithm is compared with the Itti,17 Dynamic69 and Fang21 video

visual attention models, in terms of accurate salient region detection and computational efficiency.

The Itti framework is seen as the foundation and benchmark used for VA model comparison,

whereas the Dynamic algorithm is dependant upon locating energy peaks within incremental length

coding. A more recent Fang algorithm uses a spatiotemporally adaptive entropy-based uncertainty

weighting approach.

Fig 9 shows the performance of the proposed model and compares against the Itti, Dynamic

and Fang algorithms. The Itti motion model saliency maps are depicted in column 2, the Dynamic

model saliency maps in column 3 and the Fang model in column 4. Results obtained using the

proposed model are shown in column 5 where from top to bottom, the locally moving snowboarder,

flower and bird are clearly identified as salient objects. Corresponding ground truth frames are

shown in column 6, which depict all salient local object movement. Results from our model are

subjected to the presence of significant object motion, which dominates the saliency maps. This

is in contrast to the other models where differences between local and global movement are not

fully accounted for and therefore those maps are dominated by spatially attentive features, leading

to salient object misclassification. For example, the trees within the background of the snowboard

sequence are estimated as an attentive region, when a man is performing acrobatics within the

frame foreground.
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Fig 9: Temporal visual attention model comparison table: column 1 - example original frames from

the sequences; column 2 - Itti model;17 column 3 - Dynamic model;69 column 4 - Fang model;21

Column 5 - proposed method and column 6 - ground truth.
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Fig 10: ROC curve comparing performance of proposed model with state-of-the-art video domain

visual attention models: Itti model,17 Dynamic model69 and Fang model.21

The Receiver Operating Characteristic (ROC) curves and corresponding Area Under Curve

(AUC) values, shown in Fig 10 and the top row in Table 1, respectively, display an objective model

evaluation. The results show the proposed method is close to recent hFang model and exceeds the

performance of the Itti motion and Dynamic models having a 3.5% and 8.2% higher ROC-AUC,

respectively. Further results demonstrating our video visual attention estimation model across

four video sequences are shown in Fig 11. Video saliency becomes more evident when viewed as a

sequence rather than from still frames. The video sequences with corresponding saliency maps are

available for viewing at the following website address: http://svc.group.shef.ac.uk/VAvideo.html.

The bottom row in Table 1 shows the complexity of each algorithm in terms of average frame

computational time. The values in the table are calculated from the mean computational time over

every frame within the video database and provide the time required to form a saliency map from

the original raw frame. All calculations include any transformations required. From the table, the

proposed low complex methodology can produce a video saliency map around 30%, 88% and 0.5%
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Table 1: AUC and Computational time comparing state-of-the-art video domain visual attention

models.

Visual Attention Method Itti17 Dynamic69 Fang21 Proposed

ROC AUC 0.804 0.769 0.867 0.832

Average frame computational time (sec) 0.244 0.194 31.54 0.172

of the time for an Itti, Dynamic and Fang model frame, respectively. Additionally, the proposed

model uses the same wavelet decomposition scheme used for watermarking. Therefore overall

visual saliency based watermarking complexity is low compared to all three methods compared in

this paper.

4.2 Visual Attention-based Video Watermarking

The proposed VA-based watermarking is agnostic to the watermark embedding methodology.

Thus, it can be used on any existing watermarking algorithm. In our experiments, we use the

non-blind embedding proposed by Xia et al.53 and the blind algorithm proposed by Xie and Arce54

as our reference algorithms.

A series of experimental results are generated for our video watermarking case study as de-

scribed in Section 3, analysing both watermark robustness and imperceptibility. Objective and

subjective quality evaluation tools are enforced to provide a comprehensive embedding distortion

measure. Robustness against H.264/AVC compression70 is provided, as common video attacks

comprise of platform reformatting and video compression. Since the VA-based watermarking

scheme was presented here as a case study of exploitation of the proposed VAM, our main focus

of performance evaluation is on the embedding distortion and the robustness performance with

respect to compression attacks. Compression attacks are given focus as, watermarking algorithms

often employ a higher watermarking strength for encountering the compression and re-quantization

attack. In this work we demonstrate robustness against H.264/AVC compression, for example. The

watermarking evaluation results are reported using the four example video sequences (shown in

Fig 11) from the same data set used for VAM evaluation in the previous section.

An αmax and αmin approximating a PSNR of 35dB and 40dB, respectively, is utilised by apply-

ing Eq. (22) and Eq. (23). Four scenarios of varied watermark embedding strength are considered

for the VA-based video watermarking evalution as follows:

1. a uniform αmin throughout the entire sequence;

2. the proposed visual VAM-based α strength;

3. a uniform average watermark strength, αave, chosen as αave = (αmin + αmax)/2; and

4. a uniform αmax used throughout the entire video sequences.

The experimental results are shown in the following two sections: embedding distortion (visual

quality) and robustness.
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Fig 11: Video visual attention estimation results for four example sequences: row 1 - original frame

from the sequence; row 2 - proposed saliency map and row 3 - ground truth. Video sequences and

the VA map sequences are available at http://svc.group.shef.ac.uk/VAvideo.html

4.2.1 Embedding Distortion

The embedding distortion can be evaluated using objective metrics or subjective metrics. While

objective quality measurements are mathematical models that are expected to approximate results

from subjective assessments and are easy to compute, subjective measurements ensure viewer’s

overall opinion of the quality of experience (QoE) of the visual quality. Often these metrics are

complimentary to each other and particularly important in this paper to measure the effect on

imperceptibility of the proposed watermark algorithms.

1) Objective metrics define a precise value, dependant upon mathematical modelling, to deter-

mine visual quality. Such metrics include Peak Signal to Noise Ratio (PSNR), Structural Similarity

Index Measure (SSIM),71 Just Noticable Difference (JND)72 and Video Quality Metric (VQM).73

PSNR that calculates the average error between two images, is one of the most commonly used

visual quality metrics and described in Eq.(20). Unlike PSNR, SSIM focuses on a quality assess-
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Table 2: PSNR, SSIM and VQM average of 4 video sequences for non-blind watermarking.

Low Strength Proposed Average Strength High Strength

PSNR 40.15 ± 0.80 37.39 ± 0.87 37.47 ± 0.76 34.93 ± 0.73

SSIM 0.99 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.95 ± 0.01

VQM 0.10 0.15 0.18 0.25

Table 3: PSNR, SSIM and VQM average of 4 video sequences for blind watermarking.

Low Strength Proposed Average Strength High Strength

PSNR 40.23 ± 1.03 36.80 ± 1.02 37.20 ± 0.92 34.85 ± 0.90

SSIM 0.99 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.96 ± 0.01

VQM 0.08 0.13 0.15 0.22

ment based on the degradation of structural information. SSIM assumes that the HVS is highly

adapted for extracting structural information from a scene. A numeric output is generated between

1 and 0 and higher video quality is represented by values closer to 1. VQM evaluates video quality

based upon subjective human perception modelling. It incorporates numerous aspects of early vi-

sual processing, including both luma and chroma channels, a combination of temporal and spatial

filtering, light adaptation, spatial frequency, global contrast and probability summation. A numeric

output is generated between 1 and 0 and higher video quality is represented by values closer to 0.

VQM is a commonly used video quality assessment metric as it eliminates the need for participants

to provide a subjective evaluation.

Although, the subjective evaluation is considered as the most suitable evaluation for the pro-

posed method in this paper, the visual quality evaluation in terms of the PSNR, SSIM and VQM

metrics are shown in Table 2 and Table 3 for non-blind and blind watermarking schemes, respec-

tively. In both PSNR and SSIM, higher values signify better visual quality. The performance of

the four watermarking scenarios in terms of both SSIM and PSNR is rank ordered in terms of the

highest visual quality, as follows: low strength embedding (αmin) > VA-based algorithm / average

strength > high strength embedding (αmax). From the tables, PSNR improvements of approxi-

mately 3 dB are achieved when comparing the proposed VA-based approach and constant high

strength scenario. The SSIM measures remain consistent for each scenario, with decrease of 2%

for the high strength watermarking model in most cases. In terms of VQM metric, which mim-

ics subjective evaluation, the proposed VA-based watermarking consistently performs better than

average or high strength watermarking scenarios.

Objective metrics, such as, PSNR, SSIM and VQM, do not necessarily radiate identical per-

ceived visual quality. Two distorted frames with comparable PSNR, SSIM or VQM metrics do not

necessitate coherent media quality. Two independent viewers can undergo entirely different visual

experiences, as two similarly distorted frames can provide a contrasting opinion for which contains

higher visual quality. To provide a realistic visual quality evaluation, subjective testing is used to

analyze the impact of the proposed watermarking scheme on the overall perceived human viewing

experience.

2) Subjective evaluation measures the visual quality by recording the opinion of human sub-
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Fig 12: Subjective testing visual quality measurement scales (a) DCR continuous measurement

scale (b) ACR ITU 5-point discrete quality scale.

jects on the perceived visual quality. The watermarked videos were viewed by these 30 subjects,

following the standard International Telecommunication Union (ITU-T)37 viewing test specifica-

tions, often used in compression quality evaluation experiments. The final rating was arrived at by

averaging all ratings given by the subjects. This work employs two subjective evaluation metrics,

that are computed based on the subjective viewing scores, as follows:

DSCQT: Double Stimulus Continuous Quality Test (DSCQT) subjectively evaluates any media

distortion by using a continuous scale. The original and watermarked media is shown to the

viewer in a randomised order, who must provide a rating for the media quality of the original

and watermarked images individually using a continuous scaling, as shown in Fig 12(a). Then the

Degradation Category Rating (DCR) value is calculated by the absolute difference between the

subjective rating for the two test images.

DSIST: Double Stimulus Impairment Scale Test (DSIST) determines the perceived visual degra-

dation between two media sources, A and B, by implementing a discrete scale. A viewer must

compare the quality of B with respect to A, on a 5-point discrete Absolute Category Rating (ACR)

scale, as shown in Fig 12(b).

In a subjective evaluation session, firstly, training images are shown to acclimatize viewers

to both ACR and DCR scoring systems. In either of the two subjective tests, a higher value in

DCR or ACR scales represents a greater perceived visual quality. Figure 13 illustrates an overall

timing diagram for each subjective testing procedure, showing the sequence of test image display

for scoring by the viewers. Note that the video display time, t1, and blank screen time, t2, before

the change of video, should satisfy the following condition: t1 > t2.

Subjective evaluation performed in this work comprises of DSCQT and DSIST and the results

are shown in Fig 14, for both non-blind and blind watermarking schemes. The top and bottom

rows in Fig 14 show subjective results for the non-blind and blind watermarking cases, respec-

tively, whereas the left and right columns show the results using DSCQT and DSIST evaluation

tools. Consistent results are portrayed for both the blind and non-blind scenarios. Fig 14 shows

the subjective test results for DCQST and DSIST averaged over 4 video test sequences. For the

DSCQT, the lower the DCR, the better the visual quality, i.e., less embedding distortions. In
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Fig 13: Stimulus timing diagram for (a) DCR method (b) ACR method.

the shown results, when comparing the proposed and low strength embedding methodologies, the

DCR value only deviates by approximately one unit in the rating scale suggesting a subjectively

similar visual quality. The high strength watermarking scheme shows a high DCR value indicat-

ing significantly higher degradation of subjective visual quality compared with the VAM-based

methodology. Similar outcomes are evident from the DSIST plots, where the higher mean opinion

score (MOS) on ACR corresponds to better visual quality, i.e., less embedding visual distortions.

DSIST plots for low-strength and VAM-based schemes show a similar ACR MOS approximately

in the range 3-4, whereas the high strength watermark yields an ACR of less than 1 for non-blind

and nearly 2 for blind watermarking. Compared with an average watermark strength, the proposed

watermarking scheme shows an improved subjective image quality in all 4 graphs by around 0.5-1

units. As more data is embedded within the visually salient regions, the subjective visual quality

of constant average strength watermarked images is worse than the proposed methodology.

For visual inspection, an example of watermark embedding distortion is shown in Fig 15. The

original, the low strength watermarked, VAM-based watermarked and the high strength water-

marked images are shown in four consecutive columns, where the distortions around the legs of

the player with blue jersey (row 1) and around the tennis player (row 2) are distinctively visible in

high strength watermarking.

For each of the blind and non-blind watermarking cases in both the objective and subjective

visual quality evaluation, the low strength watermark and VAM-based watermarking sequences

yield similar visual quality, where as the high strength embedded sequence appears severely more

distorted. Low strength watermarking provides a high imperceptibility but is fragile as discussed

in Section 4.2.2.

4.2.2 Robustness

Video reformatting and compression is a frequent and typically unintentional adversary attack,

hence watermark tolerance for H.264/AVC compression is calculated. Robustness against H.264/AVC

compression for both non-blind and blind video watermarking schemes is shown in Fig 16a) and

Fig 16b) respectively. For simulating the watermark robustness, five constant Quantisation Parame-

ter (QP) values are implemented to compress the high strength, average strength, VA-based and low

strength test sequences. In both scenarios as shown in the plots, the proposed VA-based methodol-

ogy shows an increase in robustness compared with the low strength watermark counterpart where
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Fig 14: Subjective video watermarking embedding distortion measures for different embedding

scenarios - high strength (High), average strength, VA-based strength selection (VAM) and low

strength (Low) - row 1: non-blind watermarking, row 2: blind watermarking, column 1: DSCQT

and column 2: DSIST.

lower Hamming distance indicates better robustness. From the plots in Fig 16, Hamming distance

reductions up to 39% for the non-blind case and 22% for the blind case are possible, when com-

paring the low and VA-based models. Naturally, the high strength watermarking scheme portrays

a strong Hamming distance but is highly perceptible (low visual quality), as described previously.

The proposed watermarking scheme has a slight increased robustness towards H.264/AVC com-

pression, as shown in Fig 16, when compared against a constant average strength watermark. It is

of suitable note that for a constant QP value, the compression ratio is inversely proportional to the

increase in watermark strength, i.e., as the watermark strength increases, the overall compression

ratio decreases due to the extra watermark capacity.

The proposed VA-based method results in a robustness close to the high strength watermark-

ing scheme, while showing low distortions, as in the low strength watermarking approach. The

incurred increase in robustness coupled with high imperceptibility, verified by subjective and ob-

jective metrics, deem the VA-based methodology highly suitable towards providing an efficient
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Fig 15: Example frames from Soccer and tennis sequences after watermarking with different em-

bedding scenarios (for visual inspection) - column 1: original frame, column 2: low strength water-

marked frame, column 3: VA-based watermarked frame and column 4: high strength watermarked

frame.

Fig 16: Robustness to H.264/AVC compression - average of 4 video sequences: a) non-blind

watermarking and b) blind watermarking.

watermarking scheme.

5 Conclusions

In this paper, we have presented a novel video watermarking algorithm using a motion com-

pensated visual attention model. The proposed method exploits both spatial and temporal cues

for saliency modelled in a motion-compensated spatio-temporal wavelet multi resolution analysis

framework. The spatial cues were modelled using the 2D wavelet coefficients. The temporal cues

were modelled using the temporal wavelet coefficients by considering the global and local motion

in the video. We have used of the proposed VA model in visual-attention based video watermark-

ing to achieve robust video watermarking that has minimal or no effect on the visual quality due
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to watermarking. In the proposed scheme, a two-level watermarking weighting parameter map is

generated from the VAM saliency maps using the proposed saliency model and data is embed-

ded into the host image according to the visual attentiveness of each region. By avoiding higher

strength watermarking in visually attentive region, the resulted watermarked video achieved high

perceived visual quality while preserving high robustness.

The proposed VAM outperforms the state-of-the-art video visual attention methods in joint

saliency detection and low computational complexity performances. The saliency maps from the

proposed method are dominated by the presence of significant object motion. This is in contrast

to the other models where differences between local and global movement are not fully accounted

for and therefore those maps are dominated by spatially attentive features, leading to salient ob-

ject misclassification. The watermarking performance was verified by performing the subjective

evaluation methods as well as the objective metric VQM. For the same embedding distortion, the

proposed VA-based watermarking achieved up to 39% (non-blind) and 22% (blind) improvement

in robustness against H.264/AVC compression attacks, compared to the existing methodology that

does not use the visual attention model. Finally, the proposed VA-based video watermarking has

resulted in visual quality similar to that of low-strength watermarking and robustness similar to

those of high-strength watermarking.
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